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Abstract: Cystic fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians,
is caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel gene.
Despite significant advances in the management of CF patients, novel disease-related biomarkers
and therapies must be identified. We performed serum proteomics profiling in CF patients (n = 28)
and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomic approach. Out of a total
of 198 proteins identified, 134 showed a statistically significant difference in abundance and a
1.5-fold change (ANOVA, p < 0.05), including 80 proteins with increased abundance and 54 proteins
with decreased abundance in CF patients. A multiple reaction monitoring-mass spectrometry
analysis of six differentially expressed proteins identified by a proteomic approach (DIGE-MALD-MS)
showed a significant increase in C3 and CP proteins and a decrease in APOA1, Complement C1,
Hp, and RBP4proteins compared with healthy controls. Fifteen proteins were identified as potential
biomarkers for CF diagnosis. An ingenuity pathway analysis of the differentially regulated proteins
indicates that the central nodes dysregulated in CF subjects involve pro-inflammatory cytokines,
ERK1/2, and P38 MAPK, which are primarily involved in catalytic activities and metabolic processes.
The involved canonical pathways include those related to FXR/RXR, LXR/RXR, acute phase response,
IL12, nitric oxide, and reactive oxygen species in macrophages. Our data support the current
efforts toward augmenting protease inhibitors in patients with CF. Perturbations in lipid and
vitamin metabolism frequently observed in CF patients may be partly due to abnormalities in their
transport mechanism.
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1. Introduction

Cystic fibrosis (CF) is an autosomal recessive genetic disorder that causes significant morbidity
and mortality, mainly in the Caucasian population [1–3]. It affects 1 in 2000–3000 newborns in the
EU and 1 in 3500 in the USA [3]. The incidence of CF in Saudi Arabia has been estimated at 1 in
4243, and since there is no national screening program to identify CF in newborns, the average age at
diagnosis is 2.8 ± 3.5 years [4].

Mutations cause CF in the CF transmembrane conductance regulator (CFTR) gene [5,6], which is
a PKA-regulated chloride channel expressed in the apical membrane of the epithelial cells regulating
secretion and absorption processes in tissues such as the lungs, pancreas, intestine, and kidneys,
where it regulates water and salt balance [1,7,8]. Deletion of a phenylalanine residue at position
508 in the CFTR protein is the most frequent mutation that causes the CFTR protein to misfold,
thereby remaining incompletely processed in the endoplasmic reticulum (ER), being subsequently
degraded by an ER-associated degradation pathway [9–11]. Consequently, cells expressing the mutant
protein are unable to transport chloride ions across the plasma membrane in response to a rise in
intracellular cAMP levels [1]. Disruption of normal ion homeostasis in the airway causes mucoviscidosis
(thick mucus), which makes the lungs more vulnerable to persistent and recurrent infections [5,6,12].

Chronic infections and persistent inflammation can deteriorate lung function and lead to a higher
mortality rate in CF patients [2,6,12]. Dysfunctions in macrophages and neutrophils lead to increased
chronic inflammation in CF patients. CFTR impairment in macrophages reduces their bacterial clearance
abilities and induces pro-inflammatory cytokine production [6]. Moreover, CFTR knockout mice show
annex-aggerated IgE response toward Aspergillus fumigatus with high levels of IL-13 and IL-4. T-cells
appear to play a major role in disrupted immune responses because the lack of CFTR in CD3+lymphocytes
results in aberrant cytokine secretion and adaptive immune responses [13]. In the CF lung, activation of
the nuclear factor NF-κB signaling enhances the production of pro-inflammatory mediators, including
interleukin8 (IL8), which is a potent neutrophil chemoattractant protein [12]. The chronic presence of
neutrophils in the CF lung can cause irreversible damage to the lung parenchyma through the continued
release of neutrophil proteases, particularly the neutrophil elastase [6] and ROS [12].

The newborn screening for CF is mainly performed by measuring the immunoreactive trypsinogen
(IRT) on a dried blood spot (DBS), followed by CFTR DNA mutation screening [7,14]. Additionally, a few
centers measure the levels of fecal elastase, which improves the diagnostic capability of CF
newborn screening [15]. Confirmatory diagnosis is usually achieved by demonstrating the presence
of two bi-parentally inherited CFTR mutations and abnormal sweat chloride excretions [16,17].
However, discovering new biomarkers to evaluate disease progression and therapeutic targets to
reduce CF complications is still necessary. Proteomics has evolved as a promising platform for the
identification of secreted proteins involved in CF pathophysiology, which could help in discovering
new biomarkers or therapeutic targets for CF [2,12,18].

Several proteomic reports have shown differential protein expression in patients with CF. In one
study, a total of 349 proteins related to CF pathogenesis and proteostasis of CFTR processing were
differentially expressed in the bronchial epithelial cell models of CF [1]. In another report, ezrin,
HSP70, endoplasmin, lamin A/C, and other CFTR-related proteins were identified as central hubs in
CFTR homeostasis [5]. In primary cultures of human nasal epithelial cells obtained from CF patients
with nasal polyps, proteomic analysis revealed changes in pathways related to metabolism, G-protein
processing, inflammation, oxidative stress response, protein folding, proteolysis, and structural
proteins [9]. An analysis of the sputum cellular proteins of CF patients with chronic Pseudomonas
aeruginosa infection indicated the involvement of the Rho family of small GTPases, immune cell
movement/activation, the generation of ROS, and the dysregulation of cell death and proliferation [18].
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Another proteomic analysis of sputum from CF patients showed the differential expression of
proteins related to proteolytic degradation and the influx of inflammation, such as myeloperoxidase,
cleaved alpha-1-antitrypsin, IgG degradation, and IL8 [14].

Proteomic profiling has also been performed on the serum of patients with CF. Serum proteome
profiling of CF patients with mild or severe respiratory diseases shows that CF perturbed pathways are
related to lipid metabolism, platelets, and complement cascade activation. Furthermore, serum analysis
indicates that the biological processes related to tissue destruction remodeling, protease/antiprotease
balance, and innate immune function were all affected in CF patients [15]. In this study, we aimed to
perform quantitative serum proteomics analyses in CF patients using the two-dimensional difference
in gel electrophoresis (2D-DIGE) coupled with high-resolution mass spectrometry (MS) and to assess
the differences compared with healthy subjects. Identifying differentially expressed proteins in CF
patients may help with identifying novel candidate biomarkers associated with the disease and provide
a deeper understanding of the pathological changes of CF.

2. Results

2.1. Clinical Characteristics of Study Subjects

In this study, 28 young adult patients with a confirmed diagnosis of CF (based on clinical
presentation, abnormal sweat chloride, and CFTR mutation analysis) and ten age-matched controls
provided consent and blood samples for the proteomics analyses. Table 1 and Supplementary
Table S1 summarize the clinical, molecular, and routine laboratory findings in the CF patient cohort,
which included 13 (46.4%) males and 15 (53.6%) females with a mean age of 20.3± 4.8 years (range 12–34).
In this study, eight different CFTR mutations were identified, which represent 46.5% of all CFTR
alleles reported in the Saudi Arabian patients with CF [19]. Eleven patients had deletions/frameshift
mutations, nine shared single splicing (c.3700 A>G) mutations, and eight had missense mutations,
all of which had been reported previously except the two mutations in patients CF3, CF6, and CF24.
The c.3700 A>G is particularly interesting as it has been found to introduce a novel cryptic donor
splicing site in exon 22 [20]. Therefore, this class V CFTR protein mutation is present in 32% (9/28) of CF
patients, while class III and IV represented 50% and 18%, respectively. Only one CFTR mutated allele
was identified in each of four patients (CF4, CF14, CF27, CF 34) in this cohort, indicating compound
heterozygosity and non-consanguinity. Pancreatic insufficiency was present in 27 patients, and cystic
fibrosis-related diabetes mellitus (CFRD) was reported in five patients. The mean body mass index
(BMI, n = 28) was 18.4 ± 3.5. Serum/plasma total 25-hydroxy vitamin D (n = 28), vitamin E (n = 26),
and IgE (n = 25) levels were also determined. The mean plasma total 25-hydroxyvitamin D level was
56 ± 23.8 nmol/L (reference: 13–76 nmol/L). One patient (CF2) had combined vitamin D and vitamin
E insufficiency, while 4 patients (CF16, CF27, CF30, CF31) had elevated vitamin D levels. Vitamin
E supplementation appears to be adequate as the mean serum vitamin E level was 11.7 ± 5.9 mg/L
(reference: 5.5–15.5 mg/L). Total serum IgE level mean 282.4 ± 515.9 KU/L (reference: 5–500 KU/L).
Low total serum IgE levels were found in two patients (CF2, CF26), while patients CF3 and CF34
had elevated levels. Patient CF11 underwent lung transplantation while patients CF6 and CF41 had
received liver transplantation previously. Medications received by the patient cohort for standard
clinical care included dornase alpha (recombinant DNAse1, all patients), hypertonic saline (CF1-5),
tacrolimus, prednisone (CF11), and Ivacaftor (CF14).
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Table 1. Clinical, biochemical and molecular genetics characteristics parameters of the CF patients in this study.

Sample ID Age (years) Gender CFTR Mutation * CFTR Protein Mutation Class Sweat Chloride (meq/L) FEV1 L (%) Pancreatic Status
CF1 23 M exon 12: c.1647 T>G; p.S549R class III NA 3.03(70%) PI
CF2 22 F exon 11: c.1418delG; p.G473EfsX54 class III NA 0.47(15%) PI
CF3 19 F exon 15: c.2619 G>C); p.E873D class III 105 1.17 (46%) PI
CF4 20 M exon 14: c.1911 delG; p.Q637HfsX26 (het) class III 110 1.68(35%) PI
CF5 22 F exon 22: c.3700 A>G; p.I1234V class V 100 0.92(31%) PI
CF6 17 F exon11:c.1416 delG; p.M472fs class III NA 1.23(41%) PI
CF7 22 M exon 11: c.1418 delG; p.G473EfsX54 class III 79 1.12(31%) PI
CF9 18 F exon 11: c.1418 delG; p.G473EfsX54 class III NA 2.08(67%) PI

CF10 28 M exon 4: c.416 A>T; p.H139L class IV NA 0.6(16%) PI
CF11 26 M exon 22: c.3700 A>G; p.I1234V class V NA NA PI

CF12 34 F exon 11: c.1418del G; p.G473EfsX54/Exon
12: c.1736 A>G; p.D579G class III 58 1.23(45%) PI

CF13 20 M exon 22: c.3700 A>G; p.I1234V class V 108 NA PI
CF14 17 M exon 12: c.1647 T>G; p.S549R (het) class III 124 3.07(84%) PI
CF16 18 F exon12:c.1647T>G; p.S549R class III NA 2.56(85%) PI
CF22 14 F exon 4: c.416 A>T; p.H139L class IV NA 0.68(24.9%) PI
CF24 17 F exon 13: c.2043 delG class III NA 2.32(84%) PI
CF25 20 F exon 11: c.1418 delG; p.G473EfsX54 class III NA 1.97(70%) PI
CF26 26 M exon 22: c.3700 A>G; p.I1234V class V NA 0.99 (27%) PI
CF27 14 M exon11:c.1416 delG; p.M472fs (het) class III NA 2.47(64%) PI
CF29 26 F exon 22: c.3700 A>G; p.I1234V class V 60 2.71(88%, post TX) PI
CF30 12 M exon 22: c.3700 A>G; p.I1234V class V 88 2.58(81%) PI
CF31 24 F exon 22: c.3700 A>G; p.I1234V class V NA 1.68(61%) PI
CF32 20 F exon 22: c.3700 A>G; p.I1234V class V NA 1.3(47%) PI
CF33 22 F exon 22: c.3700 A>G; p.I1234V Class V NA NA NA
CF34 18 M exon 11: c.1416 delG; p.M472fs (het) class III 81 0.95(24%) PI
CF40 18 F exon4:c.416A>T; p.H139L class IV NA 0.63(16%) PI
CF41 14 M exon 4: c.416 A>T; p.H139L class IV NA 1.57(48%) PI
CF42 18 M exon 19-21 del class IV NA 3.08(77%) PI

* All CFTR mutations are homozygous except for patient CF12 who was a compound heterozygote. In patients C4, C14, C27, and C34, only a single CFTR mutation was identifiable.
Abbreviation: CFTR: cystic fibrosis transmembrane conductance regulator; FEV1: forced expiratory volume in second; het: heterozygous; L: liter; NA: not available; PI: pancreatic
insufficient; PS: pancreatic sufficient; Tx: transplantation).
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A total of 1500 spots were mapped on the gels, of which 198 differed significantly (ANOVA
p ≤ 0.05 and fold-change ≥ 1.5) between the CF and control samples (Supplementary Figure S1A,B).

The spot patterns were reproducible across all the gels, leading to alignment and further
analysis. Cy2-labeling (the internal standard) was included to permit normalization across the
complete set of gels and to allow a quantitative differential analysis of the protein levels. Significant
changes in protein abundance levels were based on a one-way ANOVA (p ≤ 0.05 and fold-change
≥ 1.5 or <0.75). The statistical analysis using one-way ANOVA showed the expression of
198 protein spots to be significantly dysregulated between the study groups. The statistically
significant spots (n = 198) were then manually excised from a preparative gel and identified
using high-resolution mass spectrometry. 134 spots out of 198 were identified using a peptide
mass fingerprinting (PMF) approach and SWISS-PROT database with a high degree of confidence
(p < 0.05) (Table 2, Supplementary Table S2). The sequence coverage of the identified proteins
by PMF ranged from 11% to 89%, with at least two peptides/proteins. In a few cases, variants of
the same protein were detected in several spots on the gel (Supplementary Figure S1A,B, Table 2,
Supplementary Table S2). Among the 134 identified entities, 80 proteins were up-regulated, and 54
were down-regulated in the CF patients compared with the controls. The up-regulated proteins
included alpha-2-macroglobulin (A2MG), kininogen-1 (KNG1), alpha-1-antichymotrypsin (SERPINA3),
alpha-1-antitrypsin (SERPINA1), coiled-coil domain-containing protein 68 (CCDC68), uromodulin
(UMOD), complement factor H (CH), ceruloplasmin (CP), complement 3 (C3), and metabotropic
glutamate receptor 4 (GRM4). The down-regulated proteins included type II inositol 1,4,5-trisphosphate
(INPP5B), protein-glutamine gamma-glutamyltransferase6 (TGM6), RB1-inducible coiled-coil protein
1 (RB1CC1), putative protein FAM10A4 (ST13P4), dysferlin(DYSF), and lipoprotein lipase (LIPL).
The complete list of up- and down-regulated proteins is shown in Table 2.

2.2. Mass Spectrometry Identification of Differentially Expressed Proteins on 2D-DIGE

The principal aim of this study was to perform a comparative serum proteome analysis of
CF patients (n = 28) and healthy subjects (n = 10) to identify the differential expression patterns.
Representative fluorescent protein profiles of 2D-DIGE containing the control subjects samples labeled
with Cy3 are shown in Figure 1A, the CF patients’samples labeled with Cy5 (Figure 1B), the pooled
internal control samples labeled with Cy2 (Figure 1C), and a merged 2D-DIGE comparison of Cy3/ Cy5
(D) are shown in Figure 1D.

2.3. Methodology Validation Using Multiple Reaction Monitoring (MRM) Mass Spectrometry

Six different significantly dysregulated proteins from the CF 2D DIGE proteomics profile were
selected for validation. Signature peptides for these selected proteins were identified using the criteria
that we described elsewhere [21]. The proteins were selected based on their involvement in the
protein-protein interaction network pathway. Those proteins with a higher number of interactions
and fold changes showing both an increased (Complement C3, Ceruloplasmin,) and decreased
abundance (Apolipoprotein A-I, Haptoglobin, Complement C1 and Retinol-binding protein 4) were
taken to confirm the findings. The uniqueness and reliability of these signature peptides were
confirmed using SkeyLine Software V3 and PeptideAtlas and then synthesized as standard material
(GeneMed Synthesis (San Francisco, CA, USA) [22]. An MRM method was developed using triple
quadrupole mass spectrometry (LC-MSMS). Representative chromatograms of each protein’s signature
peptide are shown in Supplementary Figure S2. This validation experiment shows that these selected
six proteins have similar expression trends in CF, as shown in Figure 2, with a different fold change
value. The expression profiles of these proteins were statistically evaluated with unpaired t-tests using
PrismPad Software.
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Table 2. List of the identified proteins (n = 134) using high-resolution mass spectrometry-based on fold change differential expression between the CF and control
samples. The table shows the average ratio values for the CF and control patients, with their corresponding levels of fold change and one-way ANOVA (p < 0.05) using
2D-DIGE. [Analysis type: MALDI-TOF; database: SwissProt; taxonomy: homo sapiens].

Spot No Accession No Protein Name p-Value (ANOVA) CF/C Ratio EXP

804 P32019 Type II inositol 1,4,5-trisphosphate 7.28 × 10−14 −13.06 Down

998 Q9UL68 Myelin transcription factor 1-like 1.57 × 10−7 −9.94 Down

811 P32019 Type II inositol 1,4,5-trisphosphate 2.54 × 10−9 −9.45 Down

853 Q8TDY2 RB1-inducible coiled-coil protein 1 5.48 × 10−11 −9.22 Down

796 Q8IZP2 Putative protein FAM10A4 7.08 × 10−11 −8.3 Down

987 Q86WV5 CST complex subunit TEN1 2.75 × 10−7 −7.35 Down

792 O95932 Protein-glutamine gamma-glutamyltransferase 6 5.04 × 10−12 −7.23 Down

932 Q8TDE3 Ribonuclease 8 1.94 × 10−9 −6.95 Down

848 Q96LK0 Centrosomal protein of 19 kDa 4.05 × 10−8 −6.77 Down

787 O75923 Dysferlin 9.09 × 10−10 −6.4 Down

808 Q2M2D7 TBC1 domain family member 28 1.94 × 10−9 −6.21 Down

700 P01877 Immunoglobulin heavy constant alpha 2 7.09 × 10−4 −5.6 Down

967 Q9UL68 Myelin transcription factor 1-like protein 8.76 × 10−6 −4.2 Down

823 P06858 Lipoprotein lipase 1.15 × 10−9 −4.2 Down

863 Q6UWF9 Protein FAM180A 1.87 × 10−6 −3.9 Down

907 P02647 Apolipoprotein A-I 2.95 × 10−6 −3.36 Down

782 P00738 Haptoglobin 6.59 × 10−5 −3.15 Down

834 O60869 Endothelial differentiation-related factor 1 4.43 × 10−7 −3.1 Down

714 Q96QP1 Alpha-protein kinase 1 2.02 × 10−5 −2.98 Down

730 Q6JEL2 Kelch-like protein 10 1.15 × 10−5 −2.97 Down

966 P00738 Haptoglobin 0.005 −2.94 Down

591 O00487 26S proteasome non-ATPase regulatory subunit 14 6.53 × 10−5 −2.82 Down

857 Q9UL68 Myelin transcription factor 1-like protein 6.76 × 10−7 −2.82 Down
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Table 2. Cont.

Spot No Accession No Protein Name p-Value (ANOVA) CF/C Ratio EXP

763 P62906 60S ribosomal protein L10a 7.13 × 10−5 −2.77 Down

785 P02774 Vitamin D-binding protein, DBP 2.61 × 10-5 −2.7 Down

856 Q49AM3 Tetratricopeptide repeat protein 31 3.24 × 10−8 −2.64 Down

789 Q99570 Phosphoinositide 3-kinase regulatory subunit 4 1.09 × 10−6 −2.55 Down

570 P02768 Serum albumin 8.38 × 10−6 −2.47 Down

893 P02647 Apolipoprotein A-I 1.27 × 10−6 −2.45 Down

829 P24310 Cytochrome c oxidase subunit 7A1 1.52 × 10−4 −2.27 Down

919 P02753 Retinol-binding protein 4 7.97 × 10−5 −2.25 Down

900 P02647 Apolipoprotein A-I 8.06 × 10−4 −2.16 Down

589 P02768 Serum albumin 9.00 × 10−5 −2.16 Down

1012 Q6ZN57 Zinc finger protein 2 homolog, Zfp-2 0.002 −2.13 Down

982 Q8TAA9 Vang-like protein 1 0.013 −2.09 Down

840 O95922 Probable tubulin polyglutamylase TTLL1 0.004 −2.06 Down

820 P02647 Apolipoprotein A-I 8.46 × 10−4 −2.02 Down

567 Q96PX9 Pleckstrin 3.10 × 10−6 −2.02 Down

862 P24310 Cytochrome c oxidase subunit 7A1 0.044 −1.97 Down

759 P00738 Haptoglobin 0.005 −1.95 Down

801 Q96SI1 BTB/POZ domain-containing protein KCTD15 9.35 × 10−5 −1.88 Down

839 P31751 RAC-beta serine/threonine-protein kinase 0.003 −1.86 Down

709 Q8TDE3 Ribonuclease 8 1.61 × 10−4 −1.86 Down

710 P01008 Antithrombin-III 0.011 −1.8 Down

896 P02647 Apolipoprotein A-I 0.002 −1.66 Down

668 Q9BQ50 Three prime repair exonuclease 2 2.32 × 10−4 −1.62 Down

604 P02790 Hemopexin 0.017 −1.5 Down
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Table 2. Cont.

Spot No Accession No Protein Name p-Value (ANOVA) CF/C Ratio EXP

473 P24666 Low molecular weight phosphotyrosine protein phosphatase 0.002 −1.5 Down

773 P05156 Complement factor I 7.98 × 10−4 −1.5 Down

895 P02647 Apolipoprotein A-I, 0.026 −1.35 Down

598 P02790 Hemopexin 0.028 −1.26 Down

566 P04217 Alpha-1B-glycoprotein 0.02 −1.24 Down

972 Q9NR11 Zinc finger protein 302 3.53 × 10−4 4.94 Up

689 P01009 Alpha-1-antitrypsin 1.97 × 10−6 4.77 Up

908 Q9NT22 EMILIN-3 0.001 4.49 Up

261 P01023 Alpha-2-macroglobulin 2.35 × 10−8 4.45 Up

916 P01042 Kininogen-1 0.004 4.3 Up

264 P01023 Alpha-2-macroglobulin 3.13 × 10−8 3.786 Up

688 P01009 Alpha-1-antitrypsin 5.99 × 10−6 3.78 Up

256 P01023 Alpha-2-macroglobulin 7.45 × 10−7 3.68 Up

596 P00450 Ceruloplasmin 2.96 × 10−5 3.67 Up

695 P01009 Alpha-1-antitrypsin 2.16 × 10−6 3.6 Up

184 P01023 Alpha-2-macroglobulin 1.06 × 10−9 3.43 Up

270 P08603 Complement factor H 5.71 × 10−6 3.41 Up

163 P01023 Alpha-2-macroglobulin 3.48 × 10−9 3.35 Up

243 P01023 Alpha-2-macroglobulin 5.45 × 10−9 3.23 Up

234 P01023 Alpha-2-macroglobulin 1.06 × 10−6 2.97 Up

771 P01024 Complement C3 8.69 × 10−6 2.9 Up

260 P01023 Alpha-2-macroglobulin 2.21 × 10−7 2.85 Up

614 P01011 Alpha-1-antichymotrypsin 2.30 × 10−8 2.85 Up

225 P01023 Alpha-2-macroglobulin 6.36 × 10−7 2.8 Up

273 P01023 Alpha-2-macroglobulin 3.16 × 10−7 2.8 Up
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Table 2. Cont.

Spot No Accession No Protein Name p-Value (ANOVA) CF/C Ratio EXP

247 P01023 Alpha-2-macroglobulin 5.45 × 10−9 2.74 Up

291 P01023 Alpha-2-macroglobulin 2.00 × 10−6 2.7 Up

693 P01009 Alpha-1-antitrypsin 0.001 2.68 Up

277 P01023 Alpha-2-macroglobulin 1.31 × 10−6 2.67 Up

294 P01023 Alpha-2-macroglobulin 1.37 × 10−6 2.66 Up

592 P15622 Zinc finger protein 250 3.30 × 10−4 2.65 Up

766 Q6UXP9 Putative uncharacterized protein 0.004 2.6 Up

283 P01023 Alpha-2-macroglobulin 3.64 × 10−7 2.58 Up

150 Q9H2F9 Coiled-coil domain-containing protein 68 1.19 × 10−6 2.54 Up

259 P01023 Alpha-2-macroglobulin 9.20 × 10−7 2.53 Up

276 P01023 Alpha-2-macroglobulin 3.98 × 10−7 2.51 Up

281 P01023 Alpha-2-macroglobulin 2.08 × 10−6 2.5 Up

601 P00450 Ceruloplasmin 0.003 2.43 Up

285 P01023 Alpha-2-macroglobulin 1.97 × 10−6 2.4 Up

266 P01023 Alpha-2-macroglobulin 6.86 × 10−5 2.38 Up

87 P01023 Alpha-2-macroglobulin 2.58 × 10−6 2.34 Up

635 P01042 Kininogen-1 4.46 × 10−9 2.33 Up

289 P01023 Alpha-2-macroglobulin 1.67 × 10−6 2.3 Up

149 P01023 Alpha-2-macroglobulin 9.97 × 10−7 2.3 Up

334 P07911 Uromodulin 3.79 × 10−6 2.25 Up

610 P01011 Alpha-1-antichymotrypsin 1.65 × 10−6 2.23 Up

367 P00450 Ceruloplasmin 9.27 × 10−5 2.18 Up

255 P01023 Alpha-2-macroglobulin 8.08 × 10−6 2.15 Up

253 P01023 Alpha-2-macroglobulin 3.64 × 10−6 2.12 Up

331 P00450 Ceruloplasmin 7.60 × 10−6 2.09 Up



Int. J. Mol. Sci. 2020, 21, 7415 10 of 26

Table 2. Cont.

Spot No Accession No Protein Name p-Value (ANOVA) CF/C Ratio EXP

338 P00450 Ceruloplasmin 1.83 × 10−5 2.07 Up

611 Q9H0J9 Poly [ADP-ribose] polymerase 12 0.003 2.06 Up

326 P00450 Ceruloplasmin 5.77 × 10−6 2.05 Up

362 P01023 Alpha-2-macroglobulin 2.62 × 10−5 2.03 Up

374 P01023 Alpha-2-macroglobulin 0.002 2.01 Up

388 Q14833 Metabotropic glutamate receptor 4, mGluR4 0.002 1.96 Up

377 P01023 Alpha-2-macroglobulin 0.005 1.93 Up

257 P01023 Alpha-2-macroglobulin 4.37 × 10−5 1.93 Up

376 P00450 Ceruloplasmin 0.004 1.9 Up

638 P01042 Kininogen-1 7.75 × 10−6 1.9 Up

405 P00450 Ceruloplasmin 4.61 × 10−4 1.89 Up

389 P01023 Alpha-2-macroglobulin 6.16 × 10−4 1.88 Up

332 Q14833 Metabotropic glutamate receptor 4 1.69 × 10−4 1.85 Up

263 P01023 Alpha-2-macroglobulin 7.51 × 10−5 1.82 Up

408 P43652 Afamin 2.83 × 10−4 1.76 Up

460 P00450 Ceruloplasmin 0.011 1.75 Up

949 Q8TDE3 Ribonuclease 8 0.017 1.74 UP

651 P01009 Alpha-1-antitrypsin 1.62 × 10−5 1.7 Up

645 P01009 Alpha-1-antitrypsin 1.72 × 10−4 1.69 Up

641 P01009 Alpha-1-antitrypsin 0.003 1.68 Up

343 P00450 Ceruloplasmin 8.46 × 10−4 1.68 Up

659 P01009 Alpha-1-antitrypsin 1.26 × 10−5 1.68 Up

345 P00450 Ceruloplasmin 4.95 × 10−4 1.67 Up

656 P01009 Alpha-1-antitrypsin 1.08 × 10−5 1.67 Up

339 P00450 Ceruloplasmin 9.42 × 10−5 1.66 Up
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Table 2. Cont.

Spot No Accession No Protein Name p-Value (ANOVA) CF/C Ratio EXP

649 P01009 Alpha-1-antitrypsin 3.34 × 10−5 1.65 Up

650 P01009 Alpha-1-antitrypsin 4.28 × 10−4 1.61 Up

642 P01009 Alpha-1-antitrypsin 0.007 1.59 Up

351 Q8NDZ2 SUMO-interacting motif-containing protein 1 0.007 1.55 Up

463 Q8TCP9 Protein FAM200A 0.007 1.51 Up

502 P04217 Alpha-1B-glycoprotein 0.002 1.51 Up

560 P04217 Alpha-1B-glycoprotein 0.008 1.5 Up

558 Q9NXU5 ADP-ribosylation factor-like protein 15 0.003 1.5 Up

404 P00450 Ceruloplasmin 0.022 1.47 Up

465 P04217 Alpha-1B-glycoprotein 0.02 1.37 Up

559 P00450 Ceruloplasmin 0.01 1.36 Up
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Figure 2. Multiple reaction monitoring (MRM)mass spectrometry for validating the study findings.
The MRM method based on signature peptides was developed to validate the expression of six proteins
found in the proteomics approach (DIGE-MALD-MS). The expression of these six proteins in CF patients
was expressed in fold changes compared with the healthy controls (Ctrl). The statistical significance
was evaluated using an unpaired t-test (n = 10), in which * represents p < 0.05, and **** represents
p < 0.0001.
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2.4. Principal Component Analysis (PCA) and Cluster Analysis

The PCA performed on all spot features (n = 198) exhibited statistically significant (ANOVA
p ≤ 0.05 and fold-change ≥ 1.5 or < 0.67) changes in abundance, as identified by MS. The PCA showed a
separation between the two groups based on distinctive proteomics profiles (Supplementary Figure S3).
The differentially abundant spots showed expression pattern clusters according to their abundant
patterns based on a hierarchical clustering analysis (Supplementary Figure S4A,B). The clustering
pattern showed that the changes in the protein intensities for the selected spots differed significantly
between the CF and control samples

2.5. Biomarker Evaluation and Analysis

The significantly expressed data from the previous analysis were further analyzed using the
MetaboAnalyst software package, where the data were further normalized via a log transformation
and Pareto scaling. The significant and dysregulated proteins in this study were further analyzed
using univariate analysis and highlighted in a volcano plot, in which the x- and y-axes indicate the
fold change (cutoff 1.5) and the y-axis t-test (FDR p < 0.05), respectively (Figure 3A). This rigorous
analysis that combines expression fold change and FDR-corrected p-value (FDRp) showed that only 42
and 22 proteins were down- and up-regulated in the CF patients compared with the control patients,
respectively. A multivariate statistical analysis was performed to analyze the serum proteomics dataset.
The partial least squares discriminant analysis (PLS-DA) was first performed to visually reveal the
distinct separation between the study groups (Q2: 0.805, and R2: 0.971) (Figure 3B).

The gel spot expression dataset was further analyzed using the biomarker evaluation feature of
the MetaboAnalyst software, in which the PLS-DA model was used to generate an exploratory receiver
operating characteristic (ROC) curve for the most frequent proteins as potential biomarkers (Figure 4A,
Supplementary Table S3). The top 15 proteins show the highest potential to serve as a protein panel
for identifying CF with a maximum area under the curve (AUC) of 0.981 with the number of latent
being two. These 15 proteins are illustrated in Figure 4B based on their frequencies for being selected.
The sample-set was divided into a test set, which contained 75% of the scans, and a validation set
contained the remaining 25%. Representative ROC curves for a few potential biomarkers are displayed
for apolipoprotein A-I (AUC 0.952) and protein-glutamine gamma-glutamyltransferase 6 (AUC 0.968)
in Figure 4C,D, respectively.

2.6. Interactions of Identified Proteins and Network Connectivity Mapping Asing an Ingenuity Pathway
Analysis (IPA)

The identified proteins in the dataset, which had significantly different abundances, were then
probed using the IPA software tool. The IPA uses an algorithm that generates scores using the
ingenuity knowledge database and attributes them to the corresponding best-fit biological network
pathways. This connectivity map is enriched with other interacting nodes that are input by the software
and the relationships are denoted as direct or indirect by continuous or discontinuous connecting
lines, respectively. The network with the highest score between the CF and control samples was
related to "metabolic diseases, neurological diseases, and disease organismal injury and abnormalities”
(Figure 5A, Supplementary Figure S5) and involved 16 proteins as focus molecules. Additionally, the top
canonical pathway displaying significance was associated with FXR/RXR activation (Overlap = 8.8%,
p = 2.12× 10−14) (Figure 5B). The other canonical pathways are summarized in Supplementary Figure S5.
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Figure 3. Statistical analysis of proteomics expression for the CF patients compared with the healthy
control subjects. A volcano plot between the Ctrl and CF groups shows the significantly dysregulated
proteins (42 down-regulated and 22 up-regulated in the CF group), with cutoffs of 2 and 0.05 for
the fold change (x-axes) and t-test, respectively (A). An orthogonal PLS-DA score plot with eight
components indicates a significant separation between the study groups (Q2: 0.805, and R2: 0.971) for
1000 permutations due to the proteomics dysregulations (B).
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Figure 4. Biomarker statistical evaluation. An ROC exploratory analysis was generated by the PLS-DA
model with many latent variable 2 and with increased sensitivity (x-axis) and specificity (y-axis), in which
the area under the curve is at least 0.959 with a minimum combination of five variables (A). The features
are ranked based on the selected frequency using the PLS-DA model, in which the color change from
green to red indicates their relative expression of low to high, respectively (B); represents isoforms of
the same protein found in different spots of the gel. Representative ROC curves for apolipoprotein A-I,
which is down-regulated in CF (C), and protein-glutamine gamma-glutamyltransferase 6, which is
up-regulated in CF (D).

2.7. Classification of Key Proteins Based On Function

Following the MS analysis, all successful 134 differentially abundant proteins identified between
the CF and control samples were subjected to the PANTHER (protein analysis through evolutionary
relationships) classification system (http://www.pantherdb.org/) according to their molecular function
(Supplementary Figure S6A), biological process (Supplementary Figure S6B), and cellular component
(Supplementary Figure S6C). The functional classification showed that most of the differentially
expressed proteins were involved in catalytic activity (40.40%), followed by binding functions (30.0%).
According to their biological processes, most (36.7%) of the identified proteins were involved in the
metabolic process, followed by biological regulation (21.7%). Further, most of the identified proteins
were cellular, whereas 20.5% were extracellular.

http://www.pantherdb.org/
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Figure 5. Schematic representation of the most significant IPA networks involving the proteins that
were differentially regulated between the CF and control states. The IPA analysis found that the
functional interaction networks pathway with the highest score (33) was related to “metabolic diseases,
neurological diseases, and disease organismal injury and abnormalities.” This pathway incorporated
pro-inflammatory cytokines, ERK1/2, and P38 MAPK as central nodes that were deregulated in CF
samples. The nodes in green and red correspond to down-regulated and up-regulated proteins,
respectively. The colorless nodes were proposed by the IPA and suggest potential targets that are
functionally coordinated with the differentially abundant proteins (A). The solid lines indicate direct
molecular interactions, and the dashed lines represent indirect interactions. The diagram shows the top
six canonical pathways ranked by the P-values obtained from the IPA (B).
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3. Discussion

In the present study, we compared the serum proteomic profiles between clinically stable CF
patients (n = 28) and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomics approach.
Proteomic analysis of serum proteins may help elucidate the pathways and processes implicated in
the disease to understand its pathophysiology better and may present opportunities for developing
novel therapies or improved prognosis [12]. Overall, our results showed that a total of 134 proteins
differed significantly between the CF and control samples, of which 80 were up-regulated and 54 were
down-regulated in the CF patients. Several proteins (including Alpha-1-antitrypsin, Apolipoprotein A-I,
ceruloplasmin, and alpha-2-macroglobulin) were found in more than one spot on different locations of
the gel. The identification of the same proteins at different positions may correspond to their isoforms
or their post-translational modifications as a result of acetylation, methylation, phosphorylation,
or glycosylation that can either shift the protein right or left, depending on the isoelectric point (PI),
or up and down depending on the modifications in molecular weight (MW). Our previous work has
also reported the identification of such protein isoforms differing both in size and isoelectric point in
plasma proteomics.

These differentially expressed proteins were functionally involved in regulating catalytic activities
and metabolic processes related to the canonical pathways, including FXR/RXR and LXR/RXR
activation, acute phase response signaling, IL12 signaling, and the production of nitric oxide and ROS
(Figure 5A,B). The identified proteins were grouped according to their functions as follows: (i) proteases
and antiproteases, (ii) complement system, (iii) redox status and antioxidants, (iv) mitochondrial
proteins, (v) lipid metabolism, and (vi) vitamin transporters.

3.1. Proteases and Antiproteases

Proteases are involved in a series of intracellular and extracellular regulatory processes, including
tissue remodeling, mucin expression, bacterial killing, and neutrophil chemotaxis. In the healthy lung,
proteases and antiproteases maintain a homeostatic balance, preventing lung damage that may arise
from proteases [6,18]. However, the CF lung is a protease-rich environment, and this protease burden
overwhelms the antiprotease capabilities, leading to a protease-antiprotease imbalance, which is
heavily implicated in CF pathophysiology [6,12]. A proteomic analysis of sputum collected from adults
with CF with pulmonary exacerbation was characterized by extensive proteolytic degradation [14].
Furthermore, induced levels of 22 proteases and peptidases have been observed in human CF
bronchoalveolar lavage fluid [12]. The up-regulation in the sputum protease matrix metalloproteinase9
(MMP9) has also been linked to reduced lung function and airway inflammation in children with
CF [12].

Proteases are known to cleave cell-surface immune receptors, which interferes with the ability of
monocytes or macrophages to recognize and clear infections and thus affects the immune systems of
CF patients [5]. Neutrophil elastase (NE) is a major protease that actively contributes to lung damage
in CF patients [6,23] through a vicious cycle involving NE up-regulates and pro-inflammatory cytokine
secretions, leading to further neutrophil recruitment, which generates a continuous and destructive
cycle of neutrophilic inflammation and protease release [6]. Compared with healthy controls, the sera of
CF patients displayed a 4.77-fold increase in the expression of alpha-1-antitrypsin (A1AT/SERPINA1),
which is an inhibitor of serine proteases with NE being its primary target. Consistent with our
observation, previous reports showed that patients with CF secrete elevated levels of A1AT and other
antiproteases [6]. Another antiprotease with a significant (3.43-fold) increase identified in our study
was alpha-2-macroglobulin, which is known for its remarkable ability to inhibit a broad spectrum of
antiprotease activities [24]. By contrast, we observed a decrease in antithrombin III, which is a serine
protease inhibitor that regulates the blood coagulation cascade. Therapeutic strategies to boost levels
of the protective antiproteases such as A1AT in the lungs remain a potentially attractive approach to
protect the lungs from the damage caused by excess proteases in patients with CF [6].
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3.2. Complement System

Progressive lung tissue damage in CF patients is mediated by a cycle of small airway obstruction,
infection with microbial pathogens, and inflammation [23]. The complement proteins are key
components of the innate immune system [16], which plays a critical role in the removal of pathogens
and other dangerous particles, such as immune complexes, cellular debris, and dead cells [1,2,6].
As a result of infection, the activation of complement proteins leads to opsonization, phagocytosis,
and destruction of the pathogen, initiation of inflammation, and finally activation of the adaptive
immune response [16,25]. However, unregulated or persistent complement system activation triggers
a destructive inflammatory cascade, which may lead to lung tissue damage and cause progressive loss
of lung function [16,25].

Raised levels of pro-inflammatory complement proteins have been observed in the sputum of
individuals with CF [16]. The proteomic analysis revealed that the complement proteins C3 and
C4 are significant constituents of CF lung fluid. Furthermore, increased levels of C5a have been
observed in the bronchoalveolar lavage fluid of CF patients with stable lung disease compared with
healthy controls [23]. Dysregulation of the complement system in the CF bronchoalveolar lavage
[fluid 12] or sputum [23] may impact lung disease pathogenesis [12] and correlate with clinical
measures of CF disease [23], whereas IV antibiotic treatment of individuals with CF experiencing
pulmonary exacerbations causes changes in several blood proteins involved in complement activation
and inflammatory/immune-related pathways [16]. In our study, we found that CF patients had
a 2.9-fold increase in complement C3 and a 3.41-fold increase in complement factor H, while the
complement factor I was reduced by 1.5-fold compared with the control subjects.

3.3. Redox Status and Antioxidants

High levels of ROS and oxidative stress are characteristics of CF. Physiologically, CFTR controls
intracellular ROS levels by regulating the intracellular and extracellular transport of glutathione,
a major intracellular antioxidant protein. A defective CFTR, however, creates a state of redox imbalance
leading to the generation of ROS, and a high degree of oxidative stress that is thought to contribute to
reduced local and systemic levels of glutathione [26]. Glutathione homeostasis is highly regulated
and maintained by the activity of the enzyme gamma-glutamyl transferase (GGT). GGT catalyzes the
synthesis and breakdown of extracellular glutathione by salvaging the amino acids and maintaining
levels of the rate limiting substrate cysteine, and through the cleavage of gamma-glutamyl peptide
bonds transfers the gamma-glutamyl moiety to its acceptors [27,28]. In the present study, we found a
decrease in the spots related to GGT in patients with CF compared with the controls. The decreased
activity of this enzyme may reflect the heightened redox and oxidative state caused by CF. The decreased
activity may also lead to altered levels of different metabolites, including glutamate, gamma-glutamyl
linked amino acids, mercapturic acid, and cystine (unpublished data), which are intermediates in
the synthesis of glutathione via the γ-glutamyl cycle. Increased cystine levels, the oxidized form of
cysteine, is a known biomarker for both chronic fibrotic lung diseases and CF. The systemic deficiency
of glutathione in CF has preempted its use clinically as a therapeutic agent in patients with CF
for its mucolytic effects. The altered levels of this enzyme were assessed using the ROC curves,
which demonstrated a heightened discriminatory value of the protein, making it a potential biomarker
for detecting CF.

In the CF lung lavage fluid, the level of reduced glutathione, which acts as an antioxidant
and in detoxification, was decreased. In CF mouse nasal epithelial cells, the levels of glutathione
S-transferase (GST), which catalyzes the glutathione-mediated detoxification of oxidative stress
products, peroxiredoxin 6 (Prdx6), a glutathione-dependent peroxidase (Gpx) involved in defense
against oxidative stress, and Hsp27, a heat shock protein that increases intracellular levels of
glutathione and acts as a chaperone for detoxification, were all reduced. Saline-induced sputum
proteomic profiles from adults with CF and a pulmonary exacerbation were characterized by extensive
proteolytic degradation and the influx of inflammation-related proteins, including myeloperoxidase,
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cleaved α1-antitrypsin, IgG degradation and n, IL8, and total protein concentration. Myeloperoxidase
expression and IgG degradation were the strongest predictors of FEV1% [11]. Other proteomic studies
have also identified the differential expression of myeloperoxidase, superoxide dismutase, catalase,
and glutathione reductase in CF bronchoalveolar lavage fluid [12].

Other antioxidant proteins that demonstrated an increased abundance in our study include
Ceruloplasmin a, which is a multi-copper oxidase that evolved to ensure the safe handling of free
oxygen radical scavengers by binding molecular oxygen and reducing it to water. Ceruloplasmin is also
an acute-phase reactant protein involved that participates in inflammatory responses and fluctuates
significantly in several diseases and hormonal states [29]. In this study, we observed a significant
increase in multiple protein spots relating to ceruloplasmin or its post-translational modifications in CF
sera compared with healthy controls. Our findings are contrary to those of Charro et al. who, in their
2DE proteomics study, did not find any significant differences in its levels, although a tendency
toward an increased level was noted in the nephelometric analysis [15]. However, we also observed a
significant 3.15-fold reduction in spots relating to haptoglobin, which acts as an antioxidant and has
antibacterial protein activity in CF serum, compared with healthy controls.

3.4. Mitochondrial Proteins

The differential expression of mitochondrial proteins has been reported in human CF nasal
epithelial cells and bronchial tissue, implicating a CF-associated reduction in mitochondrial
metabolism [12]. Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory
chain, plays a crucial role in regulating mitochondrial energy production and cell survival.
Such regulation ensures the building of highly efficient molecular machinery, which can catalyze the
transfer of electrons from cytochrome c to molecular oxygen and ultimately to facilitate the aerobic
production of ATP [30]. In our study, we observed a 2.27-fold decrease in the expression of the
cytochrome c oxidase subunit 7A1 (COX7A1), a new member of the COX7A gene family, which is a
subunit of the COX holoenzyme that is incorporated into the mitochondrial COX complex [24]. However,
the specific mechanism(s) by which mitochondrial metabolism contributes to CF pathophysiology and
the involvement of COX7A1 require further elucidation.

3.5. Lipid Metabolism

A major clinical feature shared by CF patients is exocrine pancreatic insufficiency, which results
in visceral fat and multi-vitamin malabsorption and malnutrition and secondary essential fatty acid
and fat-soluble vitamin deficiencies. However, fat malabsorption in CF patients may not be caused
by pancreatic insufficiency alone, as noted by persistent steatorrhea, weak growth, and malnutrition,
regardless of exogenous pancreatic enzyme supplementation. Therefore, persistent fat malabsorption
in CF patients may also be because of abnormal plasma lipid transport [8]. In our study, we observed a
4.2-fold decrease in LPL expression, which plays an essential role in lipid clearance from the bloodstream,
in lipid utilization, and in storage. We also observed a 2.16-fold decrease in apolipoprotein A1 (APOA1),
which promotes cholesterol efflux from tissues. The biogenesis of APOA1 has been reported to be
reduced in the intestinal tissue of CF patients. Moreover, the plasma concentrations of APOA1 were
reduced in CF patients, likely due to the decline of APOA1 synthesis by the intestine [8]. A ROC
analysis also showed the discriminatory capacity of APOA1 in cases of CF. However, further research is
still needed to determine the role of plasma lipid transport in the pathophysiology of fat malabsorption
in CF patients [8].

3.6. Vitamin Transporters

We observed a significant 2.7-fold decrease in the level of vitamin D-binding protein
(GC, group-specific component, aka DBP), which is the major vitamin D-binding protein in plasma
responsible for its transport and storage, in CF serum samples compared with healthy controls.
Our findings are in line with those of Charro et al., who also showed a decrease in its these levels
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and attributed it to the poor nutritional status of patients with CF [15]. In addition, we observed a
significant 2.25-fold reduction in retinol-binding protein 4 (RBP4), which is a specific transport protein
for retinol that delivers retinol from the liver stores to the peripheral tissues, in CF serum samples
compared with healthy controls. Likewise, murine CF airway epithelial cells showed a reduction in
retinoic acid metabolism, which may implicate these transporters in the CF abnormal injury response,
although their functional role has not yet been clarified [12].

3.7. Network Pathway Analysis

Bioinformatics analysis and IPA of the differentially regulated proteins indicated that the
highest-scoring functional interaction network pathway identified in our study incorporated 13
focus proteins from our dataset that were related to metabolic diseases, neurological diseases,
organismal injury, and abnormalities. The central nodes with the highest connectivity were found
to be extracellular signal-regulated kinases (ERK), p38 mitogen-activated protein kinase (MAPK),
and transforming growth factor signaling pathway. Additionally, proteins related to the involvement
of pro-inflammatory cytokines were also observed, demonstrating the involvement of cytokines and
the inflammatory pathway in patients with CF via the p38 MAPK pathway. p38MAPK is a Ser/Thr
kinase that is critical in inflammation and the host response to stress signals such as those observed
in CF. Previous studies have shown that the inhibition of p38 MAPK has the potential to reduce the
inflammatory response and can have clinical and utility and be used therapeutically [31,32]. TGF-β1,
as identified in the network pathways, is considered a crucial mediator of tissue fibrosis and causes
tissue scarring. In CF, TGF-β1 has been described as causing mucociliary dysfunction and is known to
down-regulate the expression and function of the CFTR protein when stimulated in human airway
epithelial cells [33].

4. Materials and Methods

4.1. Ethical Considerations and Informed Consent

All procedures performed in this study involving human participants followed the ethical
standards of the Declaration of Helsinki and the universal ICH-GCP guidelines. This study was
reviewed and approved by the Institutional Review Board at King Faisal Specialist Hospital and
Research Center (KFSHRC) (approval number 2160 031), Riyadh, Saudi Arabia. Written informed
consent was obtained from all participants. This study was conducted at the Proteomics Unit,
Obesity Research Center, College of Medicine, and the King Khalid University Hospital (KKUH),
King Saud University, Riyadh, Saudi Arabia.

4.2. Study Design and Subjects

Adult individuals (28 CF patients and 10 control subjects) were enrolled in this study. The sample
size was determined by conducting a power analysis using the Progenesis SameSpots Nonlinear
Dynamics statistical software to determine the minimum number of required biological replicates
(Supplementary Figure S6). Blood samples were collected from adult patients diagnosed with CF who
attended the adult CF-Pulmonology clinic at the King Faisal Specialist Hospital and Research Center
(KFSHRC) (Riyadh, KSA). These patients were randomly selected during regular clinic visits and
consented to participate in this study according to the Institutional Review Board (IRB) approval [34].
Detailed genetics and clinical baseline questionnaires were completed for each patient by the treating
clinician (IN). Blood samples were collected using vein puncture into plain non-EDTA tubes (Vacutainer,
BD Biosciences, San Jose, CA, USA). The serum was separated by centrifugation and was frozen
immediately at −80 ◦C for further analysis. Any patient enrolled in another clinical study in the last
30 days, unable or unwilling to provide informed consent, or diagnosed with conditions other than CF
was excluded from this study. The CFTR gene mutation analysis, DNA Isolation, PCR amplification of
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genomic DNA, mutational analysis, and sequencing methods have been described previously, and this
data was collected from patients’ primary physicians (IN) [16].

4.3. Sample Processing and Protein Extraction

Thawed serum samples were centrifuged (5 min, 12,000× g), and the high-abundant plasma
proteins (albumin, IgG) were depleted using an Albumin and IgG Depletion kit of 12-ml beads
(Millipore, USA) according to the manufacturer’s instructions. The protein extraction was performed
using 1,1,2-Trichloroethane (TCA)/acetone precipitation, as described by Chen et al [35,36].The protein
concentration of each sample was then determined in triplicate using the 2D-Quant Kit (GE Healthcare,
Chicago, IL, USA).

4.4. CyDye Labeling, 2D-DIGE, and Imaging

The proteins were labeled according to the manufacturer’s protocol (GE Healthcare,
Chicago, IL, USA). Briefly, 50 µg of each CF and control protein extract sample was minimally
labeled with 400 pmol of the N-hydroxysuccinimide esters of the Cy3 or Cy5 fluorescent cyanine
dyes on ice for 30 min in the dark. A mixture of an equal amount of all samples was then pooled,
labeled with Cy2, and used as an internal standard; this standard was normalized and matched across
gels, dramatically decreasing gel-to-gel variation. A dye-switching strategy was applied during labeling
to avoid dye-specific bias (Supplementary Table S4). First-dimension analytical gel electrophoresis was
performed, followed by second-dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) on 12.5% fixed concentration gels, as previously described [36]. The gels were scanned
with a Typhoon 9400 scanner (GE Healthcare, Chicago, IL, USA) using the appropriate wavelengths
and filters for the Cy2, Cy3, and Cy5 dyes.

Differential in-gel electrophoresis (DIGE) images were analyzed using the Progenesis Same
Spots v.3.3 software (Nonlinear Dynamics Ltd., UK). The gel images were first aligned together,
and prominent spots were used to assign vectors to the digitized images within each gel manually.
The automatic vector tool was next used to add additional vectors, which were manually revised
and edited for correction if necessary. These vectors were used to warp and align gel images with a
reference image of one internal standard across and within each gel. The gel groups were defined
according to the experimental design, and the normalized volume of the spots was used to identify
statistically significant differences. The software calculated the normalized volume of each spot on each
gel from the Cy3 (or Cy5) to Cy2 spot volume ratio. The software performs a log transformation of the
spot volumes to generate normally distributed data. The log normalized volume was used to quantify
differential expression. Independent direct comparisons were made between the 28 CF patients and
the 10 controls, and fold differences and p-values were calculated using a one-way ANOVA. All spots
were pre-filtered and manually checked before applying the statistical criteria (ANOVA test, p ≤ 0.05,
and fold difference ≥ 1.5). The normalized volume of spots, instead of spot intensities, was used in
the statistical processing. Only those spots that fulfilled the above-mentioned statistical criteria were
submitted for the MS analysis.

4.5. Protein Identification by MALDI-TOF MS

Coomassie-stained gel spots were excised manually, de-stained, washed, and digested according
to previously described methods [36,37]. An aliquot of the digestion solution was mixed with an
aliquot of a-cyano-4-hydroxycinnamic acid (BrukerDaltonics, Hamburg, Germany) in 30% aqueous
acetonitrile and 0.1% trifluoroacetic acid. This mixture was deposited onto MALDI target plates
(MTP 384 AnchorChip, 800 µm; BrukerDaltonics, Hamburg, Germany) and allowed to dry at room
temperature. MALDI-MS(/MS) data were obtained using an Ultraflex time-of-flight (TOF) mass
spectrometer equipped with a LIFT™-MS/MS device (ultrafleXtreme, BrukerDaltonics, Hamburg,
Germany) as described previously [38–40]. A detailed analysis of the peptide mass mapping data was
performed using Flex Analysis software v2.4 (BrukerDaltonics, Hamburg, Germany). MALDI-MS
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and MS/MS data were interpreted using BioTools v3.2 (BrukerDaltonics, Hamburg, Germany) in
addition to the Mascot search algorithm (v2.0.04 updated 09/05/2018; Matrix Science Ltd., London, UK).
Fixed cysteine modification with propionamide, variable modification due to methionine oxidation,
one missed cleavage site (i.e., in case of incomplete trypsin hydrolysis), and a mass tolerance of 100 ppm
were the primary MASCOT mass spectrometry peptide search criteria. Proteins were accepted as
identification with a Mascot score higher than 56 and a p-value < 0.05. Not all spots of interest could
be identified because some proteins were of low abundance and did not yield sufficiently intense mass
fingerprints; other spots were mixtures of multiple proteins [41].

4.6. Multiple Reaction Monitoring-Tandem Mass Spectrometry for Validation

Six different proteins were selected from the proteomics profile of CF, and a signature peptide per
protein was identified using the criteria that we described elsewhere [21]. These signature peptides were
confirmed using SkeyLine Software V3 and synthesized for standard material (GeneMed Synthesis,
San Francisco, CA, USA). A 2 mg/ml stock solution of each peptide was prepared in deionized water.
Some peptides required pH adjustment to reach the maximum solubility (Supplementary Table S5).
From the stock solution, 200 µg/mL working solutions were prepared in the mobile phase (90:10 ratio
of 0.1% formic acid in H2O:0.1% formic acid in acetonitrile (ACN)) for mass spectrometric tuning
and chromatographic optimization. The mass spectrometric transitions were developed after tuning
using a Triple-Quadrupole-Tandem Mass spectrometer (XEVO TQD from Waters Corporation, Milford,
CT, USA). Electrospray ionization (ESI) in a positive ionization mode was used while detecting the
analytes. While infusing a peptide working solution, the precursor and product ions were monitored,
including the collision and cone voltages, as summarized in Supplementary Table S5. The desolvation
temperature and source temperature were set at 250 ◦C and 150 ◦C, respectively. The spraying gas flow
rate was 500 L/hr, with a sample flow rate of 20 µL/min via a syringe infusion pump. The MS capillary
source voltage was set at 1.98 KV, and the cone source voltage was set at 47V. The optimum parameters
for each peptide were used to establish the Multiple Reaction Monitoring (MRM) transitions for each
analyte in the original MS method.

After constructing the MRM transitions, the targeted analytes were initially separated by
reversed-phase chromatography, where the mobile phase gradient (90:10 H2O: ACN, 0.1% formic acid)
was optimized for better baseline resolution and peak shape. A working solution of each analyte
(200 µg/mL) was injected into Acquity Ultra Performance Liquid Chromatography (UPLC) C18, 1.7 µm,
2.1 × 50 mm columns at 25 ◦C. Eventually, the peptides were optimized for elution using a gradient
fashion at a flow rate of 0.2 mL/min over a total of 10 min of run time. The gradient profile for
solvent B (0.1% formic acid in ACN) was as follows: 10% for 1 min followed by a linear gradient
to 90% over 5 min, which was then held at 90% for 0.2 min before returning to 10% for 0.3 min at
6.5 min post-injection. The column was equilibrated at 10% solvent B for 3.5 min before performing a
second injection.

An AcquityUltra-High-Pressure Liquid Chromatography UPLC-XEVO TQD
Triple-Quadrupole-Tandem Mass spectrometer (Waters Corporation, USA) was used to analyze
the study samples. The eluted peptide from the chromatography was detected in the mass
spectrometry-based on the optimum MRM after being ionized positively using ESI. The general
MS parameters were modified for the LC-MSMS, where the desolvation temperature was set at
500 ◦C, the desolvation gas flow was set at 1000 L/Hr, the cone gas flow was set at 50 L/Hr, the MS
capillary source voltage was set at 1.98 KV, and the cone source voltage was set at 47 V. The total run
time for each sample was 10 min at a mobile phase flow rate of 0.2 mL/min following the gradient
table. The samples were stored in the autosampler at 4 ◦C, and the injection volume was 10 µL.
Many intermediate washing steps were performed during the run to minimize any sample carryover.
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4.7. Bioinformatic Analysis

Biomarker analysis of the proteomics expression profiles was performed using MetaboAnalyst
version 3.0 (McGill University). The raw data were normalized to the sample total median to ensure
that all samples were distributed normally. The proteomics differences among the study groups were
corrected to make individual features more comparable by using log-transformation, and Pareto-scaling,
respectively. Because the data were Gaussian-distributed, the unpaired two-tailed Student’s t-test
was used for binary comparisons between any two study groups, where the significance levels for the
protein data were considered at an The false discovery rate (FDR)-corrected p < 0.05 with a 1.5-fold
cutoff change; the values are presented as the mean ± SEM. The ROC curves were constructed using
a PLS-DA model from MetaboAnalyst software version 3.0 (McGill University, Montreal, Canada)
(http://www.metaboanalyst.ca) for global analysis. The raw data were normalized, transformed,
and median-, log-, and Pareto-scaled to ensure that all the data were visualized under the Gaussian
distribution. Further analyses were performed on GraphPad Prism (version 6.0, Graph Pad Software,
La Jolla, CA, USA).

The IPA version 9.0 (Ingenuity Systems, Redwood City, CA, USA) was used to analyze
protein interaction networks, and the functions of the differentially expressed serum proteins in
CF patients. IPA software maps the UniProt IDs into the Ingenuity Knowledge Base, which is
the largest manually curetted resource combining information from all published scientific studies.
This software aids in determining the functions and pathways that are most strongly associated with the
MS-generated protein list by overlaying the experimental expression data onto networks constructed
from published interactions.

5. Conclusions

Proteomic studies in CF have significantly improved our knowledge of CF and enhanced
the understanding of its complex pathogenesis. Additional studies are necessary to identify
novel biomarkers. In our study of serum samples from adult patients with CF, we identified
134 differentially expressed proteins by employing a 2D-DIGE MALDI-TOF proteomic approach.
In general, proteins related to inflammation and tissue repairs, such as anti-proteases and complement
factors, were perturbed in CF sera. Transport proteins of vitamin A and D and lipoproteins were
down-regulated, suggesting possible explanations for their deficiencies in CF.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/19/7415/s1.
Figure S1. (A) Representative image of statistically significant differentially expressed (ANOVA p ≤ 0.05 and
fold-change ≥ 1.5) protein spots from the serum samples with red color depicting the upregulated proteins and
blue color depicting the down regulated proteins in CF samples compared to control samples (B) Representative
image of CF gels with top 20 up-regulated proteins in CF vs control group; Figure S2: Representative extracted ion
chromatograms for the selected proteins’ signature peptides based on the multiple-reaction monitoring method
developed for validation; Figure S3: PCA plot of the first two principal components. Together, they explained
67% of the selected spot’s variability. The colored dots and numbers represent the gels and spots, respectively;
Figure S4: Expression profiles, separated into clusters of expression patterns, indicating the number of spots
for each cluster. Each line represents the standardized abundance of a spot across all gels and belongs to one
of the clusters generated by hierarchical cluster analysis. The spots with increased abundance indicate the
80 proteins up-regulated in the CF group (Figure S3B). The spots with decreased abundance indicate the 54 proteins
down-regulated in the CF group (Figure S3A) (Progenesis Same Spots); Figure S5: Pathways and canonical
pathways identified in the functional IPA; Figure S6: Comparative depiction of the differentially abundant
proteins categorized into groups according to their molecular function (A), biological process (B), and cellular
component (C) using the PANTHER (Protein ANalysis THrough Evolutionary Relationships) classification system
(http://www.pantherdb.org/). The representative pie chart shows the percentage of identified proteins involved in
each of the different functional categories; Figure S7: Power calculation for determining the minimum number
of required biological variants for the 2-DIGE analysis. The power curve was used to calculate the sample size
required to find a significant difference with a fold-change of ≥1.5 between two paired groups, with 99.3% of the
data and>80% power; Table S1: Demographics and routine clinical data of the CF patients participated in this
study; Table S2: Mass spectrometry list of significant differentially abundant proteins between the controls and CF
patients identified in samples using 2D-DIGE. The protein name, accession number, Mascot score, MS % coverage,
protein MW, and pI values, according to the Uniprot database, are listed.; Table S3: The potential biomarker
proteins based on the ROC curve analysis using the PLS-DA model; Table S4: Experimental design: 28 patient
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samples and 10 controls run on 19 2D-PAGE gels. The samples were labeled randomly with Cy3 and Cy5, and a
pooled sample was used as an internal standard and was stained with Cy2; Table S5: Experimental conditions of
the selected proteins’ signature peptides used for proteomics validation.
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Abbreviations

AUC Area under the curve
CF Cystic fibrosis
CFRD CF-related diabetes
CFTR CF transmembrane conductance regulator
DBS Dried blood spot
DIG Differential in-gel electrophoresis
ER Endoplasmic reticulum
GGT Gamma-glutamyl transferase
GST Glutathione S-transferase
IPA Ingenuity pathway analysis
IRB Institutional Review Board
IRT Immunoreactive trypsinogen
KFSHRC King Faisal Specialist Hospital and Research Centre
KKUH King Khalid University Hospital
LIPL Lipoprotein lipase
MAPK Mitogen-activated protein kinase
MRM Multiple reaction monitoring
MS Mass spectrometry
NCGT National Center for Genomic Technology
NE Neutrophil elastase
PANTHER Protein analysis through evolutionary relationships
PCA Principal component analysis
PMF Peptide mass fingerprinting
ROC Receiver operating characteristic
ROS Reactive oxygen species
TOF Time-of-flight
FDR The false discovery rate
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