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Urinary tract infections (UTIs) are one of the most common infectious diseases. UTIs

are mainly caused by uropathogenic Escherichia coli (UPEC), and are either upper or

lower according to the infection site. Fimbriae are necessary for UPEC to adhere to

the host uroepithelium, and are abundant and diverse in UPEC strains. Although great

progress has been made in determining the roles of different types of fimbriae in UPEC

colonization, the contributions of multiple fimbriae to site-specific attachment also need

to be considered. Therefore, the distribution patterns of 22 fimbrial genes in 90 UPEC

strains from patients diagnosed with upper or lower UTIs were analyzed using PCR. The

distribution patterns correlated with the infection sites, an XGBoost model with a mean

accuracy of 83.33% and a mean area under the curve (AUC) of the receiver operating

characteristic (ROC) of 0.92 demonstrated that fimbrial gene distribution patterns could

predict the localization of upper and lower UTIs.

Keywords: upper urinary tract infections, lower urinary tract infections, UPEC, fimbriae, machine learning,

XGBoost

INTRODUCTION

Urinary tract infections (UTIs) are one of the most common infectious diseases (1), and are
predominantly caused by uropathogenic Escherichia coli (UPEC) (2). UTIs are classified as either
upper (pyelonephritis and ureteritis) or lower (cystitis and urethritis) according to the infection
site (3–5). Lower UTIs usually induce cystitis and can progress into upper UTIs, resulting in
pyelonephritis and ultimately renal failure. A urinalysis positive for elevated leukocytes and a
urinary culture positive for bacteria reinforce the clinical diagnosis of a UTI (6). The clinical
symptoms are commonly regarded as the standard to differentiate the site of infections (7). UTIs
are usually treated with antibiotics (8). Because of many factors such as underlying diseases, status
of patient, antibiotic susceptibility, medication history, and infection sites (9), the therapies and
medications used for upper and lower UTIs are different, so reasonable and accurate antibiotic use
seems particularly important in the clinical treatment.
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Machine learning is the core of artificial intelligence (AI) and
the fundamental way to make computers intelligent. Artificial
intelligence algorithms can go beyond human reasoning and
build diagnostic models from a series of complex combinations
to provide a more sensitive tool to discriminate among different
conditions. In addition to successful application in anatomical
(10) and functional imaging (11), machine learning techniques
have also been successfully applied to identify bacterial species to
differentiate the microbiomes of elders with Alzheimer’s disease
from those without dementia (12) and to predict personalized
glycemic response to exercise by integrating baseline microbial
signatures (13). When deep learning approaches were applied
to bacterial Raman spectra, 30 common clinically relevant
bacterial pathogens and their empiric treatments were accurately
identified (14). The combination of LC-MS/MS and machine
learning allows rapid and specific identification of 15 bacterial
species representing 84% of all urinary tract infections (15).
Furthermore, machine learning algorithms combined with
a large dataset accurately diagnosed positive urine culture
results (16).

UPEC express a variety of virulence factors, including
fimbriae, toxins, iron-acquisition systems, metabolic enzymes,
flagella, and surface polysaccharide structures (17, 18). Fimbriae
are expressed on the bacterial surface and mediate several
biological functions, including adhesion, invasion, and biofilm
formation. Several types of fimbriae have been described in
gram-positive and gram-negative bacteria (19). In gram-negative
bacteria, the chaperone-usher (CU) fimbriae are most abundant.
Thirty-eight distinct CU fimbrial operons have been identified
in E. coli genomes, and 22 fimbrial gene clusters are distributed
among the analyzed UPEC strains, with eight to 13 different gene
clusters in a single UPEC strain (20). UPEC use a variety of
fimbriae to adhere to the urethral epithelium, thereby promoting
colonization and exerting its virulence in site-specific UTIs.
For example, type 1 fimbriae, encoded by the fim operon,
mediate UPEC colonization and invasion of bladder epithelial
cells (21, 22), targeted therapeutic small inhibitor molecules and
vaccines have fast-acting efficacy in treating UTIs in preclinical
murine models (23–25). F9 fimbriae recognize uromodulin on
the surface of the bladder epithelium through adhesin FmlH
and participated in the occurrence of chronic cystitis (26). Yad
fimbrial adhesin YadC promotes acute cystitis by interacting with
the receptor ANXA2 on the bladder epithelium (27). In addition,
P fimbriae are associated with acute pyelonephritis (28). Ygi
fimbriae are necessary for adhesion to kidney epithelium, biofilm
formation and in vivo fitness in kidneys (29). In most previous
studies, the importance of a single type of fimbriae in lower and
upper UTI pathogenesis is demonstrated. However, few studies
have examined the combined effect of multiple fimbriae. Notably,
deletion of both type 1 and F17-like fimbriae in a single strain
produced lower intestinal fitness than either individual deletion
(24), suggesting that each type of fimbriae has a different function
in adherence or binding to a different site. Due to findings that
different fimbriae can be used to type UPEC strains (30–32), this
work sought to determine whether combined multiple fimbrial
genes of UPEC could be used as targets to identify the localization
of upper and lower UTIs.

Most predictive models for UTIs use a few variables such as
urine dipstick or urinalysis results (33, 34), however, fimbriae
have not been used in the diagnosis of UTI localization.
Therefore, in this study, to explore the value of UPEC fimbriae
in the diagnosis of infection sites, the distribution patterns of
22 fimbriae genes in clinically isolated UPEC strains and their
relations to UTI localization were analyzed. The distribution
patterns of the 22 fimbrial genes were correlated with the
infection sites, demonstrating predictive value for the localization
of upper and lower UTIs. Thus, a new method to identify the
site of UTIs was created with innovative use of machine learning
regarding UPEC fimbriae.

MATERIALS AND METHODS

Bacterial Strains
A total of 144 UPEC strains were collected from patients
diagnosed with UTIs at the Clinical Microbiology Laboratory
of the Second Hospital of Tianjin Medical University (Tianjin,
China) from 2014 to 2019. The laboratory criteria for infection
were that the growth of a single E. coli strain in number
>105 CFU/mL or between 103 and 105 CFU/mL with >30
white blood cells/field in centrifuged urine. The strains were
isolated from adult patients who presented with clinical
syndromes, and the clinical information about the patients
was obtained by review of their medical records. The studies
involving human participants were reviewed and approved
by the Ethics Committee of Tianjin Medical University. The
patients provided their written informed consent to participate
in this study.

The lower UTI group included 85 patients with acute
uncomplicated cystitis. Diagnostic criteria included dysuria,
urgency, and frequency, with or without suprapubic pain and
hematuria; absence of flank pain; and fever <38◦C.The upper
UTI group included 59 patients with acute uncomplicated
pyelonephritis. Diagnostic criteria included fever >38◦C and
flank pain, usually accompanied by lower urinary symptoms and
sometimes by nausea, vomiting, and chills. The urine specimens
of patients were obtained by clean catch voided midstream urine.
Urine samples were cultured at 37◦C in 5% CO2 overnight on
blood agar plates (Hopebio, Qingdao, China), and then, a single
colony was picked and identified using a VITEK MS full-braking
microbial mass spectrometry detection system (bioMérieux, Inc.,
France). All UPEC strains used in this study are listed in
Supplementary Table 1. The UPEC strains were cultured at 37◦C
overnight in Luria-Bertani broth.

DNA Extraction
Two milliliters of the overnight bacterial cultures were
collected, and the bacterial genome was extracted using
a TIANamp Bacteria DNA kit (DP302, Tiangen, Beijing,
China). The extracted genome was dissolved in sterile water,
and DNA concentration was measured using a Nanodrop
spectrophotometer (Thermo Fisher, Waltham, MA, USA). The
DNA was frozen at−20◦C until use.
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TABLE 1 | Primers for PCR.

Primer* Direction Sequence (5′ to 3′) Tm (◦C) Amplicon size (bp)

CS1-like Forward GCTTGTACAACCGACAACA 51 755 a

Reverse CTCTGTTCATCCTGTTCAGA

Mat Forward ATGGACAGTTACGCATCC 50 745 a

Reverse TCCACATCGTAAATACCGTA

Type1 Forward ATGCCGCAGGTAATAGTG 50 680 a

Reverse GAATTGCTCATCGACATTAC

F1C/S Forward CGATTGTACCTGACCGTTCCT 59 654 This study

Reverse CAGATGCCCTTCACGTTGC

F9 Forward CGACACTTGCAGATGACAC 51 536 a

Reverse TGACATACTGTAACTGGCGT

Ycb Forward GTTGAGATAACGCCAGAGA 51 727 a

Reverse CACTCGACGACGTAGAGTAG

Auf Forward CTTTCGGTAACTACGGGTCT 54 838 This study

Reverse CTGGCTGTAGCACCGAAT

Sfm Forward ATTAGAGAATGGCACATCC 54 862 a

Reverse ATCGCCATTTGAAGATGT

LPF Forward AATAGTTACGCCACCTATTC 49 550 a

Reverse TGAAGAGTACGCGATAGC

ECSF-0165 Forward CTCCGTGAGTTCGGTCTT 52 813 a

Reverse AACAGGTGTCTCAGCATGAT

ECSF-4008 Forward CTGATGGTGATAATGCCA 53 1,008 a

Reverse ACTGAGGCTCAGACACACTA

CS12 Forward ATGTCTCGCGTCAATGTC 54 730 a

Reverse CAGCATCGTAATAGTGTTCA

AFA Forward GTACCTGAAGTACAACGTCAC 53 543 a

Reverse CAGGACGTACTGTATGACG

Yeh Forward CAGGTCGTAGCCATATTGA 52 607 a

Reverse TGATTCTCGTCATAAGCATG

Yeh-like Forward CTGCCTAAGGTGCTACTAAC 55 688 a

Reverse TGCTGACATCGAGATCAGA

F17-like Forward GTCATGGTAACCCTGTGC 51 529 a

Reverse GCAAGGTCATGCATTATACT

Yfc Forward TCGCAACATGAGCATCTC 53 667 a

Reverse GTAGCTACCGTCACGCAA

P Forward CCACCCAGACTGCGAGGCTAT 64 546 This study

Reverse GTCGGCATCCGCATTATCAAA

Pix Forward GCTGTACACCGTCACACTC 53 812 a

Reverse TATCAGACATCCGCAACA

Yad Forward AGCCATGCTTTCCTACAACC 56 564 This study

Reverse ATATCCCAGCGACCAACG

Yqi Forward CCGCAACATCTCCTACAG 52 757 a

Reverse CGCGCTTTCACTAATGTT

Ybg Forward ACCAAATCAGTAACGGACA 51 451 a

Reverse CCTGACTGTTCATGGTTATC

*The primers for PCR are based on the sequences of usher protein encoding genes.
aThese primers were used as described by another study (31), others were designed in this study.

Gene Amplification
The genes encoding the usher proteins were amplified using the
primers listed in Table 1, as previously described (31). A total of
30µL of reactionmixture was used, and the end-point PCR setup

was the following: denaturation at 95◦C for 50 s, annealing for
45 s, extension at 72◦C for 1min, and a final extension at 72◦C
for 5min. The annealing temperatures were different for the 22
genes, as shown in Table 1.
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Cluster Analysis
The presence or absence of each of the 22 fimbrial genes in
each strain was confirmed by PCR, and “presence” and “absence”
were scored as “1” and “0,” respectively. A binary matrix was
then constructed to investigate whether the distribution patterns
of the 22 fimbrial genes were associated with the infection site.
Clusters were formed sequentially by starting with the most
similar pair of objects and forming higher clusters step-by-step.
Then, squared Euclidean distances were used to calculate the
difference and Ward’s method was used to evaluate the distances
between the clusters (35). The cluster analysis was visualized with
a dendrogram.

XGBoost
XGBoost (extreme gradient boosting), an implementation of
gradient boosting machines, has recently been a dominating
algorithm for its ability to model non-linear associations and
general acceptance in machine learning (16, 36, 37). Measures
including model training and evaluation were performed on
Python 3.8.1 with xgboost package. The area under the curve
(AUC) of the receiver operating characteristic (ROC) was used
as the primary measure of model prediction (38). Diagnostic
accuracy was defined as the proportion of all tests that gave
a correct result. Five-fold cross-validation was conducted to
evaluate the classifier performance, which was the process of
rearranging the data so as to ensure that each fold was a good
representative of the whole. Briefly, all 90 strains were divided
into five equal parts, one of which was used as the validation
set and the other four as the training set. Then, each fold was
regarded once as the validation set, with the other four parts as
the training set; after repeating the process five times, the average
value was obtained. The AUC and ROC curve for each fold
are presented, with the average AUC and ROC curve shown in
black. A permutation test (n= 10,000) was used to determine the
statistical significance of the model. The ranking of the real test
statistic among the shuffled test statistics determined the p-value.

Statistical Analyses
Descriptive statistics were used for outcomes. To analyze the
ratios of different fimbrial genes and the relations with UTI
infection sites, chi-square and Fisher tests were used. To account
for multiple comparisons, a Bonferroni adjusted p-value (0.05/22
= 0.00227) was used to indicate statistical significance.

RESULTS

Distribution Patterns of 22 Fimbrial Genes
Were Correlated With Infection Site
The study design is shown in Figure 1. First, the genomic DNA
extracted from the UPEC isolates of patients was examined
by PCR for the presence or absence of genes encoding usher
proteins of the 22 fimbrial types. The primers are listed in
Table 1. Partial agarose gel electrophoresis results are shown in
Supplementary Figure 1. The “presence” and “absence” status
were regarded as “1” and “0” respectively, in a binary matrix, and
the distribution patterns of the 22 fimbrial genes of each strain
were changed into a string of numbers (Supplementary Table 1).

Therefore, 144 characteristics (number strings) were obtained
from the 144 UPEC strains. However, many of the characteristics
were duplicated within the upper and lower UTI groups. For
example, in the upper UTI group, the No. 3 and No. 5 strains
had the same characteristic of “0101111111110001000001upper,”
and in the lower UTI group, the No. 88 and No. 90 strains
had the same characteristic of “0000011001001001001011lower.”
Although the same bacteria were commonly isolated from
different patients, the duplicate data could affect the efficiency
of the machine learning model. Therefore, a total of 40 strains
with the same characteristics were deleted, 19 from the upper UTI
group and 21 from the lower UTI group. As a result, 104 UPEC
strains remained.

Cluster analysis of the 104 strains was performed
using the Euclidean distance and Ward’s linkage method
(35). The dendrogram of the analysis showed the strains
were divided into two groups (Supplementary Figure 2).
However, the 104 strains were not completely unique to
one of the two groups, that is, some strains in the different
groups had the same characteristics, as shown in the red
frame. For example, the characteristic of strains No. 7 and
No. 63 were shown as “0000011111000001100001upper”
and “0000011111000001100001lower,” respectively
(Supplementary Table 1). Thus, the distribution of the 22
fimbrial genes was the same, with the only difference that No.
7 came from the upper UTI group, while No. 63 came from
the lower UTI group. There were 14 strains from each group
that had the same situation. The most likely explanation for
this situation was misjudgment by doctors when making the
diagnosis. However, although the machine learning model had
difficulty analyzing these data, it was not acceptable to simply
eliminate all 28 contradictory data sets. Therefore, according to
the position of the 28 strains in the dendrogram, five strains were
deleted and nine strains were retained in the lower UTI group,
while nine strains were deleted and five strains were retained in
the upper UTI group. The 14 retained strains are indicated with
an asterisk. Thus, 14 strains were deleted, leaving 90 strains for
further analysis.

According to the similarity between clusters using Ward’s
method and Euclidean distance, the 90 strains were classified
into two groups (Figure 2). The left cluster contained 31 strains,
including 24 from the upper UTI group (77.42%, shown in red)
and seven from the lower UTI group (22.58%). The right cluster
contained the other 59 strains, including 52 from the lower UTI
group (88.14%) and seven from the upper UTI group (11.86%,
shown in red). Therefore, on the basis of the distribution patterns
of the 22 fimbrial genes, the 90 strains were classified into two
UTI groups, indicating distribution patterns could be used to
predict the infection site.

Evaluation of Prediction Efficiency With 22
Fimbrial Genes
To demonstrate the predictive value, the performance of
fimbrial genes distribution for discriminating the infection site
was evaluated using machine learning. A model using an
extreme gradient boosting algorithm was developed (37), and its
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FIGURE 1 | Work flow diagram.
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FIGURE 2 | Visualized cluster dendrogram of the distribution patterns of 22 fimbrial genes from 90 strains of uropathogenic Escherichia coli (UPEC). Strains from the

upper urinary tract infection (UTI) group are shown in red.

FIGURE 3 | Receiver operating characteristic (ROC) curves produced from 22 fimbrial genes using an XGBoost classifier. (A) Five-fold cross-validation to evaluate

classifier performance. Area under the curve (AUC) and ROC curve for each fold are presented in different colors, and the average AUC and ROC curve are in black.

(B) Permutation test (n = 10,000) was performed to calculate the statistical significance of the model; the orange dotted line represents the final mean accuracy of the

model.

predictive performance was assessed using ROC analysis and the
AUC of the ROC. The effectiveness was evaluated with 5-fold
cross validation from the XGBoost classifier, that is, the 90 sets of
data were randomly divided into 5-folds. The ROC curves were
averaged for each fold, and final mean AUC and accuracy were
calculated. As shown, the XGBoost classifier achieved a mean
accuracy of 83.33% and a mean AUC of 0.92 (Figure 3A).

The statistical significance of the analysis was evaluated
by permutation test in which the final mean accuracy of the

method was compared with an empirical distribution of accuracy
values obtained by 10,000 permutations of the random labels.
As shown in Figure 3B, the permutation scores were all lower
than the classification score (mean accuracy of 83.33%, orange
dotted line), with p-value < 0.0001, thereby demonstrating
high performance in the classification of the derivation of
the UPEC strains. Thus, the distribution patterns of the 22
fimbrial genes had the predictive value in identifying upper and
lower UTIs.
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TABLE 2 | Statistical calculation regarding the ratio of different fimbriae and the

relevance to the UTIs.

Fimbriae Group

Name Status Upper UTI Lower UTI p-value

P Positive 12 12 0.061

Negative 19 47

Auf Positive 8 3 0.007

Negative 23 56

F1C/S Positive 3 2 0.335

Negative 28 57

Yad Positive 8 3 0.007

Negative 23 56

CS1-like Positive 3 21 0.008

Negative 28 38

Mat Positive 31 55 0.294

Negative 0 4

Type1 Positive 30 49 0.089

Negative 1 10

F9 Positive 30 37 0.000

Negative 1 22

Ycb Positive 5 40 0.000

Negative 26 19

Sfm Positive 6 40 0.000

Negative 25 19

LPF Positive 4 13 0.153

Negative 27 46

ECSF-0165 Positive 17 12 0.001

Negative 14 47

ECSF-4008 Positive 11 7 0.008

Negative 20 52

CS12 Positive 0 0

Negative 31 59

AFA Positive 3 13 0.145

Negative 28 46

Yeh Positive 28 57 0.335

Negative 3 2

Yeh-like Positive 5 30 0.001

Negative 26 29

F17-like Positive 9 2 0.001

Negative 22 57

Yfc Positive 24 21 0.000

Negative 7 38

Pix Positive 2 3 1

Negative 29 56

Ygi Positive 17 12 0.001

Negative 14 47

Ybg Positive 4 40 0.000

Negative 27 19

Evaluation of Prediction Efficiency After
Feature Selection
Moreover, the statistical calculation regarding the ratios of
different fimbriae and their relevance to the upper and lower

UTIs was performed. The significance level was set as p< 0.05/22
by Bonferroni correction, and the fimbriae F9, Ycb, Sfm, Yeh-
like, Yfc, Ygi, Ybg, ECSF-0165, and F17-like were significantly
associated with one of the two groups of UTIs (Table 2). A
black and white grid was used to directly display the presence
or absence of the 22 fimbrial genes, with black representing
positive status of a gene and white representing negative status.
The fimbrial genes F9, Yfc, Ygi, ECSF-0165, and F17-like mostly
occurred in the upper UTI group, whereas Ycb, Sfm, Yeh-like, and
Ybg mostly occurred in the lower UTI group (Figure 4). Then,
whether these nine fimbrial genes of the 90 strains could achieve
better prediction efficiency than that of the 22 fimbrial genes was
evaluated. However, using the distributions of these nine fimbrial
genes, the classifier achieved a mean accuracy of 83.33% and a
meanAUCof 0.88 (Figure 5). Therefore, the prediction efficiency
with the nine genes was similar to and not better than that of the
model with 22 fimbrial genes.

Thus, the distribution patterns of the 22 fimbrial genes could
be used to classify upper and lower UTIs. Among the 22 fimbriae
types, F9, Yfc, Ygi, ECSF-0165, and F17-like, as well as Ycb, Sfm,
Yeh-like, and Ybg, might be critical in distinguishing between
upper and lower UTIs. In addition, the characteristic of CS12
was negative in all 90 strains, indicating that CS12 fimbriae rarely
exist in UPEC strains causing UTIs.

DISCUSSION

Although clinical symptoms can indicate UTIs, only 50–60%
of women with dysuria had bacterial UTIs (39). As noted
previously, most predictive models for UTIs use a few variables
like urine dipstick, urinalysis, or clinical diagnosis. However,
there are many limitations. For example, there is currently no
consensus accepted level for a positive urine culture with a range
from 102 to 105 CFU/mL, and clinical diagnosis maybe relatively
subjective. Urinary tract infections are common infectious
diseases primarily caused by UPEC, which use fimbriae to adhere
to the urethral epithelium, thereby promoting colonization
of host cells (40). Although great progress has been made
in determining the roles of some fimbriae types in UPEC
colonization, there is also little understanding of the roles of
other fimbrial types, and whether the combinations of multiple
fimbrial types is meaningful in the pathogenesis of UPEC-
induced UTIs.

In this study, initially, the hypothesis whether combined
multiple fimbrial genes of UPEC could be used to identify
the localization of upper and lower UTIs was tested using
Ward’s method, which is an unsupervised cluster method.
Distinct clusters were identified according to the distribution
patterns of the 22 fimbrial genes in the UPEC strains.
Unsupervised method, however, with lower interpretability,
was not suitable to construct a classification model of upper
and lower UTIs. By contrast, machine learning based on an
XGBoost algorithm is suitable for handling binary classification
with stable performance (41, 42). Therefore, a model based
on an XGBoost algorithm and multi-fimbriae of UPEC was
creatively developed to discriminate upper and lower UTIs.
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FIGURE 4 | Black and white grid of the distribution patterns of 22 fimbrial genes from 90 strains. Black represents positive status of a gene, whereas white represents

negative status of a gene. The 22 fimbrial genes are in columns, and the 90 strains are in rows. The tree on the right shows clustering of the 90 strains, with strains

from the upper urinary tract infection group mostly in the red box.
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FIGURE 5 | Receiver operating characteristic (ROC) curves produced from nine fimbrial genes after feature selection using XGBoost. (A) Five-fold cross-validation to

evaluate classifier performance. Area under the curve (AUC) and ROC curve for each fold are in different colors, and the mean AUC and ROC curve are in black. (B)

Permutation test (n = 10,000), with orange dotted line representing the final mean accuracy of the model.

Whereas, the model with 22 fimbrial genes achieved a mean
AUC of 0.92 with average accuracy of 83.33%, the model
with nine fimbrial genes had a mean AUC of 0.88 with the
same average accuracy. Both two model results were statistically
significant, demonstrating that distributions of fimbrial genes
could discriminate infection sites. Although the AUC of the
model with 22 fimbrial genes (AUC = 0.92) was slightly higher
than that of the model with nine fimbrial genes (AUC =

0.88), the performance of the model with nine fimbrial genes
was similar while also reducing the number of variables after
feature selection. In practice, the model with fewer variables
may be more easily accepted. Several distinctive features of
machine learning, including high mathematical dependence,
great classification functioning, and well-behaved fitting, make it
superior to traditional methods in the processing of information.
Advances in machine learning, coupled with training on large
datasets, can improve the accuracy in diagnosing UTIs. However,
to be effective, machine learning-based models require further
prospective validation. Moreover, empirical antibiotic therapy
in UTI treatment results in the abuse of antibiotics and
promotes the emergence of multi-drug resistant bacteria. In
the future, machine learning could be used to improve drug
sensitivity or screen novel antimicrobial targets to develop
next-generation therapeutics, and by increasing understanding
of the patterns of fimbrial genes, this work could also
contribute to the development of fimbriae-based non-antibiotic
treatment strategies.

This study also showed that nine fimbriae types might
be critical in distinguishing between upper and lower UTIs,
that is, F9, Yfc, Ygi, ECSF-0165, and F17-like were mostly
in UPEC strains from upper UTIs, while Ycb, Sfm, Yeh-like,
and Ybg were mostly in those from the lower UTIs. Among

the nine fimbriae types, UPEC F9 fimbriae promote biofilm
formation (43), and the tip adhesin FmlH provides a fitness
advantage for UPEC colonization of inflamed bladders during
chronic cystitis (26); UPEC Ygi fimbriae are necessary for
adherence to a kidney cell line, biofilm formation, and in vivo
fitness in kidneys (29); and F17-like fimbriae promote UPEC
intestinal colonization (24); when expressed, E. coli K12 yfc,
ycb, sfm, and ybg operons promote adhesion to abiotic and
epithelial cell surfaces (44). By contrast, the roles of ECSF-
0165 and Yeh-like fimbriae have not yet been determined. In
most studies, the occurrence of P fimbriae is 60–90%. For
example, 91% (33/35) of the urinary strains causing acute
pyelonephritis have P fimbriae (45). However, in the current
study, P fimbriae were not well-represented. Three possible
reasons could explain their absence: (1) samples were obtained
from UTI patients in a single clinical center rather than multiple
centers; (2) in the US and Europe, most UPEC strains are
from the B2 clade, whereas in East Asia, clade D strains
predominate in community-acquired UTIs, followed by B2
strains (46); and (3) previous epidemiological data mainly
analyzed the spectrum of infection many years ago, and no
recent data are available for comparison. In addition to CU
fimbriae, the co-occurrence of other fimbriae families may
be meaningful in the identification of infection sites. In the
future, research should be conducted on the specific roles
and mechanisms of these multiple fimbriae families in the
pathogenesis of UTIs. An understanding of the interference
or synergy between the adhesion of UPEC fimbriae and other
surface adhesins may also provide better targeting therapies for
UTI treatment.

Urinary tract infections are currently clinically treated with
antibiotics, but the excessive use of antibiotics and the emergence
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of multi-drug resistant bacteria require urgent development of
alternative remedies. The effective alternative remedies to fight
UPEC include vaccines, probiotics, estrogens, D-mannose, and
D-mannose-derived FimH antagonists (47). D-mannose-derived
FimH antagonists can markedly prevent the occurrence of UTIs
and recurrent UTIs by selectively depleting intestinal UPEC
reservoirs (24). Anti-adhesion strategies are considered to be
a promising targeted therapy. Understanding the distribution
pattern of fimbriae is fundamental to the development of
alternative strategies. Although a completely accurate prediction
could not be obtained in this study because of the small sample
size, a new method was developed that can potentially identify
the site of UTIs, representing an innovative attempt to apply
machine learning to predict localization of UTIs. However, the
models were built on data from a single hospital within a confined
geographic region, and therefore require further validation using
strains from other institutions. In addition, the study used
symptoms to group the patients and conducted the “machine
learning,” while lacking an accurate way to confirm whether a
UTI was limited to the lower urinary tract or not. Fresh samples
should also be collected for further model validation. In the
future, models could be developed using large-scale databases,
and machine learning could be employed to accurately predict
infection sites using the distribution patterns of 22 fimbrial
genes in UPEC strains, which would aid clinicians in their
diagnoses, as well as reduce testing cost and improve the quality
of life.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of TianjinMedical University.
The patients/participants provided their written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

XL wrote the main manuscript text. KZ, JW, JG, JR, TG, WS, and
MZ performed the experiments. YC provided the UPEC strains.
ZY supervised the experimental framework. QW supervised the
analyses. All authors have read and agreed to the published
version of the manuscript.

FUNDING

This study was supported by the grant from Tianjin Science
and Technology Commissioner Project (18JCZDJC36000,
18JCYBJC93000) and the Science & Technology Development
Fund of Tianjin Education Commission for Higher
Education (2017ZD12).

ACKNOWLEDGMENTS

We thank the Second Hospital of Tianjin Medical University for
providing the UPEC strains.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2021.602691/full#supplementary-material

REFERENCES

1. Stamm WE, Norrby SR. Urinary tract infections: disease panorama and

challenges. J Infect Dis. (2001) 183:S1–4. doi: 10.1086/318850

2. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract

infections: epidemiology, mechanisms of infection and treatment options.Nat

Rev Microbiol. (2015) 13:269–84. doi: 10.1038/nrmicro3432

3. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren

SJ. Host-pathogen checkpoints and population bottlenecks in persistent

and intracellular uropathogenic Escherichia coli bladder infection. FEMS

Microbiol Rev. (2012) 36:616–48. doi: 10.1111/j.1574-6976.2012.00339.x

4. Hooton TM. Clinical practice. Uncomplicated urinary tract infection. N Engl

J Med. (2012) 366:1028–37. doi: 10.1056/NEJMcp1104429

5. Foxman B. Urinary tract infection syndromes: occurrence, recurrence,

bacteriology, risk factors, disease burden. Infect Dis Clin North Am. (2014)

28:1–13. doi: 10.1016/j.idc.2013.09.003

6. Mehnert-Kay SA. Diagnosis and management of uncomplicated urinary tract

infections. Am Fam Physician. (2005) 72:451–6.

7. Lussu M, Camboni T, Piras C, Serra C, Del Carratore F, Griffin J, et al.

(1)H NMR spectroscopy-based metabolomics analysis for the diagnosis of

symptomatic E. coli-associated urinary tract infection (UTI). BMC Microbiol.

(2017) 17:201. doi: 10.1186/s12866-017-1108-1

8. Kronenberg A, Butikofer L, Odutayo A,Muhlemann K, da Costa BR, Battaglia

M, et al. Symptomatic treatment of uncomplicated lower urinary tract

infections in the ambulatory setting: randomised, double blind trial. BMJ.

(2017) 359:j4784. doi: 10.1136/bmj.j4784

9. Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection:

pathogenicity, antibiotic resistance and development of effective

vaccines against Uropathogenic Escherichia coli. Mol Immunol. (2019)

108:56–67. doi: 10.1016/j.molimm.2019.02.007

10. Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using

convolutional neural networks in MRI images. IEEE Trans Med Imaging.

(2016) 35:1240–51. doi: 10.1109/TMI.2016.2538465

11. Collij LE, Heeman F, Kuijer JP, Ossenkoppele R, Benedictus MR, Möller

C, et al. Application of machine learning to arterial spin labeling in mild

cognitive impairment and Alzheimer disease. Radiology. (2016) 281:865–

75. doi: 10.1148/radiol.2016152703

12. Haran JP, Bhattarai SK, Foley SE, Dutta P, Ward DV, Bucci V, et

al. Alzheimer’s disease microbiome is associated with dysregulation of

the anti-inflammatory p-glycoprotein pathway. mBio. (2019) 10:e00632-

19. doi: 10.1128/mBio.00632-19

13. Liu Y, Wang Y, Ni Y, Cheung CKY, Lam KSL, Wang Y, et al. Gut microbiome

fermentation determines the efficacy of exercise for diabetes prevention. Cell

Metabol. (2020) 31:77–91. doi: 10.1016/j.cmet.2019.11.001

14. Ho CS, Jean N, Hogan CA, Blackmon L, Jeffrey SS, Holodniy M, et

al. Rapid identification of pathogenic bacteria using Raman spectroscopy

and deep learning. Nat Commun. (2019) 10:4927. doi: 10.1038/s41467-019-

12898-9

Frontiers in Medicine | www.frontiersin.org 10 June 2021 | Volume 8 | Article 602691

https://www.frontiersin.org/articles/10.3389/fmed.2021.602691/full#supplementary-material
https://doi.org/10.1086/318850
https://doi.org/10.1038/nrmicro3432
https://doi.org/10.1111/j.1574-6976.2012.00339.x
https://doi.org/10.1056/NEJMcp1104429
https://doi.org/10.1016/j.idc.2013.09.003
https://doi.org/10.1186/s12866-017-1108-1
https://doi.org/10.1136/bmj.j4784
https://doi.org/10.1016/j.molimm.2019.02.007
https://doi.org/10.1109/TMI.2016.2538465
https://doi.org/10.1148/radiol.2016152703
https://doi.org/10.1128/mBio.00632-19
https://doi.org/10.1016/j.cmet.2019.11.001
https://doi.org/10.1038/s41467-019-12898-9
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. Fimbrial Gene Profiling of UPEC

15. Roux-Dalvai F, Gotti C, Leclercq M, Hélie M-C, Boissinot M, Arrey TN, et al.

Fast and accurate bacterial species identification in urine specimens using LC-

MS/MS mass spectrometry and machine learning. Mol Cell Proteom. (2019)

18:2492–505. doi: 10.1074/mcp.TIR119.001559

16. Taylor RA, Moore CL, Cheung KH, Brandt C. Predicting urinary tract

infections in the emergency department with machine learning. PLoS ONE.

(2018) 13:e0194085. doi: 10.1371/journal.pone.0194085

17. Nielubowicz GR, Mobley HL. Host-pathogen interactions in urinary tract

infection. Nat Rev Urol. (2010) 7:430–41. doi: 10.1038/nrurol.2010.101

18. Bien J, Sokolova O, Bozko P. Role of uropathogenic Escherichia coli virulence

factors in development of urinary tract infection and kidney damage. Int J

Nephrol. (2012) 2012:681473. doi: 10.1155/2012/681473

19. Proft T, Baker EN. Pili in Gram-negative and Gram-positive bacteria -

structure, assembly and their role in disease. Cell Mol Life Sci. (2009) 66:613–

35. doi: 10.1007/s00018-008-8477-4

20. Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA.

Chaperone-usher fimbriae of Escherichia coli. PLoS ONE. (2013)

8:e52835. doi: 10.1371/journal.pone.0052835

21. Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC,

Heuser J, et al. Induction and evasion of host defenses by

type 1-piliated uropathogenic Escherichia coli. Science. (1998)

282:1494–7. doi: 10.1126/science.282.5393.1494

22. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1

pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. (2000)

19:2803–12. doi: 10.1093/emboj/19.12.2803

23. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley

JR, et al. Treatment and prevention of urinary tract infection

with orally active FimH inhibitors. Sci Transl Med. (2011)

3:109ra115. doi: 10.1126/scitranslmed.3003021

24. Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL, Cusumano ZT, et al.

Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist.

Nature. (2017) 546:528–32. doi: 10.1038/nature22972

25. Mydock-McGrane L, Cusumano Z, Han Z, Binkley J, Kostakioti M,

Hannan T, et al. Antivirulence C-mannosides as antibiotic-sparing, oral

therapeutics for urinary tract infections. J Med Chem. (2016) 59:9390–

408. doi: 10.1021/acs.jmedchem.6b00948

26. Conover MS, Ruer S, Taganna J, Kalas V, De G.reve H, Pinkner JS, et

al. Inflammation-induced adhesin-receptor interaction provides a fitness

advantage to Uropathogenic E. coli during chronic infection. Cell Host

Microbe. (2016) 20:482–92. doi: 10.1016/j.chom.2016.08.013

27. Li X, Pei G, Zhang L, Cao Y, Wang J, Yu L, et al. Compounds targeting

YadC of uropathogenic Escherichia coli and its host receptor annexin A2

decrease bacterial colonization in bladder. EBioMedicine. (2019) 50:23–

33. doi: 10.1016/j.ebiom.2019.11.014

28. Lane MC, Mobley HL. Role of P-fimbrial-mediated adherence

in pyelonephritis and persistence of uropathogenic Escherichia

coli (UPEC) in the mammalian kidney. Kidney Int. (2007)

72:19–25. doi: 10.1038/sj.ki.5002230

29. Spurbeck RR, Stapleton AE, Johnson JR, Walk ST, Hooton TM, Mobley

HL. Fimbrial profiles predict virulence of uropathogenic Escherichia coli

strains: contribution of ygi and yad fimbriae. Infect Immun. (2011) 79:4753–

63. doi: 10.1128/IAI.05621-11

30. Dias RCS, Moreira BM, Riley LW. Use of fimH single-nucleotide

polymorphisms for strain typing of clinical isolates of Escherichia

coli for epidemiologic investigation. J Clin Microbiol. (2009)

48:483–8. doi: 10.1128/JCM.01858-09

31. Ren Y, Palusiak A, Wang W, Wang Y, Li X, Wei H, et al. A high-

resolution typing assay for uropathogenic Escherichia coli based on

fimbrial diversity. Front Microbiol. (2016) 7:623. doi: 10.3389/fmicb.201

6.00623

32. Weissman SJ, Johnson JR, Tchesnokova V, Billig M, Dykhuizen D,

Riddell K, et al. High-resolution two-locus clonal typing of extraintestinal

pathogenic Escherichia coli. Appl Environ Microbiol. (2012) 78:1353–

60. doi: 10.1128/AEM.06663-11

33. Little P, Turner S, Rumsby K,Warner G,MooreM, Lowes JA, et al. Developing

clinical rules to predict urinary tract infection in primary care settings:

sensitivity and specificity of near patient tests (dipsticks) and clinical scores.

British J Gen Pract. (2006) 56:606–12.

34. McIsaac WJ, Moineddin R, Ross S. Validation of a decision aid to assist

physicians in reducing unnecessary antibiotic drug use for acute cystitis. Arch

Intern Med. (2007) 167:2201–6. doi: 10.1001/archinte.167.20.2201

35. Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat

Assoc. (1963) 58:236–44. doi: 10.1080/01621459.1963.10500845

36. Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, et al.

Deep learning localizes and identifies polyps in real time with 96%

accuracy in screening colonoscopy. Gastroenterology. (2018) 155:1069–

78. doi: 10.1053/j.gastro.2018.06.037

37. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Association for Computing Machinery. San Francisco, CA

(2016). p. 785–94. doi: 10.1145/2939672.2939785

38. Mazurowski MA, Habas PA, Zurada JM, Lo JY, Baker JA, Tourassi GD.

Training neural network classifiers for medical decision making: the effects

of imbalanced datasets on classification performance. Neural Netw. (2008)

21:427–36. doi: 10.1016/j.neunet.2007.12.031

39. Stamm WE, Counts GW, Running KR, Fihn S, Turck M, Holmes KK.

Diagnosis of coliform infection in acutely dysuric women. N Engl J Med.

(1982) 307:463–8. doi: 10.1056/NEJM198208193070802

40. Waksman G, Hultgren SJ. Structural biology of the chaperone-

usher pathway of pilus biogenesis. Nat Rev Microbiol. (2009)

7:765–74. doi: 10.1038/nrmicro2220

41. Ji X, TongW, Liu Z, Shi T. Five-feature model for developing the classifier for

synergistic vs. antagonistic drug combinations built by XGBoost. Front Genet.

(2019) 10:600. doi: 10.3389/fgene.2019.00600

42. Layeghian Javan S, Sepehri MM, Layeghian Javan M, Khatibi

T. An intelligent warning model for early prediction of cardiac

arrest in sepsis patients. Comput Methods Programs Biomed. (2019)

178:47–58. doi: 10.1016/j.cmpb.2019.06.010

43. Ulett GC, Mabbett AN, Fung KC, Webb RI, Schembri MA. The role of F9

fimbriae of uropathogenic Escherichia coli in biofilm formation.Microbiology.

(2007) 153:2321–31. doi: 10.1099/mic.0.2006/004648-0

44. Korea CG, Badouraly R, Prevost MC, Ghigo JM, Beloin C. Escherichia coli

K-12 possesses multiple cryptic but functional chaperone-usher fimbriae

with distinct surface specificities. Environ Microbiol. (2010) 12:1957–

77. doi: 10.1111/j.1462-2920.2010.02202.x

45. Källenius G, Möllby R, Svenson SB, Helin I, Hultberg H, Cedergren B, et al.

Occurrence of P-fimbriated Escherichia coli in urinary tract infections. Lancet.

(1981) 2:1369–72. doi: 10.1016/S0140-6736(81)92797-5

46. Schreiber Lt H, Conover MS, Chou WC, Hibbing ME, Manson AL, Dodson

KW, et al. Bacterial virulence phenotypes of Escherichia coli and host

susceptibility determine risk for urinary tract infections. Sci Transl Med.

(2017) 9:aaf1283. doi: 10.1126/scitranslmed.aaf1283

47. Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli

(UPEC) infections: virulence factors, bladder responses, antibiotic,

and non-antibiotic antimicrobial strategies. Front Microbiol. (2017)

8:1566. doi: 10.3389/fmicb.2017.01566

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Li, Zhou, Wang, Guo, Cao, Ren, Guan, Sheng, Zhang, Yao and

Wang. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Medicine | www.frontiersin.org 11 June 2021 | Volume 8 | Article 602691

https://doi.org/10.1074/mcp.TIR119.001559
https://doi.org/10.1371/journal.pone.0194085
https://doi.org/10.1038/nrurol.2010.101
https://doi.org/10.1155/2012/681473
https://doi.org/10.1007/s00018-008-8477-4
https://doi.org/10.1371/journal.pone.0052835
https://doi.org/10.1126/science.282.5393.1494
https://doi.org/10.1093/emboj/19.12.2803
https://doi.org/10.1126/scitranslmed.3003021
https://doi.org/10.1038/nature22972
https://doi.org/10.1021/acs.jmedchem.6b00948
https://doi.org/10.1016/j.chom.2016.08.013
https://doi.org/10.1016/j.ebiom.2019.11.014
https://doi.org/10.1038/sj.ki.5002230
https://doi.org/10.1128/IAI.05621-11
https://doi.org/10.1128/JCM.01858-09
https://doi.org/10.3389/fmicb.2016.00623
https://doi.org/10.1128/AEM.06663-11
https://doi.org/10.1001/archinte.167.20.2201
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1053/j.gastro.2018.06.037
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.neunet.2007.12.031
https://doi.org/10.1056/NEJM198208193070802
https://doi.org/10.1038/nrmicro2220
https://doi.org/10.3389/fgene.2019.00600
https://doi.org/10.1016/j.cmpb.2019.06.010
https://doi.org/10.1099/mic.0.2006/004648-0
https://doi.org/10.1111/j.1462-2920.2010.02202.x
https://doi.org/10.1016/S0140-6736(81)92797-5
https://doi.org/10.1126/scitranslmed.aaf1283
https://doi.org/10.3389/fmicb.2017.01566
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Diagnostic Value of the Fimbriae Distribution Pattern in Localization of Urinary Tract Infection
	Introduction
	Materials and Methods
	Bacterial Strains
	DNA Extraction
	Gene Amplification
	Cluster Analysis
	XGBoost
	Statistical Analyses

	Results
	Distribution Patterns of 22 Fimbrial Genes Were Correlated With Infection Site
	Evaluation of Prediction Efficiency With 22 Fimbrial Genes
	Evaluation of Prediction Efficiency After Feature Selection

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


