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Abstract
The analysis of polychoric correlations via principal component analysis and exploratory

factor analysis are well-known approaches to determine the dimensionality of ordered cate-

gorical items. However, the application of these approaches has been considered as critical

due to the possible indefiniteness of the polychoric correlation matrix. A possible solution to

this problem is the application of smoothing algorithms. This study compared the effects of

three smoothing algorithms, based on the Frobenius norm, the adaption of the eigenvalues

and eigenvectors, and on minimum-trace factor analysis, on the accuracy of various varia-

tions of parallel analysis by the means of a simulation study. We simulated different data-

sets which varied with respect to the size of the respondent sample, the size of the item set,

the underlying factor model, the skewness of the response distributions and the number of

response categories in each item. We found that a parallel analysis and principal compo-

nent analysis of smoothed polychoric and Pearson correlations led to the most accurate

results in detecting the number of major factors in simulated datasets when compared to the

other methods we investigated. Of the methods used for smoothing polychoric correlation

matrices, we recommend the algorithm based on minimum trace factor analysis.

Introduction
The assessment of dimensionality of a set of variables is a central issue in psychological and
educational measurement, closely connected to theory building and psychological scale con-
struction [1,2]. Very common exploratory approaches for determining the dimensionality of a
set of variables are based on exploratory factor analysis (EFA) and principal component analy-
sis (PCA), see [3]. Since an incorrect assessment of the dimensionality underlying a set of vari-
ables can be of severe consequences for the interpretation of empirical data [4,5], multiple
formal criteria have been developed to determine the number of factors or components to
retain. For PCA, researchers have proposed, among other methods, the eigenvalue-greater-
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than-one criterion [6], parallel analysis [7,8], the scree test [9], and Velicer’s Minimum Average
Partial (MAP) rule [10]. In the context of EFA, an adaptation of parallel analysis [11], and, for
maximum likelihood factor analysis, chi square significance tests and approaches based on
information criteria like the Akaike Information Criterion [12] and the Bayesian Information
Criterion [13] are among the methods which were suggested to assess the dimensionality of an
item set. Among these methods, the adaptations of parallel analysis (PA) are commonly
regarded to provide an accurate assessment under many conditions [2], although it has been
noted that there is less evidence for the accuracy of PA in the context of EFA [14].

In applications of PA to discrete ordinal variables, Pearson correlations are often used,
based on the assumption that a linear model underlies the variables. However, this approach
has been shown to lead to biased results under specific conditions. The use of Pearson correla-
tions may lead to biased results in binary data [15], and the application of tetrachoric correla-
tions is recommended in this case. A more recent paper provided additional evidence that an
EFA or PCA based on Pearson correlations may lead to biased results when compared to
approaches based on tetrachoric or polychoric correlations, especially when response distribu-
tions of the analyzed variables are skewed [16]. This result is in line with theoretical observa-
tions, since it has been remarked by multiple authors that the possible range for Pearson
correlation coefficients between ordered categorical variables is influenced by the relative fre-
quency of the categories and may be limited in skewed variables, while the variables’ skewness
has no comparable effect on the estimations for tetrachoric and polychoric correlation coeffi-
cients [17,18,19].

Some writers thus suggested the application of PCA or EFA based on tetrachoric or poly-
choric correlations in ordinal variables as an alternative approach [2,15]. The use of polychoric
and tetrachoric correlation coefficients assumes that a normally distributed latent variable
underlies each of the observed ordinal variables, an assumption which may, however, be vio-
lated in specific applications [18].

Multiple studies have been carried out to compare the accuracy of methods on the basis of
polychoric correlation matrices with that of methods based on Pearson correlations. An exam-
ple is [20], which compared maximum likelihood estimation based on Pearson correlations
with weighted least squares mean and variance adjusted (WLSMV) estimation based on poly-
choric correlations in the context of confirmatory factor analysis. In this simulation study,
WLSMV estimation led to more accurate results in the analysis of categorical variables, espe-
cially when the number of categories was small. A similar argument against the appropriate-
ness of maximum likelihood estimation in the analysis of categorical data has been made by
Olsson [21], again based on the results of a simulation study.

However, an often reported objection to the use of polychoric correlation matrices is the
presence of indefinite correlation matrices [2,22]. As has been discussed by numerous authors
(see, e.g., [23] and [19], p. 349) indefinite correlation matrices may be problematic for specific
methods of multivariate analysis, like factor analysis. For this reason, several authors have
advised against the use of tetrachoric and polychoric correlation matrices in factor analysis or
described non-convergence as a severe problem [2,17]. Although specific variants of factor
analysis have been proposed which may be applied to indefinite correlation matrices [24,25],
the presence of negative eigenvalues forbids interpreting eigenvalues with regard to the vari-
ance that is explained by the respective factors [16]. Several authors [2,15,26] have thus sug-
gested to apply smoothing algorithms [27] which transform indefinite correlation matrices
into positive definite ones, to avoid this problem. However, only few studies have investigated
the effect of applying smoothing algorithms on dimensionality assessment with PCA or EFA in
ordered categorical variables [2,16,26], and results were also mixed. While Garrido et al. [16]
recommended the use of smoothed polychoric correlations to assess the dimensionality of sets
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of ordinal items, Timmerman and Lorenzo-Seva [2] did not generally advise their use, because
of computational problems, like convergence problems in the calculation of the polychoric
matrices. The study of Debelak and Tran [26] indicated that the application of different
smoothing algorithms may lead to slightly different results in the special case of a PCA of
binary items which they investigated. Based on these results, little recommendations regarding
the choice of an appropriate smoothing algorithm can be given to the practical researcher who
wishes to apply PA to assess the dimensionality of ordinal variables. Thus, the present study
examines the effect of various smoothing algorithms on dimensionality assessment with PCA
or EFA in ordered categorical variables by the means of a simulation study.

This paper is organized as follows. In the next section, previous studies on the application of
PA in EFA and PCA with and without smoothing algorithms to ordinal data are summarized.
Subsequently, we discuss several smoothing algorithms for indefinite correlation matrices
described in the literature. We then present the results of a simulation study on the application
of a PCA and principal axes factoring of smoothed polychoric and Pearson correlations. A
summary of our findings and recommendations for applied researchers are provided in the
Discussion section.

The use of parallel analysis with ordinal data
Many authors recommended PA, a method which was suggested by Horn [8] in the context of
PCA, to determine the number of factors or components in EFA or PCA [4,28]. In its original
form, PA consists of two major steps: First, the eigenvalues of the correlation matrix of the
dataset are computed. In a second step, a number of datasets which are comparable to the orig-
inal dataset with respect to the sample size, the number of items and the distribution of the
responses, but consist of uncorrelated items, are simulated. Based on these simulated datasets,
the distribution of random eigenvalues is obtained. The number of dimensions underlying the
dataset is determined by comparing the eigenvalues observed in the dataset and the distribu-
tion of random eigenvalues which are observed when there is no relationship between the
items. An alternative method for conducting PA in EFA, which was based on principal axis fac-
toring (PAFA), has been described by [11] and [29]. In the alternative approach, a modified
correlation matrix is used, which contains communality estimates in its diagonal. In the simu-
lation study presented by Timmerman and Lorenzo-Seva [2], a comparison of this modified
approach to the original PA of Horn [8] indicated that the original approach led to more accu-
rate results. This study also investigated the accuracy of PA with minimum rank factor analysis
(MRFA). This approach for EFA aims at minimizing the amount of unexplained variance
given a predefined number of common factors under the constraint that the reduced correla-
tion matrix is positive-definite [2]. It was found that PA, when applied with MRFA, led to
slightly more accurate results than PA applied to PCA in the datasets of their simulation study.
In this study, the latent factors underlying all datasets were uncorrelated.

Timmerman and Lorenzo-Seva [2] also compared the accuracy of PA when applied to a
PCA and EFA of polychoric and Pearson correlations. They found that approaches based on
polychoric correlations generally led to accurate results, but also reported problems with non-
convergence of the polychoric correlation matrices in the calculation of critical eigenvalues. In
their study, PA was regarded non-convergent if 25 simulated matrices in a row were found to
be indefinite or did not converge. In all cases where the polychoric correlation matrices con-
verged, PCA and MRFA based on polychoric correlation matrices was found to be more accu-
rate than PCA and MRFA based on Pearson matrices. Nevertheless, Timmerman and
Lorenzo-Seva [2] concluded that the convergence problem prohibits the general application of
PCA of polychoric correlations to empirical datasets. For Pearson correlations, PCA led to

Smoothing Algorithms

PLOSONE | DOI:10.1371/journal.pone.0148143 February 4, 2016 3 / 18



slightly more accurate results using the 95th or 99th percentile of the random eigenvalue distri-
butions [7] than their mean [8] in datasets with uncorrelated latent factors. The simulation
study of Timmerman and Lorenzo-Seva [2] calculated polychoric correlations using the two-
step algorithm of Olsson [30]. This algorithm is based on maximum likelihood estimation of
the correlation coefficient, while the thresholds which define the relation between the latent
continuous variables and the categories of the manifest ordinal variable are calculated directly
from the observed cumulative marginal proportions of each category in the data (see also the
Methods section).

A recent simulation study [16] further investigated the accuracy of PA applied to PCA and
MRFA in assessing the dimensionality of ordinal variables. Results indicated that PA with
Pearson correlations is inaccurate with large levels of skewness and the use of PA with polycho-
ric correlations was recommended for the dimensionality assessment of ordinal data. PCA
tended to lead to more accurate solutions than MRFA in datasets with few (four) variables per
factors, and also in datasets with correlated latent factors, whereas it was less accurate in data-
sets with a medium (eight) or large (12) number of variables per factor. Garrido et al. [16] used
a smoothing algorithm described by Knol and Berger [31] (see next section) to circumvent the
problem of indefinite polychoric correlation matrices.

Some further improvements on the original PA approach have been suggested as well, e.g.,
[7,32]. While Horn [8] originally recommended the use of the mean of the distribution of the
simulated eigenvalues in PA to determine the number of components to retain, Glorfeld [7]
first advocated using the 95th percentile as a threshold to determine the number of compo-
nents. This leads to more accurate results in datasets with uncorrelated factors, while Horn’s
original method seems to lead to more accurate results when factors are correlated [16,33,34].

Further, several authors criticized that the procedure used in traditional parallel analysis is
based on a model with 0 underlying factors [32,35]. It has been argued that, while this proce-
dure may be appropriate to assess the presence of a single common factor in the data, it may be
inappropriate for evaluating the presence of additional factors. Green et al. [32] thus have sug-
gested incorporating all precedent k factors or components in modeling the reference distribu-
tion of the subsequent (k+1)th eigenvalue to improve the accuracy of parallel analysis. The (k
+1)th critical eigenvalue is obtained by fitting a factor model with k factors on the dataset. In a
second step, new datasets with the same number of variables and subjects as in the original
dataset are simulated based on a model with k factors, whose loadings are identical to those
observed in the original dataset. A descriptive statistic (like the mean or a specific percentile
value) is calculated to summarize the distribution of the (k+1)th eigenvalue in these simulated
datasets. This descriptive statistic is further used as a critical threshold for the (k+1)th eigen-
value. This method has been further investigated in a row of recent studies [36,37].

Although it has been argued that PA is no exact mathematical procedure [2,38], it has been
found to provide an accurate assessment of the dimensionality of an item set under many condi-
tions. Zwick and Velicer [5] evaluated the performance of PA in a simulation study, varying the
size of the simulated item and respondent sample, the number of major components, and the
magnitude of loading of the variables on each major component. They found that PA led gener-
ally to the most accurate results compared to the eigenvalue-greater-than-one criterion [6], the
scree test [9], and Velicer’s minimum average partial method [10]. Humphreys and Montanelli
[29] evaluated PA in EFA by applying it to simulated datasets which were created from prede-
fined correlation matrices. They found that PA led to consistent results which corresponded to
the number of dimensions defined by the correlation matrices. Peres-Neto, Jackson and Somers
[39] compared the performance of PA with other stopping rules in PCA under several condi-
tions, including different correlation matrices and different sizes of samples and variables. They
found PA to be among the most accurate methods to determine the dimensionality of a test.
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Some smoothing procedures for indefinite correlation matrices
The application of polychoric correlation matrices in the analysis of discrete ordinal variables
assumes that a latent continuous normally distributed variable underlies each observed vari-
able. The polychoric correlation is a maximum likelihood estimator of the Pearson correlation
between the two normally distributed underlying variables [19]. However, since the estimation
of the polychoric correlation matrix is based on different marginals for each correlation coeffi-
cient, the resulting matrix may be indefinite [31].

In order to apply PCA and factor analytical methods in these cases, several smoothing algo-
rithms have been suggested, e.g., [2,16]. We will describe some selected algorithms below. All
described smoothing algorithms have in common that they do not alter positive definite corre-
lation matrices to which they are applied.

Higham [40] suggested an algorithm which searches for the symmetric positive definite
matrix X which minimized the Frobenius norm to a given symmetrical matrix A. The Frobe-

nius norm is defined by kA� XkF ¼
X

i;j
ða� xÞ2i;j. This algorithm has been implemented in

the R package Matrix [41].
An alternative approach for transforming indefinite correlation matrices into positive defi-

nite ones was described by Bentler and Yuan [42]. Given a symmetric indefinite matrix R, [42]
proved that a positive definite matrix R� can be obtained by

R� ¼ DR0Dþ DR ð1Þ

In formula (1), R0 results from R by setting its diagonal entries to 0, DR is the diagonal
matrix containing the diagonal elements of R. Furthermore, Δ is a positive definite matrix
which meets the condition that DR − Δ2(R−D) is positive definite, where D is a diagonal matrix
with nonzero elements such that (R−D) is positive semidefinite. Bentler and Yuan [42] further
demonstrate a variation of their approach which is based on minimum trace factor analysis
[43]. This approach can be applied using functions implemented in the R packages psych [44]
and Rcsdp [45], see [26].

Knol and Berger [31] described another smoothing algorithm, which was later also sug-
gested by [15] and applied in the simulation studies [16] and [26]. This smoothing algorithm is
based on the idea to set eigenvalues which are smaller than a predefined threshold δ and to cor-
rect the associated eigenvectors accordingly to obtain a correlation matrix whose eigenvalues
are thus greater than or equal to δ. Let R = KDKt be the eigendecomposition of the symmetric
matrix R, with D being a diagonal matrix of its eigenvalues λi, K the matrix of the correspond-
ing normalized eigenvectors, and D+ a diagonal matrix in which all eigenvalues lower than δ
have been replaced with δ, see [31]. Then, if Diag(X) denotes the matrix containing the entries
of the main diagonal of X, a correlation matrix with eigenvalues greater than δ can be obtained
by calculating. R(δ) = [Diag(KD+Kt)]−1/2KD+Kt[Diag(KD+Kt)]−1/2. Debelak and Tran [26]
reported that this smoothing algorithm leads to results similar to those obtained with the algo-
rithm of Higham [40] when used in PCA of binary items.

Another approach for smoothing indefinite correlation matrices has been proposed by Knol
and ten Berge [23]. In contrast to the smoothing algorithms by Bentler and Yuan [42], Higham
[40], and Knol and Berger [31], this smoothing algorithm allows defining rows and columns of
the original correlation matrix which should not be altered by the smoothing algorithm. For
the remaining parts of the correlation matrix R, an approximation matrix R� is determined
which is positive definite, symmetrical with Diag(R�) = I and additionally meets the criterion
that the trace of (R − R�)2 is minimized. For finding this minimum, an iterative algorithm
based on [43] is proposed. Although the Knol and ten Berge algorithm [23] is interesting for
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many practical applications, it is, to our knowledge, currently not implemented in any widely
available software program.

Additional smoothing algorithms have been made available in specific software programs and
packages. For the users of the R programing language, appropriate functions are contained in
several software packages, like sfsmisc [46] and psych [44]. However, these algorithms are based
on similar ideas as the ones described above, and are therefore not described in further detail.

It should be noted that the approaches described by Bentler and Yuan [42] and Knol and
Berger [31] generally alter only few cells in an indefinite correlation matrix to obtain a positive
definite correlation matrix, which constitutes an important difference to the algorithm of
Higham [40] that makes small modifications to the complete correlation matrix. In contrast to
this algorithm, the method of Bentler and Yuan [42] is based on the idea of rescaling variables
of the indefinite correlation matrix which correspond to Heywood cases. In their simulation
study on binary variables, Debelak and Tran [26] found that the algorithm of Bentler and Yuan
[42] led to more accurate results than the algorithm of Higham [40] under most examined
conditions.

Goals of the current study
A number of studies compared the accuracy of PA in assessing the dimensionality of an item
set in the context of PCA and EFA when applied to polychoric correlation matrices with its
accuracy when applied to Pearson correlation matrices [2,15,16,26]. These studies generally
found that PA based on polychoric matrices led to an accurate assessment of the dimensional-
ity of an item set, but the problem of indefinite polychoric correlation matrices led to the rec-
ommendation to use smoothing algorithms [15], and to the evaluation of various smoothing
algorithms [2,16, 26]. Although the application of smoothing algorithms has been shown to
enhance the accuracy of PA of polychoric correlations, little is known on the effects of different
smoothing algorithms on the accuracy of PA. Although this issue has been examined in [26],
this study was constrained to the investigation of PCA applied to tetrachoric correlations, so
the generalization of these results to more general conditions (i.e., items with three or more
response categories) or to the application of EFA remains unclear. The main goal of the current
study was therefore to evaluate the application of three different widely available smoothing
algorithms, and their effect on the accuracy of Horn’s [8] and Glorfeld’s [7] variations of PA in
the context of PCA and principal axes factor analysis (PAFA) ([11,29]) as a method of EFA. It
should be noted that several recent simulation studies [2,16] included MRFA as a promising
method of EFA. This method was not included in this simulation study, since it is, to the best
of our knowledge, currently not available in published R packages.

In our study, we restricted the application of smoothing algorithms to the three algorithms
described by Bentler and Yuan [42], Higham [40] and Knol and Berger [31]. This choice was
motivated by a number of considerations: First, these smoothing algorithms are available in the
open source software R [47] and can therefore be easily applied in practical research. Second,
these smoothing algorithms are based on specific, but different criteria for the smoothing
method, and lead to different positive definite matrices when applied to an indefinite matrix;
they can therefore not be regarded as interchangeable. Third, these smoothing algorithms tend
to be computationally fast, which makes them attractive in practical application. The algorithm
of Knol and ten Berge [23] was not included in our study, since it is, to our best of knowledge,
currently not implemented in any available software package and seems to be hardly used in
practical research. Since it is also possible to apply PCA and PAFA to indefinite correlation
matrices, we further evaluated the accuracy of PA if no smoothing algorithms are used in the
application of PA on polychoric correlation matrices.
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Methods
We carried out a simulation study to compare the accuracy of PA with PCA and PAFA based
on polychoric correlations, with and without applying a smoothing algorithm, with the results
obtained from a PCA and PAFA based on Pearson correlations. In our study, responses from a
person sample to an item set were simulated based on several specific factor models.

The simulated datasets varied in the following aspects: (a) the size of the respondent sample,
(b) the size of the item set, (c) the number of response categories, (d) the skewness of the
response distribution, (e) the underlying factor model, and (f) the applied correlation method
and smoothing algorithm. The design of our simulation study resembles those of previous
studies on the accuracy of PA reported in the literature, e.g., [2,15,26,33]. Under each condi-
tion, the critical eigenvalue for determining the dimensionality of the item set was obtained as
the mean (Horn [8]) or the 95th percentile (Glorfeld [7]) of the random eigenvalue distribu-
tions, respectively. When parallel analysis was applied, the random eigenvalue distribution was
obtained by drawing 100 random samples from a simulated response matrix under each condi-
tion. Under each condition, the random samples were generated through a permutation of the
original response matrix.

In the context of PAFA, the approach of [11], in which the correlation matrix is modified to
contain communality estimates in its diagonal, was further used to apply PA. In the cases
where this approach was combined with a smoothing procedure, the smoothing procedure was
first applied to obtain a positive definite correlation matrix. In a second step, the Humphreys
and Ilgen approach [11] was then used to determine the dimensionality of the variable set.

Size of the respondent sample
Three different sizes of samples were used, which consisted of 200, 500 and 1000 respondents.
This choice aimed to reflect the sample sizes found in practical applications of PCA and EFA.
Numerous studies have already demonstrated that the size of the respondent sample has a sig-
nificant impact on the accuracy of PA [2,16,26,33]. We therefore expected to obtain more accu-
rate results in datasets with a greater respondent sample.

Underlying factor model
The response matrices analyzed in our study were based on a factor model which contained
major, minor, and unique factors. Following earlier studies [2,48], the inclusion of many minor
factors in our simulations aimed at simulating the effect of random factors on the observed var-
iables which go beyond the effects of unique factors. These minor factors can be thought of as
representing random influences on the observed variables and noise which cannot be con-
trolled in applied research. Similar to the simulation study of Timmerman and Lorenzo-Seva
[2], the population correlation matrix ∑pop of the latent variables underlying the discrete
responses to the items was given as

Spop ¼ wmaLmaL
t
ma þ wmiLmiL

t
mi þ wunIJ ð2Þ

In this formula, Λma and Λmi stand for the factor loading matrices of the major and minor
factors, respectively, with Lt

ma and L
t
mi being the transposed loading matrices. In our simula-

tions, each major factor loaded on a constant number of variables, which was 5 or 15, depend-
ing on the simulated condition. Since we simulated conditions with one or three major factors,
cases with 5, 15 or 45 variables were simulated. If a major factor loaded on a specific variable,
the specific loading Λma was set to 1, otherwise it was set to 0. The simulated factor models can
be thus interpreted as having a simple structure with uncorrelated factors.Λmi contained the
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loadings of minor factors, which were included in some of our simulations. If minor factors
were present, their number was set to be 40. The loadings of the minor factors on the variables
were drawn from an uniform distribution in the interval [-1;1]. IJ is an identity matrix of size J,
with J being the number of the variables. wma, wmi and wun are weights which determined the
loadings of major and minor factors in the simulated dataset. The analyzed datasets differed
with regard to the size of the loadings of the underlying factors on the observed variables. In
conditions with high and medium factor loadings, wma was set to be 0.5 and 0.3 respectively.

wmi was set to 0 in simulated datasets where minor factors were absent, and to 0:2wma
Eð^mi^t

miÞ
where

minor factors were present in the data. wun was set to (1 − wmi − wma). It follows thus that in
datasets without minor factors about 50% and 30% of the variance of the observed variables
could be explained by the major factors in conditions with high and medium factor loadings,
respectively. The resulting relationship between all major factors and the observed variables
allowed us to use the number of major factors as criterion for the dimensionality of each data-
set. Based on the population correlation matrix ∑pop a set of 5, 15 or 45 continuous variables
was defined which followed a multivariate standard normal distribution. This set was further
transformed into a set of discrete ordinal variables by applying thresholds, which further
defined the number of the response categories and the skewness of the response distribution.

Number of categories
In our simulation study, items with two, three or four response categories were simulated.
While we expected the differences between methods based on Pearson and polychoric correla-
tions to be most pronounced in conditions with two response categories, items with three or
more response categories are regularly used in psychological and clinical assessments.

Skewness of the response distribution
For each number of response categories, a symmetrical and a skewed distribution of the
observed variables were simulated. In case of a symmetrical distribution, the expected frequen-
cies of observations were set to be equal for all response categories. In the skewed response dis-
tributions, the thresholds for defining the ordinal variables were set so that the response
categories were observed with expected relative frequencies of [0.2; 0.8], [0.1; 0.2; 0.7], and [0.1;
0.1; 0.1; 0.7] under the conditions of simulated variables with two, three or four response cate-
gories, respectively. This led to response distributions with an estimated skewness of about 1.4,
which may be interpreted as a meaningful departure from normality, see [16]. We expected the
difference between methods based on Pearson and polychoric correlation matrices to be more
pronounced under skewed response distributions.

In summary, 2 (number of major factors) x 2 (number of variables per major factor) x 3
(number of simulated respondents) x 3 (number of the response categories) x 2 (skewness of
the response distribution) x 2 (presence of minor factors) x 2 (factor loadings) = 288 different
conditions were simulated. Under each condition, the datasets were analyzed using four differ-
ent variations of PA, which were based on PCA or EFA and used the criterion of Horn [8] or
Glorfeld [7], respectively. 100 response matrices were simulated under each condition. In each
simulated dataset, it was assessed how many factors or components were retained, and whether
this number was identical to the number of major factors. The code used in this simulation
study can be provided by the first author.

Calculation of the polychoric correlation matrices was based on algorithms implemented in
the R package psych [44]. In all cases we used a two-step procedure which is based on the algo-
rithm of Olsson [30], using item pair-specific estimators of the threshold coefficients for esti-
mating the polychoric correlation matrix. Based on the results of a preliminary study, this
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approach appeared to be numerically more stable than an alternative procedure which esti-
mated the threshold coefficients simultaneously for the whole matrix. For implementing the
smoothing algorithms of Higham [40] and Bentler and Yuan [42], methods from the R pack-
ages Matrix [41], psych [44] and Rcsdp [45] were used. In order to apply the smoothing algo-
rithm of Knol and Berger [31], code was written in R, which can be obtained from the authors.
In our simulations, the constant δ was set to 0.1. We further investigated the accuracy of each
parallel analysis method if no smoothing algorithm was applied.

Results

Overall results
We first present some tables which summarize the accuracy of the dimensionality assessment
of each method under each condition. Each dimensionality assessment was considered as accu-
rate if the number of major factors was correctly measured. In general, all smoothing algo-
rithms led to comparable results across all simulated conditions. Therefore, only the results
obtained with the algorithms of Bentler and Yuan [42] and Knol and Berger [31] will be pre-
sented in detail. Overall, these two algorithms led to the most accurate assessments of
dimensionality, with the algorithm of Bentler and Yuan [42] correctly identifying the number
of greater factors in about 91.5% of the simulated datasets and the algorithm of Knol and Ber-
ger [31] in about 90.7% of the simulated datasets. The algorithm of Higham [40] (90.3% correct
assessments) and the analysis of the indefinite correlation matrices (89.14% correct assess-
ments) led to only slightly less accurate results. The methods based on the analysis of Pearson
correlation matrices led to a correct assessment of dimensionality in 91.3% of the simulated
datasets. We now present several tables which present the percentage of simulated datasets in
which the number of major factors was reported correctly by the application of parallel analy-
sis. The entries in the individual cells of these tables are based on 3600 datasets (in columns
which present results for different numbers of major factors or different numbers of variables
per factor) or 2400 datasets (in columns which present results for different numbers of respon-
dents or different response categories). The confidence intervals for the individual entries in
these tables are smaller than ± 1.6 for entries based on 3600 datasets and smaller than ± 2 for
entries based on 2400 datasets, based on a significance level of 0.05. However, it should be
noted that the size of the confidence interval is smaller for entries closer to 0 and 100. For
entries above 90, the respective confidence intervals are smaller than ± 1.0 for entries based on
3600 datasets and smaller than ± 1.2 for entries based on 2400 datasets, again based on a signif-
icance level of 0.05. Additional detailed results for the accuracy of parallel analysis in datasets
with high and medium factor loadings are provided in S1 Appendix.

Table 1 summarizes the results of the simulations where the response distribution was sym-
metrical, with no minor factors present.

Table 2 presents the analogous results of the simulations with symmetrical response distri-
bution, with minor factors present.

The Tables 3 and 4 present the results with skewed response distribution without (Table 3)
and with minor factors (Table 4).

Indefinite correlation matrices
Overall, indefinite correlation matrices were observed in 8.1% of all simulated datasets. As can
be seen in Tables 1 to 4, indefinite polychoric correlation matrices were generally observed
more often in datasets with a large number of variables, a large number of factors and a low
number of respondents. Polychoric correlation matrices also tended to be indefinite more
often when the response distribution was skewed, compared to conditions when the response
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Table 1. Rate (in percent) of correctly detected number of major factors under different variations of PAwhenminor factors were not present
under a symmetrical response distribution.

Method Major factors Var. per factor Number of respondents Number of categories

1 3 5 15 200 500 1000 2 3 4

PCA95KB 100 99.95 99.95 100 99.92 100 100 99.92 100 100

PCAmKB 99.89 99.92 99.86 99.95 99.71 100 100 99.71 100 100

PAFA95KB 97.33 99.86 97.61 99.59 98.25 98.71 98.84 98.3 98.21 99.29

PAFAmKB 81.17 98.81 83.92 96.06 88.88 90.63 90.46 86.46 90.59 92.92

PCA95BY 100 99.95 99.95 100 99.92 100 100 99.92 100 100

PCAmBY 99.89 99.92 99.86 99.95 99.71 100 100 99.71 100 100

PAFA95BY 97.33 99.86 97.61 99.59 98.25 98.71 98.84 98.3 98.21 99.29

PAFAmBY 81.17 98.84 83.92 96.09 88.92 90.63 90.46 86.5 90.59 92.92

PCA95Pear 100 99.97 99.97 100 99.96 100 100 99.96 100 100

PCAmPear 99.86 99.89 99.86 99.89 99.63 100 100 99.67 99.96 100

PAFA95Pear 88.73 99.81 89.17 99.36 86.5 98.21 98.09 93.04 94.46 95.3

PAFAmPear 74.45 98.53 79.31 93.67 85.13 86.92 87.42 80.09 88.13 91.25

% Ind. Matrices 0 8.12 0 8.12 11.33 0.84 0 9.17 3 0

Note. PCA = Principal Component Analysis, PAFA = Principal Axes Factor Analysis; 95 = 95% eigenvalue, m = mean eigenvalue; KB = polychoric

correlation with Knol-Berger smoothing algorithm, BY = polychoric correlation Bentler-Yuan smoothing algorithm, Pear = Pearson; Var. per

factor = Variables per major factor; % Ind. Matrices = Percentage of indefinite correlation matrices

doi:10.1371/journal.pone.0148143.t001

Table 2. Rate (in percent) of correctly detected number of major factors under different variations of PAwhenmajor andminor factors were pres-
ent under a symmetrical response distribution.

Method Major factors Var. per factor Number of respondents Number of categories

1 3 5 15 200 500 1000 2 3 4

PCA95KB 99.97 99.97 99.95 100 99.92 100 100 99.96 100 99.96

PCAmKB 99.95 99.89 99.84 100 99.75 100 100 99.79 100 99.96

PAFA95KB 96.67 99.86 97.2 99.33 97.63 99.08 98.09 97.67 98.55 98.58

PAFAmKB 74.45 98.89 78.75 94.59 85.92 88.5 85.59 85.09 86.75 88.17

PCA95BY 99.97 99.97 99.95 100 99.92 100 100 99.96 100 99.96

PCAmBY 99.95 99.89 99.84 100 99.75 100 100 99.79 100 99.96

PAFA95BY 96.67 99.86 97.2 99.33 97.63 99.08 98.09 97.67 98.55 98.58

PAFAmBY 74.45 98.89 78.75 94.59 85.92 88.5 85.59 85.09 86.75 88.17

PCA95Pear 99.97 100 99.97 100 99.96 100 100 100 100 99.96

PCAmPear 99.95 99.89 99.84 100 99.75 100 100 99.79 100 99.96

PAFA95Pear 88.31 99.86 89.39 98.78 88.55 97.63 96.08 91.09 95.25 95.92

PAFAmPear 66.5 98.47 74.81 90.17 82.71 85.13 79.63 77.96 84.17 85.33

% Ind. Matrices 0 8.84 0.06 8.78 11.58 1.67 0 10.08 3.17 0

Note. PCA = Principal Component Analysis, PAFA = Principal Axes Factor Analysis; 95 = 95% eigenvalue, m = mean eigenvalue; KB = polychoric

correlation with Knol-Berger smoothing algorithm, BY = polychoric correlation Bentler-Yuan smoothing algorithm, Pear = Pearson; Var. per

factor = Variables per major factor; % Ind. Matrices = Percentage of indefinite correlation matrices

doi:10.1371/journal.pone.0148143.t002
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Table 3. Rate (in percent) of correctly detected number of major factors under different variations of PAwhen only major factors were present
under a skewed response distribution.

Method Major factors Var. per factor Number of respondents Number of categories

1 3 5 15 200 500 1000 2 3 4

PCA95KB 99.72 96.45 98.56 97.61 95.04 99.21 100 95.21 99.04 100

PCAmKB 99.03 93 96.78 95.25 90.38 97.79 99.88 91.29 96.75 100

PAFA95KB 85.11 91 88.67 87.45 84 88.25 91.92 77.8 89.34 97.04

PAFAmKB 54.75 83.42 65.97 72.2 62.67 69.46 75.13 53.83 68.67 84.75

PCA95BY 99.72 98.14 98.58 99.28 97.25 99.54 100 97.34 99.46 100

PCAmBY 99.03 95.72 96.86 97.89 93.88 98.38 99.88 94.5 97.63 100

PAFA95BY 85.11 93.7 88.7 90.11 87.13 89.17 91.92 81.13 90.04 97.04

PAFAmBY 54.81 86.78 66.03 75.56 67.08 70.17 75.13 57.88 69.67 84.84

PCA95Pear 99.92 99.25 99.53 99.64 98.84 99.92 100 98.75 100 100

PCAmPear 99.28 97.92 98.47 98.72 96.09 99.71 100 96.46 99.38 99.96

PAFA95Pear 76.5 98.19 81 93.7 74.71 92.46 94.88 81.29 87.83 92.92

PAFAmPear 51.39 93.2 68.31 76.28 67.09 73.92 75.88 60.09 73.17 83.63

% Ind. Matrices 1.11 23.14 3.06 21.2 27.04 8.58 0.75 23.67 8.42 4.29

Note. PCA = Principal Component Analysis, PAFA = Principal Axes Factor Analysis; 95 = 95% eigenvalue, m = mean eigenvalue; KB = polychoric

correlation with Knol-Berger smoothing algorithm, BY = polychoric correlation Bentler-Yuan smoothing algorithm, Pear = Pearson; Var. per

factor = Variables per major factor; % Ind. Matrices = Percentage of indefinite correlation matrices

doi:10.1371/journal.pone.0148143.t003

Table 4. Rate (in percent) of correctly detected number of major factors under different variations of PAwhenmajor andminor factors were pres-
ent under a skewed response distribution.

Method Major factors Var. per factor Number of respondents Number of categories

1 3 5 15 200 500 1000 2 3 4

PCA95KB 99.64 95.06 98.22 96.48 93.25 98.79 100 95.67 98.71 97.67

PCAmKB 98.75 89.34 95.78 92.31 85.46 96.71 99.96 90.46 96.75 94.92

PAFA95KB 76.89 85.19 83.95 78.14 75.42 81.63 86.08 78.59 85.54 79

PAFAmKB 37.86 72.56 56.95 53.47 48.3 56.75 60.59 50.29 61.92 53.42

PCA95BY 99.67 97.36 98.28 98.75 96.25 99.29 100 97.67 99.38 98.5

PCAmBY 98.75 93.14 95.78 96.11 90.13 97.75 99.96 94 97.79 96.04

PAFA95BY 76.98 88.95 84 81.92 80.13 82.67 86.08 81.92 86.71 80.25

PAFAmBY 37.95 76.09 57 57.03 53.17 57.29 60.59 54 62.92 54.13

PCA95Pear 99.86 99.14 99.5 99.5 98.54 99.96 100 98.88 99.88 99.75

PCAmPear 99.14 97.42 98.28 98.28 95 99.84 100 96.5 99.42 98.92

PAFA95Pear 72.03 97.5 81.14 88.39 76.79 89.5 88 80.09 86.84 87.38

PAFAmPear 37.14 91.28 63.5 64.92 60.54 67 65.09 58.54 67.04 67.04

% Ind. Matrices 0.92 26.06 2.39 24.58 29.96 8.92 1.59 23.21 8.75 8.5

Note. PCA = Principal Component Analysis, PAFA = Principal Axes Factor Analysis; 95 = 95% eigenvalue, m = mean eigenvalue; KB = polychoric

correlation with Knol-Berger smoothing algorithm, BY = polychoric correlation Bentler-Yuan smoothing algorithm, Pear = Pearson; Var. per

factor = Variables per major factor; % Ind. Matrices = Percentage of indefinite correlation matrices

doi:10.1371/journal.pone.0148143.t004
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distribution was symmetrical, and when the number of response categories was low, compared
with conditions with a higher number of response categories. In general, fewer indefinite corre-
lation matrices were observed when factor loadings were lower.

Overall effects of study characteristics on the accuracy of dimensionality
assessment
Independent of the approach used in dimensionality assessment, some general statements can
be made with regard to which conditions allowed a higher accuracy in the detection of the
major factors in a dataset. In general, the number of major factors could be detected more accu-
rately when the number of respondents was large, the response distribution was symmetrical,
the number of response categories was large, when the factor loadings were high, and when no
minor factors were present in the dataset.

Accuracy of approaches based on polychoric correlation matrices and of
approaches based on Pearson correlations
In datasets where indefinite polychoric correlation matrices were observed, the accuracy of meth-
ods based on Pearson correlations could be compared against methods based on the three
smoothing algorithms. Compared to methods based on polychoric correlation matrices which
applied the smoothing algorithm of Bentler and Yuan [42], which led to the most accurate
dimensionality assessments in our simulation study, methods based on Pearson correlations
were slightly less accurate. For both methods, 1152 dimensionality assessments were obtained,
resulting from the four used variations of PA which were applied under 288 simulated conditions
described in the method section. In these dimensionality assessments, the approach based on
polychoric correlation matrices led to more accurate results in 213 cases, to less accurate results
in 190 cases, and to equally accurate results in 749 cases. In general, methods based on Pearson
correlations led to more accurate results only in datasets with medium factor loadings, no minor
factors and a skewed response distribution, when the number of respondents was small.

Of all methods investigated in this study, the application of the modified PA of Glorfeld to a
PCA of Pearson correlation and to a PCA of polychoric correlation matrices which were
smoothed used the smoothing algorithm of Bentler and Yuan were the most accurate over all
conditions simulated in this study. While the application of parallel analysis to a PCA of Pear-
son correlations led to an accurate assessment in 99.76% of all datasets, the application of PCA
to polychoric correlations which were smoothed using the algorithm of Bentler and Yuan led
to an accurate assessment in 99.34% of all datasets.

Comparison of the accuracy of parallel analysis based on PCA and
parallel analysis based on PAFA
Over all conditions, the combination of parallel analysis and PCA was more accurate in the
determination of the number of major factors than the modified parallel analysis which was
used with PAFA. The specific results depended on the type of correlation matrix and, in the
case of polychoric correlation matrices, the smoothing algorithm used in the analysis. For PCA
of polychoric correlation matrices with smoothing algorithms of Knol and Berger [31] or Ben-
tler and Yuan [42], the accuracy of the dimensionality assessment tended to be near 100%
under all conditions. The parallel analysis with PAFA, when applied to polychoric correlation
matrices with or without smoothing algorithms, was less accurate. Under almost all conditions,
variations of parallel analysis which used the criterion of Glorfeld [7] were more accurate then
approaches which used the original criterion of Horn [8]. Parallel analysis with PCA of Pearson
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correlation matrices led in general to an accurate assessment of the dimensionality of a dataset,
while parallel analysis with PAFA of Pearson correlation matrices was less accurate than when
applied to polychoric correlation matrices when the response distribution was symmetrical, or
skewed with high factor loadings, but more accurate when the response distribution was
skewed with medium factor loadings.

Discussion
The use of polychoric and tetrachoric correlation coefficients in the application of PA and PCA
has long been considered as an important alternative to approaches based on Pearson correla-
tion coefficients. Timmerman and Lorenzo-Seva [2] compared both approaches, but found
that the calculation of the polychoric correlation matrix often was not possible due to the non-
convergence of the estimation procedure of Olsson [30] or led to non-positive definite correla-
tion matrices. In this paper, we investigated the application of the smoothing algorithms
described by Knol and Berger [31], Higham [40] and Bentler and Yuan [42], which are avail-
able via R software packages, to circumvent the problem of indefinite correlation matrices. In
line with previous studies, we observed indefinite correlation matrices more often when the
number of simulated respondents was small [16, 26], when the number of simulated variables
was large [26], when the factor loadings were high [15,26], and when the distribution of the
responses was skewed over the response categories.

Like Timmerman and Lorenzo-Seva [2], we observed in a preliminary study that the two-
step estimation procedure by Olsson [30] did not always converge. For this reason, we applied
a variation of the two-step estimation procedure of Olsson [30] in our simulation study, which
used an item-pair specific estimation of the threshold parameters for the estimation of the
polychoric correlation coefficient. It should be noted that this approach deviates from the com-
monly utilized model underlying the calculation of the polychoric correlation coefficient,
which assumes that the item specific threshold are invariant over all item pairs. Therefore, we
do not recommend the application of this algorithm especially in large datasets; in small data-
sets, which were also simulated as part of our simulation study, the application of this proce-
dure seems to be necessary to avoid convergence problems which occur if threshold
parameters which are invariant over the item pairs are calculated as part of the estimation of
the polychoric correlation coefficient. In our study, the application of this adapted estimation
procedure and the smoothing algorithms of Knol and Berger [31], Higham [40] or Bentler and
Yuan [42] allowed the application of PCA and PAFA under all simulated conditions. Although
we are not aware of any studies which compared the variation of the two-step estimation pro-
cedure of Olsson [30], which was used in our study, with an approach that estimates threshold
parameters which are invariant for each item over all item pairs, both approaches are expected
to lead to similar results if the model underlying the calculation of the polychoric correlation
coefficient fits the data well. It can therefore be assumed that the results of our simulation
study only depend to a small degree on the choice of the estimation method for the polychoric
correlations. Based on the results of our study, the variation of the two-step procedure for cal-
culating the polychoric correlation coefficient which was used in our study can be recom-
mended if convergence problems with either the two-step procedure or the maximum
likelihood approach occur. If no convergence problems occur, approaches which use invariant
threshold parameters for all item pairs may be preferable from a theoretical perspective. The
maximum likelihood approach and the two-step procedure for calculating the polychoric cor-
relation coefficient were discussed by Olsson [30], who argued that both approaches should be
comparable from a practical perspective. A major result from our simulation study seems to be
that PA variations based on PAFA and PCA seem to differ with regard to their accuracy as
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measures of the number of major factors present in a dataset, which we used as a measure of
dimensionality. A similar result was reported by Timmerman and Lorenzo-Seva [2]. Garrido
et al. [16] also stated that the application of PA is not suited for EFA on theoretical reasons.
This result is in our view of major practical importance, since PCA is mainly used as a data
reduction technique, while EFA is based on the common factor model (for a more detailed dis-
cussion of both approaches, see [1], pp. 274–276). Although PA combined with PCA seems to
lead to more accurate dimensionality assessment, it should be pointed out that PCA is not
based on a common factor model, and therefore an additional application of exploratory factor
analysis could be considered, if this model is found to be appropriate.

Recent simulation studies [2,16] have recommended the use of PA and MRFA as a method
of EFA to determine the dimensionality of an item set. To the best of our knowledge, this
method is currently implemented in the Factor software [48], but not available in any pub-
lished R package. Since it is not clear if an implementation of this method in R would lead to
comparable results as the Factor software, we did not investigate this method in our simulation
study. However, the simulation study of Garrido et al. [16] investigated the accuracy of PA and
MRFA in categorical data while using the smoothing algorithm of Knol and Berger [31] if
indefinite polychoric correlation matrices were observed. Based on these results, it can be con-
cluded that PA based on MRFA leads to accurate results when applied to smoothed polychoric
or tetrachoric correlation matrices if the smoothing algorithm of Knol and Berger [31] is used.
Therefore, the use of PA and MRFA can be recommended for practical application based on
the results reported so far in the literature, especially if the latent factors underlying a dataset
can be expected to be uncorrelated and if the number of variables per factor is large. However,
future studies should investigate which effect the choice of smoothing algorithm has on the
accuracy of the analysis when PA is applied to MRFA.

We observed that all methods tended to estimate the number of underlying dimensions to
be higher than the number of major factors contained in the data when minor factors were
present in the data and when the number of respondents increased. This result was to be
expected, since the presence of minor factors influences the dimensionality of an item set.
However, this result is relevant for the practical application of PA and PCA of smoothed poly-
choric and Pearson correlation matrices as a measure of dimensionality, since minor factors
may be present in realistic datasets [49]. Under these conditions, the use of additional measures
of dimensionality may be advisable to assess the practical influence of each obtained dimension
for modeling the observed data. A recent paper [50] described an approach based on a numeri-
cal convex hull-based heuristic, which may be appropriate for this problem.

It has already been noted that over all conditions and methods simulated in our study,
choosing the 95th percentile of the random eigenvalue distribution seems to lead to a more
accurate assessment of the number of major factors, especially when larger item sets were
examined. This observation has already been reported in a similar simulation study [2], but
seems to contradict the recommendations of Garrido et al. [16], who found that using the
mean of the random eigenvalue distribution in a PCA of polychoric correlations led to superior
results. As Garrido et al. [16] noted, the use of the mean as a summary statistic for parallel anal-
ysis led to superior results in conditions with correlated factors, few variables per factor, and
small sample sizes of 100 respondents. Since these conditions were only partly met in our simu-
lations, our results thus do not contradict the results reported by Garrido et al. [16]. Results of
Garrido et al. [16] and our own results concurrently indicate that the effect of the number of
variables per factor on the accuracy of PA may interact with other effects, such as the effect of
correlations between factors.

A main conclusion of our simulation study pertains to the practical differences between the
smoothing algorithms of Bentler and Yuan [42], Higham [40] and Knol and Berger [31]. While
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the algorithm of Higham [40] is based on the idea of minimizing the distance, defined by the
Frobenius norm, between the observed correlation matrix and the smoothed correlation
matrix, the algorithm of Bentler and Yuan [42] is based on the idea of rescaling specific rows
and columns of the correlation matrix. The algorithm of Knol and Berger [31] is based on the
idea of retaining the original eigenvalues while replacing eigenvalues below a predefined con-
stant with this constant. Of all algorithms, the approach of Bentler and Yuan [42] is associated
with the fewest changes to the correlation matrix and may thus be considered to be preferable
from a theoretical point of view. In our simulation study, methods based on the algorithms of
Knol and Berger [31], Higham [40], and Bentler and Yuan [42] showed a comparable perfor-
mance with regard to the accuracy to detect the number of underlying major factors, with a
slightly better performance of methods based on the Bentler andYuan [42] algorithm. We
therefore recommend the application of the algorithm of Bentler and Yuan [42] for the assess-
ment of dimensionality.

When compared with methods based on Pearson correlations, we found methods based on
smoothed polychoric correlation matrices to be of comparable accuracy for dimensionality
assessment, especially if the smoothing algorithm of Bentler and Yuan [42] was applied. More-
over, it should be noted that the application of the modified parallel analysis of Glorfeld to a
PCA of Pearson correlation was among the most accurate methods in this study. Similar find-
ings have been reported by Cho et al. [33] and Timmerman and Lorenzo-Seva [2].

However, we observed that the differences in the accuracy of the various methods based on
Pearson correlations and on polychoric correlations depended on the characteristics of the ana-
lyzed datasets. In datasets with skewed response distributions, high factor loadings and a suffi-
ciently large sample of respondents, the differences between methods based on Pearson
correlations and methods based on polychoric correlations were especially pronounced. These
findings are in line with recommendations by Garrido et al. [16]. Furthermore, it should be
noted that methods based on smoothed polychoric correlation matrices seem to be more accu-
rate than methods based on the analysis of indefinite polychoric correlation matrices. Timmer-
man and Lorenzo-Seva [2] noted that they experienced convergence problems with their
smoothing algorithm. In their study, a smoothing algorithm described by [50] was used
(Lorenzo-Seva, personal communication). We did not experience similar problems in any of our
simulated datasets, although these problems could occur in applied research. Based on the results
found in our study, convergence problems could be avoided if polychoric correlations are esti-
mated using the variation of the two-step procedure of Olsson [30], which was used in our study.

In datasets with medium factor loadings, a skewed response distribution and a small sample
of respondents, PA of Pearson correlations tended to be more accurate than PA based on poly-
choric correlations. This finding may be surprising given the results reported in a previous sim-
ulation study [16], which found that a PCA of polychoric correlations is more accurate than a
PCA of Pearson correlations in datasets with a skewed response distribution. A close examina-
tion of our results shows that under these conditions, the critical eigenvalues reported by paral-
lel analysis are very close to each other. On the other hand, the variance of the expected
eigenvalues is larger for the polychoric correlation matrices in small samples than for the Pear-
son correlation matrices. It follows that the dimensionality assessment of PA with PCA or EFA
of polychoric correlations is thus more dependent on the characteristics of the analyzed sample
than with methods based on Pearson correlations under these conditions.

Overall, our study indicates that under the simulated conditions, PA and PCA of smoothed
polychoric correlation matrices may serve as a good indicator of the dimensionality of an item
set. Also a PCA based on Pearson correlations which used the Glorfield criterion for determining
the critical values was found to lead to accurate results under the conditions simulated in our
study. PAFA and other methods based on the analysis of Pearson correlation matrices may be
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less accurate under specific conditions. However, in the presence of minor factors, this method
may over-estimate the dimensionality of an item set as measured by the number of present
major factors. Therefore, we advise against the use of PA with PAFA extraction as a measure of
dimensionality under conditions similar to those simulated in our study in practical research.

There are several limitations to the generalizability of our study. First, the data which were
analyzed in the simulation study were constructed according to a specific rationale which
resembles those used in previous simulation studies [2,16] and were aimed to resemble datasets
used in practical research. Empirical datasets may differ from the conditions simulated in our
study with regard to several characteristics which influence the accuracy of PA, like the under-
lying factor structure. Moreover, our data construction was based on a common factor model,
which may not be the appropriate model in practical measurements. Furthermore, the simu-
lated datasets were based on a simple structure model with uncorrelated factors, in which par-
allel analysis has been shown to perform better than in datasets with correlated factors [16]. In
real datasets, significant correlations between latent factors may be observed. It should be
noted that the presence of correlated factors might also affect the accuracy of methods based
on parallel analysis which are applied to smoothed polychoric correlation matrices, and that
their effect on accuracy may depend on the chosen smoothing algorithm. It follows that the
conditions simulated in our study should be considered as an idealized scenario, and do not
measure the robustness of PA under specific conditions which include non-linearity.

Second, the methods used for dimensionality assessment were restricted to PCA and PAFA,
two methods which were also investigated in several recent studies [2,32,34]. However, this is
to the best of our knowledge the first study which compared the effect of different smoothing
algorithms on the accuracy of these methods in the presence of minor factors. Several varia-
tions have been suggested to these methods, which may be less common, but may be more
accurate than those used in our study under specific conditions [2].

However, despite these limitations, our study allows some recommendations for the applied
researcher who wishes to use PA to determine the dimensionality of a set of ordinal variables:
First, the application of PCA of Pearson correlations or smoothed polychoric correlations
seems to be more accurate to determine the number of major factors underlying a set of ordinal
variables than PAFA. This difference seems to be more pronounced in the presence of minor
factors, which may be the case in many real datasets, and if the response distribution is skewed.
Second, under the conditions simulated in our study, the modified PA of Glorfeld [7] seems to
lead to a more accurate assessment of dimensionality than the original approach of Horn [8].
This effect is more pronounced when PA is used in the context of EFA. Third, under certain
conditions the choice of an appropriate smoothing algorithm can affect the accuracy of
dimensionality assessments based on PA. Of the smoothing algorithms used in our study, the
algorithm described by Bentler and Yuan [42] seems to lead to more accurate results when
used with PA based on PCA and can therefore be recommended.

Supporting Information
S1 Appendix. Detailed results for the accuracy of parallel analysis in datasets with high and
medium factor loadings.
(DOCX)
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