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Abstract

The directionality of network information flow dictates how networks process information. A

central component of information processing in both biological and artificial neural networks

is their ability to perform synergistic integration–a type of computation. We established pre-

viously that synergistic integration varies directly with the strength of feedforward informa-

tion flow. However, the relationships between both recurrent and feedback information flow

and synergistic integration remain unknown. To address this, we analyzed the spiking activ-

ity of hundreds of neurons in organotypic cultures of mouse cortex. We asked how empiri-

cally observed synergistic integration–determined from partial information decomposition–

varied with local functional network structure that was categorized into motifs with varying

recurrent and feedback information flow. We found that synergistic integration was elevated

in motifs with greater recurrent information flow beyond that expected from the local feedfor-

ward information flow. Feedback information flow was interrelated with feedforward informa-

tion flow and was associated with decreased synergistic integration. Our results indicate

that synergistic integration is distinctly influenced by the directionality of local information

flow.

Author summary

Networks compute information. That is, they modify inputs to generate distinct outputs.

These computations are an important component of network information processing.

Knowing how the routing of information in a network influences computation is there-

fore crucial. Here we asked how a key form of computation—synergistic integration—is

related to the direction of local information flow in networks of spiking cortical neurons.

Specifically, we asked how information flow between input neurons (i.e., recurrent infor-

mation flow) and information flow from output neurons to input neurons (i.e., feedback
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information flow) was related to the amount of synergistic integration performed by out-

put neurons. We found that greater synergistic integration occurred where there was

more recurrent information flow. And, lesser synergistic integration occurred where there

was more feedback information flow relative to feedforward information flow. These

results show that computation, in the form of synergistic integration, is distinctly influ-

enced by the directionality of local information flow. Such work is valuable for predicting

where and how network computation occurs and for designing networks with desired

computational abilities.

Introduction

Feedforward, recurrent and feedback connections are important for information processing in

both artificial and biological neural networks [1–5]. Whether these connections represent the

strength of a synapse, or the amount of information transmission between two nodes (i.e.

information flow), the directionality of these connections–feedforward, recurrent (lateral) or

feedback–influences how the network processes information. A component of information

processing that is central to both biological and artificial neural networks is their ability to per-

form synergistic integration, a form of computation. Feedforward information flow has been

previously shown to be a strong predictor of synergistic integration in biological cortical cir-

cuits [6]. However, the influence of recurrent and feedback information flow on synergistic

integration is unclear. Understanding how each of these directed functional connections influ-

ences the computational properties of neural networks is a critical step in understanding how

neural networks compute. Here, we examine this in the context of cortical networks, using a

motif-style, information theoretic analysis of high-density in vitro recordings of spiking

neurons.

Synergistic integration refers to the process by which non-overlapping information from

multiple inputs considered simultaneously provides additional information about a target neu-

ron (beyond the information provided uniquely by each input, and beyond the overlapping

information provided by all inputs, i.e., the redundancy). In this form, it can be considered a

proxy for a type of non-trivial computation [6]. Partial information decomposition (PID)

offers an approach to quantifying each type of information (unique, redundant, synergistic)

[7] enabling estimation of the synergistic integration that emerges when a given neuron inte-

grates input from two other neurons after factoring out the other types of information [8,9].

This approach has been used effectively before [6,8,10,11]. Here, we leveraged this approach to

determine how recurrent and feedback information flow relate to synergistic integration.

Recurrence—whether physical in the form of neuronal structures or functional in the form

of information flow—is believed to be important for higher order functions including memory

processes (e.g. recollection, recognition). This is largely due to its generation of attractor-like,

pattern completion activity [12–20]. Such activity, studies show, involves the combination of

diverse features to form representations and also contributes to the interpretation and catego-

rization of representations [21–27]. These studies further show that greater interpretability of

images and object categories occurs at latencies beyond those of known feedforward processes,

implying the presence of recurrent activity. Relatedly, in artificial neural networks, recurrent

connections serve to expand computational power by extending operations in time, requiring

a smaller network to carry out the same operations as a larger, purely feedforward network

[3,28]. Thus, controlling for the size of a network, the use of recurrence can improve network

operation.
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Feedback—whether physical or functional, local or long-range—is believed to implement

top-down, goal-driven attention and perception, which involves the preferential activation of

lower level neurons by higher level neurons (e.g., [29–31]; for reviews, see [32,33]). Due to its

top-down nature, feedback also plays a role in the gating and rerouting of information flow, as

well as error prediction (for related reviews see [34–38]). Relatedly, feedback is associated with

increased surround suppression, reducing the range of stimuli to which lower-level neurons

respond [39,40]. From this perspective, feedback reduces the variance with which lower-level

neurons can account for variance in higher-level neurons. Individual neurons can receive feed-

back from downstream neurons and send feedback to upstream neurons. Here we consider

the impact of feedback from a neuron to its upstream sources on its integration of input from

those sources.

Here, we tested how recurrence and feedback relate to synergistic integration in functional

networks observed in cortex (Fig 1). Across motifs, we found that recurrence was positively

related to synergistic integration. Feedback, conversely, was negatively related to synergistic

integration, but this negative relationship was accounted for by concurrent shifts in feedfor-

ward information flow.

Results

We asked how the number of recurrent and feedback edges in triadic motifs was related to the

amount of synergistic integration by analyzing hour long recordings of spiking activity from

organotypic cultures of mouse somatosensory cortex (n = 25), as summarized in Fig 1. Record-

ings yielded between 98 and 594 well-isolated neurons (mean = 309). The average firing rate

among neurons was 2.1 Hz [2.0 Hz, 2.2 Hz] and neurons exhibited rhythmic bursts of activity

(Fig 1B) as characterized previously [41–42]. We identified effective connections between neu-

rons in each recording as those that had significant transfer entropy such that the observed

value was greater than 99.9% of values obtained from a jittering procedure (i.e. p<0.001). We

then identified all synergistic 3-node motifs. Synergistic motifs were those which included two

transmitter nodes sending inputs to the same receiver-node. Motifs without this structure

were excluded because we were only concerned with the motifs’ ability to perform synergistic

integration. The set of motifs included in our analyses are shown in Fig 2. We quantified the

amount of synergistic integration performed by the receiver based on its inputs using ‘syn-

ergy,’ a term derived from partial information decomposition. Consistent with previous work

[6,8,10], synergy was normalized to reflect the proportion of the receiving neuron entropy for

which it accounted and to control for variable entropy across triads and networks. Across tri-

ads, we asked whether normalized synergy was positively or negatively related to the number

of recurrent and feedback edges in the corresponding motif. This analysis was repeated at

three timescales relevant to the delay of synaptic transmission, which has been reported to

span 1–20 ms [43–44]. The three timescales (0.05–3 ms, 1.6–6.4 ms, and 3.5–14 ms), covering

a range of 0.05–14 ms, were determined by the granularity of the data binning and the delay

between bins. More detail regarding the structure of the timescales is given in Fig A in S1 File.

All summary statistics are reported as medians or means, as indicated, followed by 95% boot-

strap confidence intervals in brackets.

Recurrence predicts increased normalized synergy, feedback predicts

decreased normalized synergy

To examine the relationships between normalized synergy and the number of both recurrent

and feedback edges, we used a motif-style analysis [45]. We first quantified the mean normal-

ized synergy for each of the 10 synergistic motifs in every network (Fig 3). We then compared
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Fig 1. Methodological approach taken to ask how synergy is related to recurrent and feedback information flow in organotypic cultures of mouse

cortex. (A) Hour-long recordings of spiking activity were collected in vitro from organotypic cultures of mouse somatosensory cortex using a high

density 512-channel multielectrode array. (B) Spike sorting yielded spike trains of hundreds of well-isolated individual neurons per recording. (C)

Transfer entropy was used to identify significant information flow between neuron pairs. This comprised the effective connections (edges) in a

functional network. The resulting effective networks were analyzed to identify all triads consisting of two edges connecting to a common receiver. (D)

For each triad, we quantified the amount of synergy via partial information decomposition (PID). We also identified all possible relevant motifs and

arranged them according to the number of recurrent and feedback edges they contained. (E-F) We sought to answer two questions. (E) Is synergy

positively related, negatively related, or unrelated to the number of recurrent edges? (F) Is synergy positively related, negatively related, or unrelated to

the number of feedback edges? Triads consist of two transmitter neurons (blue), each with feedforward edges (gray arrows) connecting to a receiver

neuron (red). Black arrows depict recurrent and feedback edges on the left and right, respectively.

https://doi.org/10.1371/journal.pcbi.1009196.g001

Fig 2. Set of synergistic 3-node motifs. Synergistic motifs were those in which both transmitters (blue dots) sent input

(gray arrows) to the same receiver (red dots). Motifs were arranged in order (1–10) of the number of feedback and

recurrent edges they contained (black arrows); either 0, 1 or 2.

https://doi.org/10.1371/journal.pcbi.1009196.g002
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the mean normalized synergy in recurrent motifs (those with more recurrent than feedback

edges) to the mean normalized synergy in feedback motifs (those with more feedback than

recurrent edges). We observed significantly greater normalized synergy in recurrent motifs

(Fig 3, orange) compared to feedback motifs (Fig 3, green) (mean = 0.011 vs. 0.007, zs.r. = 6.31,

n = 75, p<1x10-9). To determine how recurrent and feedback edges affect normalized synergy

relative to baseline levels, we compared the observed synergy in each motif to the normalized

synergy in the default motif (with 0 recurrent and 0 feedback edges; Fig 3). We found that tri-

ads with recurrent motifs had significantly greater normalized synergy than those with the

default motif (zs.r. = 5.80, n = 75, p<1x10-8). Conversely, triads with feedback motifs had sig-

nificantly less normalized synergy than those with the default motif (zs.r. = -2.61, n = 75,

p = 0.009). In addition to the comparison to baseline normalized synergy, we compared the

observed synergy values to those observed when motif labels were randomly permuted across

triads. We observed the same qualitative pattern of results here as in the comparison to

Fig 3. Normalized synergy was greater in recurrent motifs than in feedback motifs. Point clouds show the mean

synergy value for each of the 75 networks analyzed for each type of motif. For distributions in which not all networks

exhibited the motif, n<75. Central tendency and error bars depict the median and the 95% bootstrap confidence

interval around the median. The motifs are graphically depicted below the x-axis and are organized by the number of

feedback and recurrent edges. Motifs with more recurrent than feedback edges are indicated in orange. Motifs with

more feedback than recurrent edges are indicated in green. Inset: Synergy values from motifs with greater recurrence

or greater feedback were aggregated to directly compare the mean synergy. In both panels, the median (dotted line)

and 95% bootstrap confidence interval (blue region) for baseline synergy values in default motifs (with 0 recurrent and

0 feedback edges) is shown. Significance indicators: ‘+’ and ‘-’ indicates p<0.01 by a two-tailed test wherein ‘+’

indicates significantly more than baseline and ‘-’ indicates significantly less than baseline; ��� p<1x10-9.

https://doi.org/10.1371/journal.pcbi.1009196.g003
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baseline synergy levels. We found that recurrent motifs had significantly greater normalized

synergy than expected by chance (zs.r. = 5.93, n = 75, p<1x10-8). Conversely, feedback motifs

had significantly less normalized synergy than expected by chance (zs.r. = -3.96, n = 75,

p<1x10-4).

To assess how normalized synergy varies across the multiple levels of recurrence and feed-

back, we grouped the 10 synergistic motifs into 9 categories based on the number of feedback

and recurrent edges they contained (Fig 4A). A two-factor (recurrent and feedback), repeated

measures ANOVA, with three levels of each factor (0,1 or 2 edges), was conducted to examine

the main effects of recurrence and feedback on synergy and to test for an interaction effect.

The main effect of recurrence was significant (F(2,148) = 7, p = 0.001). The mean normalized

synergy increased as the number of recurrent edges increased (0.0080 [0.0069 0.0093] vs. 0.012

[0.010 0.014] vs. 0.014 [0.012 0.017] for 0, 1, and 2 edges, respectively; Fig 4B), reflected by a

significant positive correlation between normalized synergy and number of recurrent edges

(Spearman r = 0.25, n = 675, p<1x10-8). The main effect of feedback was also significant (F
(2,148) = 50, p<1x10-17). The mean normalized synergy decreased as the number of feedback

edges increased (0.012 [0.011 0.014] vs. 0.011 [0.009 0.013] vs. 0.008 [0.007 0.010] for 0, 1, and

2 edges, respectively; Fig 4C), reflected by a significant negative correlation between normal-

ized synergy and number of feedback edges (Spearman r = -0.22, n = 675, p<1x10-6). There

was also a significant interaction effect between recurrence and feedback on normalized syn-

ergy (F(4,296) = 6.7, p<1x10-4). Specifically, normalized synergy was highest in motifs with

the most recurrent edges and the fewest feedback edges, and normalized synergy was lowest in

motifs with the fewest recurrent edges and the most feedback edges. To test the reliability at

the single network level, we examined those networks with a sufficient number of triads across

all levels of connectivity to permit meaningful analysis (15 networks, see Materials and Meth-

ods for details). We found that 12 of 15 exhibited a significant main effect of the number of

recurrent edges and 12 of 15 exhibited a significant main effect of the number of feedback

edges. Post-hoc analysis of correlation between normalized synergy and recurrent edge count

was significantly positive in 15 of 15 networks and post-hoc analysis of correlation between

normalized synergy and feedback edge count was significantly negative in 10 of 15 networks

and significantly positive in 3 of 15 networks. Thus, the per-network analyses agree with those

observed across all networks, indicating the trends are reliable within networks and between

Fig 4. Normalized synergy increased with greater recurrence and decreased with greater feedback. (A) Motifs are ordered based on the number of recurrent

edges (columns) and feedback edges (rows). The background heatmap, wherein brighter colors reflect larger normalized synergy values, replots the central tendency

of the values shown in Fig 3. (B) Curves representing rows shown in A, plotted with errorbars computed across networks, show that synergy increased as the number

of recurrent edges increased. (C) Curves representing columns shown in A, plotted with errorbars computed across networks, show that synergy decreased as the

number of feedback edges increased. Errorbars are 95% bootstrap confidence intervals around the mean.

https://doi.org/10.1371/journal.pcbi.1009196.g004
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networks. Taken together, these results show that, across these networks, motifs with greater

upstream recurrence have greater normalized synergy, and motifs with greater feedback have

lesser normalized synergy.

To understand if/how the normalization of synergy by the receiver entropy affected these

results, we separately examined how raw synergy (i.e., non-normalized synergy) varied across

motifs (Fig 5). As with normalized synergy, raw synergy was positively correlated with the

number of recurrent edges (Spearman r = 0.15, n = 675, p<0.001). A two-way ANOVA exam-

ining how raw synergy values varied across levels of recurrence and feedback found the main

effect of recurrence trending toward significance (F(2,148) = 2.6, p = 0.08; Fig 5B). The results

for feedback, however, were qualitatively different when examining raw synergy versus nor-

malized synergy. Raw synergy also increased with the number of feedback edges (Spearman

r = 0.10, n = 675, p = 0.01) rather than the decrease that was observed for normalized synergy.

The main effect of feedback in the two-way ANOVA was significant (F(2,148) = 4.7, p = 0.01;

Fig 5C). We again found a significant interaction between recurrence and feedback levels (F
(4,296) = 7.8, p<1x10-5) such that the contribution of recurrence and feedback to raw synergy

failed to sum linearly. Thus, consistent with our previous findings [6] these results indicate

that raw synergy generally increases with greater edge density.

The fact that raw synergy and normalized synergy varied in opposite directions with respect

to the number of feedback edges reveals that the normalizing term, receiver entropy, mediated

the relationship between feedback and synergy. Receiver entropy differed significantly across

motifs (Fig 6). A two-way ANOVA found significant main effects of recurrence (F(2,148) =

32.7, p<1x10-11) and feedback (F(2,148) = 15.1, p<1x10-5) and a significant interaction effect

(F(4,296) = 13.19 p<1x10-9). Receiver entropy was negatively correlated with recurrence level

(Spearman r = -0.16, n = 675, p<0.001; Fig 6B) and strongly positively correlated with feed-

back level (Spearman r = 0.41, n = 675, p<1x10-22; Fig 6C). The finding that there was greater

receiver entropy in motifs with more feedback edges accounts for the different pattern of

results observed for raw and normalized synergy across feedback levels. Motifs with greater

feedback, these results suggest, emerge around receiver nodes with greater entropy. While

these motifs generate more raw synergy, that synergy accounts for a lesser proportion of the

entropy of the respective receiver (i.e., less normalized synergy). Recurrence, however, did not

Fig 5. Raw synergy increased with greater recurrence and greater feedback. (A) Mean synergy increased with the number of recurrent and feedback edges in motifs.

(B) Curves representing rows shown in A, plotted with errorbars computed across networks, show that synergy increased as the number of recurrent edges increased,

although the difference in means across levels was not significant. (C) Curves representing columns shown in A, plotted with errorbars computed across networks,

show that synergy increased as the number of feedback edges increased. Errorbars are 95% bootstrap confidence intervals around the mean.

https://doi.org/10.1371/journal.pcbi.1009196.g005
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display such a dependence. Whether normalized by receiver entropy or not, synergy was posi-

tively related to the number of recurrent edges in the motif.

To further examine the influence of receiver entropy on the relationships between both

recurrence and feedback and synergy, we regressed out the variance in raw synergy associated

with receiver entropy and asked if the residual raw synergy was still related to the motif struc-

ture using an ANOVA. The positive relationship between raw synergy and motif recurrent

edge number was not affected by regressing out variance associated with receiver entropy (F
(2,148) = 14.2, p<1x10-5; Spearman r = 0.34, n = 675, p<1x10-15). However, the relationship

between feedback edge number and raw synergy, after regressing out variance associated with

receiver entropy, was no longer significant (F(2,148) = 2.03, p = 0.14; Spearman r = -0.034,

n = 675, p = 0.43), suggesting that the variance in synergy associated with receiver entropy and

feedback edge count was entangled. Here again, synergy was positively related to recurrent

edge count.

To investigate the potential role of sender entropy in explaining the relationships between

synergy and recurrence and synergy and feedback, we observed the distribution of sender

entropies (averaged within a triad) across motifs. Sender entropy differed significantly across

motifs (Fig 7). A two-way ANOVA found significant main effects of recurrence (F(2,148) =

3.62, p = 0.03) and feedback (F(2,148) = 19.7, p<1x10-7) and a significant interaction effect (F
(4,296) = 10.4 p<1x10-7). Sender entropy was moderately, positively correlated with recur-

rence level (Spearman r = 0.23, n = 675, p<1x10-7; Fig 7B) and mildly, positively correlated

with feedback level (Spearman r = 0.10, n = 675, p = 0.03; Fig 7C). The finding that there was

greater sender entropy in motifs with more recurrent and feedback edges suggested that

sender entropy might play a role in the relationships between these and synergy. To determine

the extent of this role, we regressed out the variance in synergy associated with sender entropy

and asked if the residual synergy (both normalized and raw) was still related to the motif struc-

ture (Table 1). The residual normalized synergy remained significantly positively related to the

number of recurrent edges (F(2,148) = 15.3, p<1x10-6; Spearman r = 0.29, n = 675, p<1x10-11)

and significantly negatively related to the number of feedback edges (F(2,148) = 25.8, p<1x10-

9; Spearman r = -0.37, n = 675, p<1x10-18). Thus, these relationships were not affected by

regressing out variance associated with sender entropy. As with raw synergy, residual raw syn-

ergy was positively related with the number of recurrent edges (Spearman r = 0.11, n = 675,

Fig 6. Receiver entropy decreased with greater recurrence and increased with greater feedback. (A) Mean receiver entropy decreased with the number of

recurrent edges and increased with the number of feedback edges in motifs. (B) Curves representing rows shown in A, plotted with errorbars computed across

networks, show that receiver entropy decreased as the number of recurrent edges increased. (C) Curves representing columns shown in A, plotted with errorbars

computed across networks, show that receiver entropy increased as the number of feedback edges increased. Errorbars are 95% bootstrap confidence intervals

around the mean.

https://doi.org/10.1371/journal.pcbi.1009196.g006
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p<0.01) and the number of feedback edges (Spearman r = 0.16, n = 675, p<0.001). The two-

way ANOVA showed the main effect of recurrence trending toward significance (F(2,148) =

2.7, p = 0.07) and the main effect of feedback was still significant (F(2,148) = 7.0, p<0.01).

Thus, sender entropy accounted for neither the synergy-recurrence nor the synergy-feedback

relationship.

Next, we sought to determine whether the observed relationship between normalized syn-

ergy and motif structure could be the product of systematic variance across motifs in either the

strength of feedforward edge weight or the mutual information between the senders. Both are

predictive of normalized synergy [6,10]. Here, mutual information was normalized by the

minimum of the two sender entropies, i.e., the maximum possible mutual information. To

address each potential confound, we regressed out the variance associated with each factor and

asked if the residual normalized synergy was nonetheless correlated to the motif structure

(Table 2). The residual normalized synergy remained significantly positively related to the

number of recurrent edges whether we regressed out variance associated with feedforward

edge weight (F(2,148) = 9.4, p<1x10-3; Spearman r = 0.37, n = 675, p<1x10-18) or the mutual

information between the senders (F(2,148) = 29.4, p<1x10-10; Spearman r = 0.49, n = 675,

p<1x10-33). Thus, the positive relationship between normalized synergy and motif recurrent

edge number is not accounted for by covariance in either feedforward edge weight or mutual

information between senders.

Fig 7. Sender entropy increased with greater recurrence and greater feedback. (A) Mean sender entropy increased with the number of recurrent edges and with

the number of feedback edges in motifs. (B) Curves representing rows shown in A, plotted with errorbars computed across networks, show that sender entropy

increased as the number of recurrent edges increased. (C) Curves representing columns shown in A, plotted with errorbars computed across networks, show that

sender entropy increased as the number of feedback edges increased. Errorbars are 95% bootstrap confidence intervals around the mean.

https://doi.org/10.1371/journal.pcbi.1009196.g007

Table 1. Relationships between residual synergy and recurrence and feedback, after regressing out sender entropy. Results for both normalized synergy (Syn/entrecei-

ver -Entsender) and raw synergy (Syn—Entsender) are shown. Columns 1–3 (df, F, pANOVA) show the results of a repeated measures ANOVA for the residual synergy pre-

dicted by the number of recurrent and feedback edges. Columns 4–5 (rho, prho) show the results of Spearman rank correlations between residual synergy and the number

of recurrent and feedback edges. P-values significant at the α = 0.05 level are in bolded font.

Syn/entreceiver-Entsender df F pANOVA rho prho

Recurrent 2, 148 15.3 <1x10-6 0.29 <1x10-11

Feedback 2, 148 25.8 <1x10-9 -0.37 <1x10-18

Recurrent x Feedback 4, 296 1.13 0.34 – –

Synergy-Entsender df F pANOVA rho prho

Recurrent 2, 148 2.7 0.07 0.11 <0.01

Feedback 2, 148 7.0 <0.01 0.16 <0.001

Recurrent x Feedback 4, 296 4.4 <0.01 – –

https://doi.org/10.1371/journal.pcbi.1009196.t001
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The negative relationship between normalized synergy and motif feedback edge number,

likewise, was not affected by regressing out variance associated with mutual information

between senders (F(2,148) = 14.5, p<1x10-5; Spearman r = -0.28, n = 675, p<1x10-10). The

residual normalized synergy, after regressing out variance associated with feedforward edge

weight, maintained a significant negative correlation with motif feedback edge count (Spear-

man r = -0.11, n = 675, p = 0.01) but was no longer a significant main effect in the two-way

ANOVA (F(2,148) = 1.0, p = 0.36). This loss of significance also occurred without the normali-

zation by receiver entropy (F(2,148) = 0.7, p = 0.50). The sensitivity of the relationship between

synergy and motif feedback edge count to regressing out variance associated with feedforward

edge weight indicates variance in synergy associated with the number of feedback edges could

be accounted for by variance in feedforward edge strength. Indeed, in a post hoc test, we found

that feedforward edge weight was significantly negatively correlated with the number of feed-

back edges (Spearman r = -0.22, n = 675, p<1x10-6). As described further in the discussion,

the negative correlation between feedforward and feedback information flow leaves ambiguity

to be resolved by future work regarding the separate effects of feedback and feedforward infor-

mation flows on synergistic integration. What can be said is that synergy was greater when the

ratio of feedforward to feedback information flow was larger (Spearman r = 0.50, n = 675,

p<1x10-35).

Extending our analysis of how normalized synergy is related to the number of recurrent

and feedback edges to ask if it is similarly related to the strength of these edges, we performed a

multiple linear regression for each network, using the strength of feedforward, recurrent, and

feedback edge weights as predictors of normalized synergy. We then analyzed the distribution

of beta coefficients for each term (Fig 8). As expected from prior work [6], feedforward edge

weight was a significant predictor of normalized synergy (zs.r. = 7.52, n = 75, p<1x10-13).

Recurrent edge weight was also a significant predictor of normalized synergy (zs.r. = 6.12,

n = 75, p<1x10-9). Conversely, feedback edge weight was not a significant predictor of normal-

ized synergy (zs.r. = -0.93, n = 75, p = 0.35). To determine if motif structure could account for

variance beyond what could be accounted for by the edge weights, we performed an ANOVA

on the normalized synergy residuals across networks. We observed no significant effects.

Residual normalized synergy was no longer significantly correlated to the number of recurrent

edges (Spearman r = 0.07, n = 675, p = 0.09) and there was no main effect of recurrence (F
(2,148) = 0.88, p = 0.42). Residual normalized synergy was also no longer significantly corre-

lated to the number of feedback edges (Spearman r = -0.04, n = 675, p = 0.32) and there was no

main effect of feedback (F(2,148) = 0.88, p = 0.42). There was also no significant interaction

effect (F(4,296) = 1.42, p = 0.23). These results showed that the motif structure does not

Table 2. Relationships between residual normalized synergy and recurrence and feedback, after regressing out potential confounding covariates: strength of feed-

forward edge weights (Syn/entreceiver -FF), and mutual information between senders (Syn/entreceiver -MI). Columns 1–3 (df, F, pANOVA) show the results of a repeated

measures ANOVA for the residual normalized synergy predicted by the number of recurrent and feedback edges. Columns 4–5 (rho, prho) show the results of Spear-

man rank correlations between residual normalized synergy and the number of recurrent and feedback edges. P-values significant at the α = 0.05 level are in bolded

font.

Syn/entreceiver -FF df F pANOVA rho prho

Recurrent 2, 148 9.4 <1x10-3 0.37 <1x10-18

Feedback 2, 148 1.0 0.36 -0.11 0.01

Recurrent x Feedback 4, 296 3.4 0.01 – –

Syn/entreceiver -MI df F pANOVA rho prho

Recurrent 2, 148 29.4 <1x10-10 0.49 <1x10-33

Feedback 2, 148 14.5 <1x10-5 -0.28 <1x10-10

Recurrent x Feedback 4, 296 2.8 0.03 – –

https://doi.org/10.1371/journal.pcbi.1009196.t002
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account for variance in synergy beyond the motif edge weights. A potential explanation for

why the number of edges and the strength of edges may explain similar variance in normalized

synergy is that stronger edges are more likely to be significant. Quantifying the probability of

observing a significant edge for each decile of transfer entropy (edge weight) in each network

revealed a significant, positive trend across deciles (zs.r. = 7.52, n = 75, p<1x10-13). It is likely,

however, that binarizing edges by significance resulted in the loss of predictive signal. Overall,

these results again provided evidence that recurrence, but not feedback, is positively related to

synergistic integration when quantified as the weight of the motif edges as well as the number

of edges.

Despite the positive relationship between edge number and edge weight, edge number did

not capture all the variance contained in edge weight. Regressing out the variance associated

with the number of recurrent edges and performing the multiple linear regression between

edge weights and residual normalized synergy revealed that recurrent edge weight was still a

significant, albeit negative, predictor of residual normalized synergy (zs.r. = -5.03, n = 75,

p<1x10-6). That there was a significant residual predictive relationship indicates that recurrent

edge number does not capture all the same variance as recurrent edge weight (see discussion).

Feedforward edge weight was still a significant predictor of residual normalized synergy (zs.r. =

7.52, n = 75, p<1x10-13), and feedback edge weight was still not a significant predictor of resid-

ual normalized synergy (zs.r. = -1.42, n = 75, p = 0.16).

The above results show that the number of recurrent edges among upstream neurons con-

tributed a novel source of synergy beyond the variance accounted for by the receiver entropy,

the sender entropy and the weight of the feedforward edges. This result was not sensitive to the

type of normalization performed (Figs F and G in S1 File). The observed effects on synergy

were consistent with known relationships between synergy, redundancy, and multivariate TE

at these timescales (Figs H-L in S1 File). However, we did find that the result was dependent

upon the use of PID. Interaction Information (see S1 File), a non-PID based analysis that does

Fig 8. The strength of feedforward and recurrent edges was predictive of normalized synergy. Histograms of beta

weights for multiple linear regressions performed on the network-level revealed that feedforward and recurrent edge

weights were reliable predictors of normalized synergy, across networks. Feedback edge weight was not a reliable

predictor of normalized synergy.

https://doi.org/10.1371/journal.pcbi.1009196.g008
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not factor redundancy into the calculation of synergy, was not sensitive to the effects of connec-

tivity (Figs M and N in S1 File). Among PID approaches, however, the result was not dependent

upon the PID approach used (Imin vs. Ibroja; Figs O-R in S1 File), both show the same pattern of

effects reported here. The observed effects also held when the three timescales were analyzed

separately (Fig S in S1 File). Finally, the result held when triads were re-classified into motifs

after computing conditional TE among triad members (Figs T and U in S1 File).

Recurrent and feedback motifs are rare but overrepresented

To gain perspective as to how our findings regarding the influence of recurrence and feedback

on synergy relate to network-wide processing, we asked how prevalent each type of effective

connectivity was in our networks. To do this, we calculated the percentage of network-wide

triads accounted for by each motif (Fig 9).

Consistent with the sparsity of these networks (average edge density: 1.14% [0.83% 1.54%]),

the incidence of each motif decreased rapidly as a function of the number of edges contained

in the motif. The first (i.e., default) motif, containing only 2 feedforward edges, was most prev-

alent and accounted for 70.12% [67.15% 73.07%] of the observed synergistic 3-node triads (Fig

9A, 9B and 9C). Motifs with 3 edges, whether recurrent or feedback, accounted for 23.94%

[21.76% 26.14%] of the synergistic 3-node triads (Fig 9B and 9C). This is significantly greater

than the 2.12% [1.60% 2.83%] that would be expected by chance given random networks with

the same sparsity (t = 21.24, n = 75, p< 1x10-32). Motifs with 4, 5, and 6 edges were similarly

over-represented from what would have been expected in random networks, but progressively

decreased in prevalence (4 edge motifs: 4.93% [4.03% 5.92%] vs. 0.13% [0.06% 0.26%],

t = 10.27, n = 75, p< 1x10-15; 5 edge motifs: 0.66% [0.47% 0.88%] vs. 0.0039% [0.0008%

0.01%], t = 6.39, n = 75, p< 1x10-7; 6 edge motifs: 0.36% [0.12% 0.87%] vs. 0.0002% [0.0000%

0.0004%], t = 1.99, n = 75, p = 0.051; Fig 9C). These results agree with findings in similar net-

works generated from the same data [46]. Finally, recurrent and feedback motifs occurred sig-

nificantly more than would have been expected in random networks (recurrent: 13.79%

[11.52% 16.28%] vs. 1.10% [0.82% 1.48%], t = 10.68, n = 75, p< 1x10-15; feedback: 13.47%

[11.41% 15.70%] vs. 1.10% [0.82% 1.48%], t = 10.97, n = 75, p< 1x10-16; Fig 9D). Importantly,

all motifs with recurrent and feedback edges, with the exception of the 6-edge motif, occurred

more frequently than expected given network connection densities. Thus, the sparsity of our

networks did not preclude our ability to detect recurrent and feedback motifs.

To test for evidence of selection bias toward or away from motifs with recurrent or feedback

edges, we tested whether one type was more or less prevalent among the motifs containing a

given number of edges. The null distribution would be an equal number of each. Among

3-edge synergistic motifs, the extra edge was recurrent in 50.7% [44.2% 57.1%] of the triads.

This was not significantly different from 50% (t = 0.22, n = 75, p = 0.83). Likewise, across triads

with 4 and 5 edges, we found no evidence of bias toward one type of effective connectivity ver-

sus the other. In 4-edge motifs with both additional edges being the same, both additional

edges were recurrent in 43.1% [35.1% 51.1%] of triads (t = -1.67, n = 75, p = 0.10) and both

additional edges were feedback in 56.9% [48.7% 64.7%] of triads (t = 1.67, n = 75, p = 0.10). In

4 edge motifs with both additional edges being different, 1 additional edge was recurrent and 1

was feedback in 49.1% [43.3% 54.5%] of triads (t = -0.29, n = 75, p = 0.76). For 5-edge motifs,

the additional edge was recurrent in 50% [50% 50%], t = 0, n = 75, p = 1; 6-edge motifs were

not included in this as they contain the same number of feedback and recurrent edges by defi-

nition). Consistent with this, there was also no difference in the overall likelihood of observing

a recurrent versus a feedback edge (7.5% [6.4% 8.7%] vs. 7.6% [6.6%, 8.8%]; zs.r. = -0.07,

n = 75, p = 0.94).
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Given the similar incidence of motifs containing recurrent and feedback edges, but signifi-

cant differences in the synergy observed for each motif type, synergistic triads containing

recurrent edges could be expected to account for a larger percentage of the network-wide syn-

ergy (Fig 10). Network-wide synergy was the sum of synergy, taken across all triads in a net-

work. Indeed, recurrent motifs comprised 13.79% [11.52% 16.28%] of triads and accounted

for 20.43% [17.26% 23.85%] of network-wide synergy. Feedback motifs comprised 13.47%

[11.41% 15.70%] of triads and only 10.12% [8.37% 12.11%] of network-wide synergy (Fig 10A,

inset). Thus, although recurrent and feedback motifs accounted for similar percentages of net-

work triads (zs.r. = 0.09, n = 75, p = 0.92), recurrent motifs accounted for a significantly higher

percentage of network synergy than feedback motifs (zs.r. = 4.18, n = 75, p<1x10-4).

Fig 9. Recurrent and feedback motifs were rare but occurred more than expected given the network-wide edge density. (A) Percent

of network triads accounted for by each motif type. Motifs with greater edge density were more rare. Values indicate means across all

networks. (B) Log10 scaled observed percentages of triads compared to expected percentages of triads per motif. Expected percentages

obtained by raising the probability of observing a connection to the power of the number of edges in the motif, for each network. (C)

Log10 scaled observed and expected percentages of triads in (B), grouped by the number of edges they contain. (D) Linearly scaled

observed and expected percentages of triads in (A), grouped by the number of recurrent and feedback edges they contain. Significance

indicators: ‘+’ indicates significantly more than expected and ‘-’ indicates significantly less than expected. For all significant values,

p<1x10-6. Motif indicator: † Recurrent, ‡ Feedback.

https://doi.org/10.1371/journal.pcbi.1009196.g009
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Fig 10. Recurrent and feedback motifs accounted for more and less network-wide synergy than expected, respectively. (A)

Both recurrent motifs and feedback motifs were relatively rare, and they accounted for a relatively small proportion of overall

synergy. Red bars from Fig 9B are replotted on a linear scale here for comparison. Inset: Recurrent motifs were as common as

feedback motifs, but they accounted for significantly more synergy than feedback motifs. Red bars from Fig 9D are replotted

here for comparison. (B) The ratio of percent synergy to percent triads is shown per motif. Values above one indicate that the

motif accounts for greater network-wide synergy than it does triads. Values less than one indicate that the motif accounts for

less network-wide synergy than it does triads. (C) Recurrent motifs accounted for more synergy than expected given their

frequency. Conversely, feedback motifs accounted for less synergy than expected given their frequency. Significance was

determined by asking whether the distribution of ratios for each motif came from a distribution whose mean is equal to 1 (t-

test). Significance indicators: ‘+’ indicates significantly more than expected and ‘-’ indicates significantly less than expected. For

all significant values, p<0.001. Central tendency shown in each figure is mean and error bars are 95% bootstrap confidence

intervals around the mean. Mean was selected over median to ensure that percentages sum to 100. Significance indicator: ���

p<0.001. Motif indicator: † Recurrent, ‡ Feedback.

https://doi.org/10.1371/journal.pcbi.1009196.g010
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To determine whether motifs accounted for more synergy than expected given their

frequency, we calculated the ratio of percent synergy to percent triads for each motif (Fig

10B and 10C). Values greater than one indicated that the motif accounted for more syn-

ergy than expected given its frequency. Values less than one indicated that the motif

accounted for less synergy than expected given its frequency. We observed that recurrent

motifs accounted for significantly greater network-wide synergy than expected given their

frequency (zs.r. = 6.28, n = 75, p<1x10-9), and feedback motifs accounted for significantly

less network-wide synergy than expected given their frequency (zs.r. = -4.35, n = 75,

p<1x10-4; Fig 10C).

Discussion

Understanding the relationships between directed information flow (feedforward, feed-

back, and upstream recurrence) and synergistic processing in cortical networks is essential

for understanding how neural networks compute. We previously showed that synergistic

processing varies directly with feedforward information flow [6]. Here, we examined the

influence of recurrent and feedback information flow on synergistic information process-

ing in organotypic cortical cultures. Using information theoretic and network analyses of

the spiking activity of hundreds of simultaneously recorded neurons from organotypic

cultures of mouse somatosensory cortex, we showed for the first time that recurrent and

feedback information flow in functional local microcircuits vary systematically with the

amount of PID-derived synergy observed in those microcircuits. Specifically, we found

that greater recurrence in motifs predicted greater synergy while greater feedback pre-

dicted lesser synergy (Fig 11). Interestingly, the strength of feedforward effective connec-

tions, a covariate of synergy [6], could account for much of the variance associated with

the feedback-synergy relationship. It could not, however, account for the recurrence-syn-

ergy relationship (Table 2). Thus, recurrence predicted synergistic processing above and

beyond that predicted by the strength of inputs. Additionally, we found that, although

recurrent motifs were somewhat rare in our networks—comprising 14% of all synergistic

motifs—they account for 20% of the total network-wide synergy. Feedback motifs—com-

prising 13% of all synergistic motifs—were roughly matched for prevalence with recurrent

motifs, but only accounted for 10% of the total network-wide synergy. Thus, with similar

prevalence, recurrent motifs accounted for twice as much synergy as feedback motifs.

Fig 11. Summary of findings regarding how synergy is related to recurrent and feedback information flow in

organotypic cultures of mouse cortex. (A-B) Synergy had a positive relationship with the number of recurrent edges

and a negative relationship with the number of feedback edges. That is, synergy was elevated where there was greater

upstream recurrent information flow. Synergy was diminished where there was greater feedback information flow.

https://doi.org/10.1371/journal.pcbi.1009196.g011
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Relationship to previous work

Our finding that synergy increased with greater recurrence is consistent with previous work

showing that recurrent connections—both functional and structural—are necessary for pat-

tern completion tasks, both in biological [12,13,15–17,19,20] and artificial networks [14,19].

Such tasks involve the integration of multiple, distinct features to generate a coherent repre-

sentation, a process that involves some form of synergistic processing. Our finding that syn-

ergy decreased with greater feedback agrees with theoretical frameworks [33–36] and

experimental studies [29–31,37,47] suggesting that feedback processes serve to reduce the vari-

ance with which lower-level neurons can account for variance in higher-level neurons, thereby

reducing the strength of feedforward information flow, and resulting in reduced synergy.

Our finding that increased recurrent connectivity corresponded to greater synergistic pro-

cessing is also consistent with previous analyses of the topological determinants of synergistic

processing in functional networks of cortical cultures. For example, one such analysis found

that synergistic processing was directly related to the ‘out-degree’ of effective connectivity of

the upstream neurons [8]. That is, the more neurons that a given upstream neuron made effec-

tive connections with, the greater the resulting synergy was in the recipient neurons. Similarly,

we have previously shown that neurons in functional rich clubs of cortical micro-circuits (i.e.,

highly-intercommunicating neurons) do about twice as much synergistic processing as neu-

rons outside of the rich clubs [6]. We have also shown previously that greater similarity (i.e.

synchrony) of transmitters, such as might be generated by strong intercommunication, pre-

dicts greater synergy at synaptic timescales [10].

The strength of feedforward information flow was an important consideration here when

analyzing the relationship between the number of recurrent/feedback edges in a motif and syn-

ergy. We have shown previously that the strength of feedforward information flow is a strong,

positive predictor of the amount of synergy [6]. Here, we performed a control analysis where

this relationship was first regressed out of the synergy values before asking whether recurrence

and/or feedback were predictive of synergy. The positive relationship between recurrence and

synergy persisted after regressing out the influence of feedforward information flow, indicating

that recurrent information flow reflects a novel source of explanatory power over synergy. We

hypothesize that this additional synergy emerges because recurrent information flow increases

the capacity of the transmitter neurons to jointly predict the behavior of the receiver, resulting

in more synergy than if it just increased the amount of bivariate transfer entropy. The relation-

ship between the number of feedback edges and synergy, however, was lost after regressing out

variance associated with feedforward information flow. This suggests that feedforward and

feedback information flow account for common variance in the observed synergy as discussed

in greater detail in the next section.

Variability of the synergy-feedback relationship

While the relationship between synergy and motif recurrent edge count was robust across all

analyses we performed, the relationship between synergy and motif feedback edge count var-

ied across analyses, exhibiting both negative and positive relationships with synergy. First, we

found that it mattered whether raw synergy (i.e., total synergy without scaling of any sort) or

normalized synergy (i.e., raw synergy normalized by the entropy of the receiving neuron so as

to indicate the percentage of the entropy accounted for) was examined. Raw synergy was posi-

tively correlated with motif feedback edge count while normalized synergy was negatively cor-

related with motif feedback edge count. We found that this reversal could be accounted for by

the fact that the receiver entropy, the normalizing term, itself varied significantly as a function

of motif feedback edge count. The receivers in motifs with more feedback edges had more
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entropy. Thus, while greater raw synergy emerges in these motifs, it accounts for a lower per-

centage of the receiver entropy.

Second, we found that regressing out variance in synergy, whether normalized or not, asso-

ciated with feedforward information flow resulted in a loss of significance of the relationship

to motif feedback edge count. As noted above, this result indicates that variance in synergy

associated with the number of feedback edges was also associated with variance in feedforward

information flow. Two scenarios could yield this result. In both, feedforward and feedback

information flows have opposing effects on synergy. These scenarios differ with regard to

whether feedforward and feedback flows are independent. If independent, then feedforward

and feedback processing do not directly affect each other, but simply have contrasting effects

on synergy. Our finding of a significant negative correlation between these terms, however,

argues against such a scenario. Rather, this negative correlation suggests that feedforward

information flow affects the amount of feedback information flow and/or vice versa.

Influence of sender properties on the synergy-recurrence relationship

The relationship between number of recurrent edges and synergy was clearly influenced by

some combination of sender entropy, mutual information between senders and transfer

entropy between senders (recurrent edge weight). The fact that the sender entropy alone could

not account for the relationship suggests that the relative dynamics of the senders are impor-

tant for synergy. Yet, mutual information also could not fully account for this relationship. We

hypothesize that both mutual information and transfer entropy between senders are important

features of recurrent edges that produce synergy, yet the degree to which one or the other is

responsible for yielding greater synergy will likely vary according to network properties like

excitability and correlation regime [10]. Future work should aim to determine this. Given that

transfer entropy between senders could account for the relationship (i.e., leave no significant

covariance) between normalized synergy and number of recurrent edges, it likely accounted

for similar variance in synergy. This shared variance can be partly explained by the fact that

stronger edges, with larger transfer entropy, were more likely to be significant in these net-

works. Yet, the number of recurrent edges did not account for all of the same variance as

recurrent edge weight—regressing out edge number left a significant, negative residual rela-

tionship. This is not surprising, given that recurrent edge number takes on one of three values

(0, 1, or 2) whereas edge weight and synergy vary across multiple orders of magnitude. That

the sign of the relationship between recurrent edge weight and synergy switched from positive

(for normalized synergy) to negative (for residual normalized synergy) is difficult to interpret.

This relationship depends upon which variance in normalized synergy was aligned to edge

number by the regression. This is sensitive to what are arguably un-interesting features of the

data (e.g. the number of observations for each number of edges) that affect the summed

squared error, thereby influencing which variance was fit by the regression. Thus, from this,

we conclude only that recurrent edge number does not capture the same variance as recurrent

edge weight.

Influence of network edge density

Network edge density was another important consideration in studying the influence of recur-

rent and feedback edges on synergy. Our networks were sparse, consistent with densities

observed in previous studies of biological neural networks [43,48–51]. With this sparsity, it is

possible that our results might have been skewed by the lack of connectivity, which would

translate to a lack of observations for motifs with greater connectivity (i.e. recurrent and feed-

back motifs). We investigated the influence of sparsity on our results by asking how the
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expected frequency of motifs, given the probability of a single connection, compared to the fre-

quency of motifs that we observed in our networks. We found that our networks had signifi-

cantly more instances of both recurrent and feedback motifs than expected by chance, given

the baseline probability of observing a significant edge. Thus, we concluded that the sparsity of

our networks did not preclude our ability to observe these motifs. Moreover, the fact that

recurrent and feedback motifs occurred more than expected by chance may indicate that such

motifs, which evolve from network dynamics, are important for network processing.

Use of organotypic cultures

This work required the ability to record the spiking activity of hundreds of neurons simulta-

neously. This was made possible by our use of organotypic cultures. While organotypic cul-

tures naturally differ from intact in vivo tissue, organotypic cultures nonetheless exhibit

synaptic structure and electrophysiological activity very similar to that found in vivo [52–58].

For example, the distribution of firing rates observed in cultures is lognormal, as seen in vivo

[59], and the strengths of functional connections are lognormally distributed, similar to the

distribution of synaptic strengths observed in patch clamp recordings (reviewed in [60,61]).

However, neural cultures exhibit bursty dynamics that evolve as a function of the age of the

culture [62–65]. Here, recordings were collected between 2 and 4 weeks after culture prepara-

tion, corresponding to an age at which ‘broad network bursts’ (2s) are commonly observed

[63]. Evidence regarding the existence of multi-second ‘network bursts’ in the intact brain,

outside of inactive conditions [66], is limited. Recordings from intact brains in situ do show,

however, that brief local bursts occur regularly and are considered behaviorally relevant [67–

70]. Observed differences between cultures and the intact brain regarding the spatiotemporal

properties of bursts likely reflect differences in physiological condition [71–73]. Yet, even with

these differences, the most parsimonious hypothesis is that the relationships observed between

functional dynamics and informational metrics (e.g., synergy) observed in neural cultures, as

done here, are informative for understanding brain function. Nonetheless, additional work

will need to be done to understand how the relationships between synergy and recurrence and

synergy and feedback observed in vitro differ from what may exist in vivo, particularly in the

context of behavior.

Co-occuring spiking dynamics

The results obtained here were the product of the recorded spiking dynamics. The full nature

and scope of this dependence is a topic of active investigation [6,8,10,59,67]. To facilitate rec-

ognition of factors of key relevance as new work with convergent or divergent results emerge,

we review briefly here the spiking dynamic properties, as characterized previously, for this

dataset. Neurons in our recordings had a mean firing rate of 2.1 Hz [2.0 Hz, 2.2 Hz] and gener-

ated rhythmic bursts of activity [41], with cross-correlation peaks in the frequency bands cor-

responding to theta (4–12 Hz), beta (12–30 Hz), gamma (30–80 Hz), and high frequency

(100–1000 Hz) oscillations [42]. Bursts typically lasted between 1 and 10 seconds, and were

typically separated by 10 seconds, though significantly shorter durations and intervals

occurred [41]. Despite exhibiting bursts, neuron spiking was relatively sparse, with 80% of

neurons firing at<3 Hz. These spiking dynamics are well aligned with those observed in vivo
[67,74].

The sparsity of neuron firing was likely an important factor in combination with the meth-

ods used here. The low neuron firing rates together with the construction of our timescales,

which binned neuron spiking into 1 ms, 1.6 ms, and 3.5 ms bins–1000 bins/sec, 625 bins/sec,

and 286 bins/sec, respectively–resulted in spike trains in which a large majority of bins
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contained 0 spikes. An impact of this sparsity is that the TE calculations had greater sensitivity

for detecting excitatory interactions. Therefore, we cannot speak to the influence of inhibitory

activity in producing the results shown here. Future work should aim to determine the relative

influence of excitation and inhibition on synergistic integration.

Relevance of spontaneous activity

While stimulus-driven activity has been favored in research for its ability to provide insight

into neural coding mechanisms, such studies assume that the brain is primarily reflexive and

that internal dynamics are not informative with regard to information processing. However,

internally-driven spontaneous activity of neurons, or activity that does not track external vari-

ables in observable ways, has been repeatedly shown to be no less cognitively interesting than

stimulus-linked activity [75,76]; for reviews see [77,78]. Not only is spontaneous activity pre-

dominant throughout the brain, but it also drives critical processes such as neuronal develop-

ment [11,79,80].

Limitations of our PID approach

Information decomposition is an active area of research. There are many different methods of

partial information decomposition (PID) e.g., [9,81–83], but there is not yet a single widely

agreed upon “correct” method which applies generally. Here, we used the original Imin PID as

described by [7]. We chose this measure because it is capable of detecting linear and nonlinear

interactions and it has been shown to be effective for our datatype [6,8,10]. In addition, unlike

other methods [84,85], PID of multivariate Transfer Entropy can decompose the interaction

into non-negative and non-overlapping terms. However, there is reasonable concern that Imin

PID overestimates the redundancy term and, consequently, synergy [81–83]. To address this

issue, we also implemented an alternate form of PID known as the Ibroja method [81], which

estimates synergy (and redundancy) based on an operational definition of unique information,

rather than redundant information. This approach yielded the same qualitative pattern of

results (Figs O-R in S1 File). Because the synergy-recurrence relationship holds when assessed

using two distinct methods for decomposing multivariate information, we expect that the rela-

tionship will hold for additional implementations of PID.

The present work did not examine interactions larger than triads due to the multi-fold

increase in the computational burden that arises in considering higher order synergy terms. In

addition to the combinatorial explosion of increased numbers of inputs, the number of PID

terms increases rapidly as the number of variables increases. However, based on bounds calcu-

lated for the highest order synergy term by [8], it was determined that the information gained

by including an additional input beyond two either remained constant or decreased. From

this, they inferred that lower order (two-input) operations dominated. Nonetheless, further

investigation of this point will be worthwhile as improvements in computational wherewithal

enable it.

Jointly increasing synergy and redundancy as a hallmark of enhanced

higher order information processing

We have previously shown that synergy and redundancy grow simultaneously in triads at

timescales relevant to synaptic transmission [10]. This growth was accompanied by a concor-

dant increase in the multivariate Transfer Entropy (mvTE), representing the total information

processed by the receiver based on both inputs. Conversely, at extra-synaptic timescales, where

synergy shrank while redundancy grew, mvTE growth was stunted.
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In the present work, we focused on the relationship between the number of recurrent edges

and synergy. However, examination of the PID-redundancy in these same triads, revealed that

it too increased with the number of recurrent edges, whether determined via Imin PID (Figs H

and J and L in S1 File), or Ibroja PID (Figs Q and R in S1 File). MvTE also increased with the

number of recurrent edges (Figs I and K in S1 File). This follows the pattern of results from

our previous work, suggesting that simultaneous growth of synergy and redundancy leads to

enhanced higher order information processing.

In contrast to this, the interaction information, a non-PID approach that does not separate

out redundancy and synergy, failed to reveal an effect of the number of recurrent edges (Figs

M and N in S1 File). This can be understood based on the similar changes in redundancy and

synergy that the PID analyses identified. That is, if redundancy grows as fast (or faster) than

synergy, then the net outcome that is measured by interaction information, will not change.

This is what was observed here. It remains poorly understood what the implications are that

PID synergy can change without change in interaction information. Future work should aim

to determine the relative importance and influence of synergy and redundancy for/on infor-

mation processing.

Summary and conclusion

The present work examined the influence of recurrent and feedback connectivity within triads

of effectively connected neurons recorded from organotypic cultures on PID-determined syn-

ergy and redundancy. Across numerous variants, we reliably observed that PID-determined

synergy and redundancy were greater in triads that had greater recurrent connectivity (both in

terms of number of edges and strength of connectivity between upstream senders). The results

were mixed with respect to the effect of the amount of feedback connectivity from receiver

back to senders, painting a more complex portrait of the impact of these connections that was

not resolved here. The correlated changes in synergy and redundancy were such that the inter-

action information (a term that is sensitive to the net balance of synergy and redundancy) did

not change systematically as a function of triad connectivity, emphasizing that the results are

specific to synergy as quantified when redundancy can be accounted for separately. Although

the frequencies of motifs with relatively more recurrent or feedback information flow were

matched, they accounted for more and less synergy than expected, respectively. These results

add to a growing body of work regarding the interdependence of synergistic integration and

functional network topology. Taken together, these findings provide increasing evidence of

the influence of recurrent and feedback information flow on overall neural network informa-

tion processing.

Materials & methods

Ethics statement

All procedures were performed in strict accordance with guidelines from the National Insti-

tutes of Health, and approved by the Animal Care and Use Committees of Indiana University

and the University of California, Santa Cruz.

To answer the question of how computation is related to feedback and recurrence in corti-

cal circuits, we combined network analysis with information theoretic tools to analyze the

spiking activity of hundreds of neurons recorded from organotypic cultures of mouse somato-

sensory cortex. Here we provide an overview of our methods and focus on those steps that are

most relevant for interpreting our results. A comprehensive description of all our methods can

be found in S1 File.
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Electrophysiological recordings

All results reported here were derived from the analysis of electrophysiological recordings of

spontaneous activity from 25 organotypic cultures prepared from slices of mouse somatosen-

sory cortex between 2 and 4 weeks after culture preparation. One hour long recordings were

performed at 20 kHz sampling using a 512-channel array of 5 μm diameter electrodes arranged

in a triangular lattice with an inter-electrode distance of 60 μm (spanning approximately 0.9

mm by 1.9 mm). Once the data were collected, spikes were sorted using a PCA approach [41–

42,86] to form spike trains of between 98 and 594 (median = 310) well isolated individual neu-

rons depending on the recording.

Network construction

Networks of effective connectivity, representing global activity in recordings, were constructed

following the methods described by [8,41]. Briefly, weighted effective connections between

pairs of neurons were established using transfer entropy (TE) [87]. To consider synaptic inter-

actions, we computed TE at three timescales spanning 0.05–14 ms, discretized into overlap-

ping bins of 0.05–3 ms, 1.6–6.4 ms, and 3.5–14 ms, resulting in 75 different networks. Only

significant TE, determined through comparison to the TE values obtained with jittered spike

trains (α = 0.001; 5000 jitters), were used in the construction of the networks. TE values were

normalized by the total entropy of the receiving neuron so as to reflect the proportion of the

receiver neuron’s capacity that can be accounted for by the transmitting neuron. Note, due to

the sparse firing of our recordings, transfer entropy is biased towards detecting excitatory,

rather than inhibitory, interactions. This is because transfer entropy grows with the probability

of observing spike events. And, in sparse spike time series it is statistically easier to detect an

increase in the number of spikes (an excitatory effect) than it is to detect a decrease in the

number of spikes (an inhibitory effect). Thus, here we assume connections are predominantly

excitatory.

Identifying motifs

Synergistic motifs were identified using code inspired by the Matlab Brain Connectivity tool-

box [88]. The code was written to categorize all synergistic triads–those in which two transmit-

ters send edges to the same receiver node–according to the set of ten possible synergistic

motifs, containing up to four additional edges. Because we were only interested in synergistic

motifs, we did not consider the entire set of 3-node motifs. In addition, although motifs 5 and

6 (in this paper) would normally be considered conformationally equivalent, here they are dis-

tinct due to the consideration of transmitter and receiver node roles.

Quantifying synergistic integration

Synergistic integration was measured as synergy. Synergy measures the additional information

regarding the future state of the receiver, gained by considering the prior state of the senders

jointly, beyond what they offered individually, after accounting for the redundancy between

the sending neurons and the past state of the receiver itself. Synergy was calculated according

to the partial information decomposition (PID) approach described by [7], including use of

the Imin term to calculate redundancy. PID compares the measured bivariate TE between neu-

rons TE(J!I) and TE(K!I) with the measured multivariate TE (the triad-level information

transmission) among neurons TE({J,K}!I) to estimate terms that reflect the unique informa-

tion carried by each neuron, the redundancy between neurons, and the synergy between neu-

rons. Redundancy was computed as per equations 8–10 in S1 File, in which it represents the
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minimum information (Imin) that J or K provides about each state of I, averaged over all states,

and conditioned on the past state of I. Thus, it is the overlapping information—the minimum

of that provided by J or K—and can therefore be viewed as redundancy. Synergy was then

computed via:

SynergyðfJ;Kg ! IÞ ¼ TEðfJ;Kg ! IÞ � TEðJ ! IÞ � TEðK ! IÞ þ RedundancyðfJ;Kg
! IÞ

All information terms (synergy, redundancy, and multivariate transfer entropy) were nor-

malized by the entropy of the receiving neuron in order to reflect the proportion of receiver

variance for which they accounted and to control for variable entropy across triads and net-

works. We prefer this normalization to both raw values and other normalizations due to its

improved interpretability—rather than raw bits, we analyzed the proportion of receiver vari-

ance accounted for. In addition, this particular normalization anchored the analysis with

respect to the computing neuron (receiver), which was particularly crucial in the context of

this motif-style analysis.

Statistics

All results are reported as medians or means followed by the 95% bootstrap confidence limits

(computed using 10,000 iterations) reported inside of square brackets. Accordingly, figures

depict the medians or means with errorbars reflecting the 95% bootstrap confidence limits.

Comparisons between conditions or against null models were performed using the nonpara-

metric Wilcoxon signed-rank test, unless specified otherwise. The threshold for significance

was set at 0.05, unless indicated otherwise in the text.

ANOVAs were run as two-factor, repeated measures tests on data that was averaged per

motif-type (in order to provide balanced group sizes) and aggregated across networks. To

examine the reliability of these results in individual networks with significant variability,

unbalanced, network-level ANOVAs were also performed. Here, only networks with at least

30 observations in each group (i.e. 0, 1, or 2 recurrent edges and 0, 1, or 2 feedback edges)

were included. Due to network sparsity, this resulted in 15 out of 75 networks being included.

The distributions of F-statistics and p-values for these ANOVAs and post-hoc correlation anal-

yses were assessed to determine the relevance of the original results at the single network level.

Supporting information

S1 File. Supplemental methods and results. Fig A. Overview of time series binning struc-

ture used in transfer entropy calculations. Transfer entropy was used to quantify a directed,

functional connection from neuron J to neuron I which represents how well the current state

(t) of neuron I can be predicted by the past state (‘t-d) of neuron J, beyond what is known

from the past state of neuron I itself. Three synaptic timescales were considered, each with cor-

responding delays (d). These timescales considered transfer entropy from 0.05–3 ms, 1.6–6.4

ms, and 3.5–14 ms. Fig B. Distributions of node distances for motifs 1–9 are not signifi-

cantly different from the overall distribution of distances. Distribution of distances for

motif 10 is significantly different from the overall distribution of distances, due to a greater

prevalence of smaller distances. Fig C. Spatial distribution of motifs 1–9 is not significantly

different from the spatial distribution of the rest of the network. The spatial distribution—

on the recording array—of motifs (colored nodes and edges) relative to the rest of the network

(gray nodes and edges) is shown for a representative network. The spatial distribution covers a

smaller range for motif 10, of which there are relatively few cases. Fig D. TE peaks between

1–14 ms. Mean distribution of TE over time for all effective connections from two
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representative networks. Left: The black line shows the mean TE over all effective connections

from two representative networks. The shaded region shows the 95% confidence interval. The

vertical dashed red line indicates the upper bound of the synaptic timescales. Across connec-

tions, the peak TE occurs below this bound at short latencies. Right: Histogram of the delay to

the maximum TE over connections. The height of each bar shows the proportion of connec-

tions for which the peak TE was found to occur at the delay indicated along the x-axis. Most

connections had max TE at short delays as shown in the inset panel which zooms in to the first

50 ms of the x-axis. These plots show that most connections had a peak TE at less than 14 ms.

Fig E. The Partial Information Decomposition. In this study, we analyzed two-input compu-

tations which were determined using the Partial Information Decomposition to dissect multi-

variate transfer entropy (occurring among three neurons, with two transmitter neurons each

sending significant information to a receiver neuron) into synergistic, redundant, and unique

information terms. The synergistic information component was used to represent the amount

of computation carried out by the receiver. Fig F. Synergy normalized by multivariate trans-

fer entropy increased with the number of recurrent edges. (Left) Motifs are ordered based

on the number of recurrent edges (columns) and feedback edges (rows). The heatmap depicts

brighter colors where there are larger normalized synergy values. (Middle) Curves represent-

ing rows in (Left), plotted with errorbars computed across networks, show that synergy

increased as the number of recurrent edges increased. (Right) Curves representing columns

shown in (Left), plotted with errorbars computed across networks, show that synergy

decreased as the number of feedback edges increased. Errorbars are 95% bootstrap confidence

intervals around the mean. Table. Relationships between normalized synergy and recurrence

and feedback. Columns 1–3 (df, F, pANOVA) show the results of a repeated measures ANOVA

for the normalized synergy predicted by the number of recurrent and feedback edges. Col-

umns 4–5 (rho, prho) show the results of Spearman rank correlations between normalized syn-

ergy and the number of recurrent and feedback edges. P-values significant at the α = 0.05 level

are in bolded font. Fig G. Synergy normalized by the feedforward edge weight increased

with the number of recurrent edges. Results plotted as in Fig F. Fig H. Redundancy normal-

ized by receiver entropy increased with the number of recurrent edges. Results plotted as in

Fig F. Fig I. Multivariate transfer entropy normalized by receiver entropy increased with

the number of recurrent edges. Results plotted as in Fig F. Fig J. Raw redundancy increased

with the number of recurrent edges. Results plotted as in Fig F. Fig K. Raw multivariate

transfer entropy increased with the number of recurrent edges. Results plotted as in Fig F.

Fig L. Redundancy normalized by the strength of feedforward edges increased with the

number of recurrent edges. Results plotted as in Fig F. Fig M. Interaction information nor-

malized by receiver entropy increased with the number of feedback edges. Results plotted

as in Fig F. Fig N. Raw interaction information was not significantly related to the number

of recurrent and feedback edges. Results plotted as in Fig F. Fig O. Ibroja PID synergy nor-

malized by receiver entropy increased with the number of recurrent edges and decreased

with the number of feedback edges. Results plotted as in Fig F. Fig P. Raw Ibroja PID synergy

increased with the number of recurrent edges. Results plotted as in Fig F. Fig Q. Ibroja PID

redundancy normalized by receiver entropy increased with the number of recurrent edges

and decreased with the number of feedback edges. Results plotted as in Fig F. Fig R. Raw

Ibroja PID redundancy was not significantly related to the number of recurrent and feed-

back edges. Results plotted as in Fig F. Fig S. Synergy normalized by receiver entropy

increases with the number of recurrent edges at each timescale separately. Results plotted

as in Fig F. Fig T. Proportion of motifs in triads determined with pairwise TE and condi-

tional TE. Motif distributions obtained from the two methods are significantly different. Fig

U. Synergy normalized by receiver entropy increases with the number of recurrent edges
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in triads classified using conditional transfer entropy. Results plotted as in Fig F. Fig V. The

probability of observing a significant transfer entropy (TE) edge increases with the

strength of TE for all networks. TE values were sorted into deciles for each network, ranging

from the bottom 10% of values to the top 10% of values, left to right.
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