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Type 1 diabetes (T1D) is an autoimmune disease that is
caused, in part, by T cell-mediated destruction of insulin-
producing pB-cells. High risk for disease, in those with
genetic susceptibility, is predicted by the presence of
two or more autoantibodies against insulin, the 65-kDa
form of glutamic acid decarboxylase (GADG65), insuli-
noma-associated protein 2 (IA-2), and zinc transporter
8 (ZnT8). Despite this knowledge, we still do not know
what leads to the breakdown of tolerance to these
autoantigens, and we have an incomplete understanding
of T1D etiology and pathophysiology. Several new auto-
antibodies have recently been discovered using innova-
tive technologies, but neither their potential utility in
monitoring disease development and treatment nor their
role in the pathophysiology and etiology of T1D has been
explored. Moreover, neoantigen generation (through
posttranslational modification, the formation of hybrid
peptides containing two distinct regions of an antigen or
antigens, alternative open reading frame usage, and
translation of RNA splicing variants) has been reported,
and autoreactive T cells that target these neoantigens
have been identified. Collectively, these new studies
provide a conceptual framework to understand the
breakdown of self-tolerance, if such modifications occur
in a tissue- or disease-specific context. A recent work-
shop sponsored by the National Institute of Diabetes and
Digestive and Kidney Diseases brought together inves-
tigators who are using new methods and technologies to
identify autoantigens and characterize immune responses

toward these proteins. Researchers with diverse exper-
tise shared ideas and identified resources to accelerate
antigen discovery and the detection of autoimmune
responses in T1D. The application of this knowledge will
direct strategies for the identification of improved bio-
markers for disease progression and treatment response
monitoring and, ultimately, will form the foundation for
novel antigen-specific therapeutics. This Perspective
highlights the key issues that were addressed at the
workshop and identifies areas for future investigation.

The Centers for Disease Control and Prevention reports
that about 9.4% of the U.S. population has diabetes and
about 5% of the people with diabetes have type 1 diabetes
(T1D) (1). Although T1D has a significant genetic compo-
nent, most diagnosed people do not have a known family
history of the disease. The causes that lead to T1D are not
fully established, but in individuals with genetic suscepti-
bility (determined in large part by the expression of certain
class II MHC molecules [2]), the development of the
disease can usually be predicted by the presence of two
or more autoantibodies with different specificities (3,4).
Autoantibodies against insulin, the 65-kDa form of gluta-
mic acid decarboxylase (GAD65), insulinoma-associated
protein 2 (IA-2), and zinc transporter 8 (ZnT8) are com-
monly known as the major specificities in T1D, but their
role in the pathophysiology of the disease is not clear.
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Recently, several new antigens and epitopes and their
corresponding humoral and/or T cell-mediated responses
have been reported. However, their potential utility in
monitoring disease development, progression, and treat-
ment and their role in the pathophysiology and etiology of
T1D have been explored only in a very limited manner.
What leads to the loss of tolerance and autoimmunity in
T1D is certainly one of the key questions to be answered
for understanding the pathogenesis of the disease. Al-
though imperfect (5), central tolerance leads to the de-
letion of some proportion of self-reactive lymphocytes.
However, lymphocytes specific for epitopes generated only
in a tissue- and/or disease-specific context will not be
subject to central tolerance mechanisms (6). Thus, the
idea that a neoantigen or a modified self-antigen (e.g.,
arising from a tissue-specific posttranslational modifica-
tion) can lead to the breakdown of tolerance is a compelling
hypothesis (7) that warrants investigation.

For assessing the state of the art in elucidating the
potential role of neoepitopes and neoantigens in the
pathophysiology of T1D, the National Institute of Diabetes
and Digestive and Kidney Diseases convened a group of
scientists with different expertise at the Autoantigens Discov-
ery and Characterization in Type 1 Diabetes workshop in
Bethesda, MD, 31 October-1 November 2017 (www.niddk.
nih.gov/news/meetings-workshops/2017/autoantigens2017).
In particular, experts from other autoimmune diseases,
cancer immunotherapy, and cutting-edge technologies for
T-cell and antigen characterization and discovery were
brought together. The workshop was organized around
three main themes: characterization of the autoimmune
response in T1D and other disease contexts, identification
of new autoantigens and epitopes in T1D, and novel tech-
nologies in T-cell response and autoantigen identification
and characterization. This report highlights the main points
that were discussed at the workshop and reflects on possible
future developments that might be needed for moving
toward a better understanding of the autoimmune response
in T1D.

EMERGING CONSIDERATIONS FOR THE
CHARACTERIZATION OF THE IMMUNE RESPONSE
TO B-CELL ANTIGENS

In the 35 years since the discovery of insulin as the first
autoantigen in human T1D, over 30 additional ones have
been reported (8), though a substantial fraction of these
putative autoantigens have only been sparsely studied
and/or have not withstood the test of time. In contrast,
insulin, GAD65, IA-2, and ZnT8 are well accepted by the
field as major autoantigens (Table 1), due primarily to the
utility of their corresponding autoantibodies in T1D risk
assessment and diagnosis (3,4). Several additional anti-
gens have also established their place in human T1D (Table
2). Examples include islet-specific glucose-6-phosphatase
catalytic subunit-related protein (IGRP) (9,10), chromog-
ranin A (ChgA) (11,12), and islet amyloid polypeptide
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(IAPP) (13-15). Still others (Table 3), e.g., peripherin
(16), tetraspanin-7 (17), prolyl-4-hydroxylase 3 (P4HDb)
(18), glucose-regulated protein 78 (GRP78) (19), urocortin-3
(20), and insulin gene enhancer protein isl-1 (20), have only
more recently been discovered and warrant further
exploration.

Islet-Infiltrating Cells

Until recently, nearly all of the knowledge concerning
T-cell reactivity to islet antigens in humans was obtained
using T cells from peripheral blood rather than from islets
themselves. Some of the earliest evidence for the presence
of islet-reactive T cells in the blood of T1D patients and
at-risk individuals was reported in the early 1990s (21).
Since then, more than 100 epitopes, derived from over
10 antigens, have been identified using peripheral blood as
the T-cell source (22,23). It should be noted, however, that
the majority of these epitopes have not yet been rigorously
proven to be naturally processed and presented by relevant
antigen-presenting cells. Hopes of similarly examining the
antigenic reactivities of T cells isolated from islets were
dampened by the problem of tissue accessibility, coupled
with the notion that B-cells and, thus, B-cell-specific
T cells, were unlikely to be present in the pancreata of
long-standing T1D patients. However, the Joslin Medalist
Study, which examined pancreata from T1D donors who
had lived with the disease for 50 years or more, revealed
that (3-cells were indeed still present in such individuals, as
were islet-infiltrating T cells (24). This finding led to the
realization that there was much to be learned about human
T1D, and it was surely one of the stimuli for continued
investigator-initiated studies of the human T1D pancreas
as well as the growth of the Network for Pancreatic Organ
Donors with Diabetes (nPOD), an initiative which procures
and distributes T1D pancreata to the research community
(25). These efforts have recently made possible the first
investigations of the antigenic specificities (26-29) and
T-cell receptor repertoire (30) of human islet-infiltrating
T cells in T1D. Some of the specificities previously iden-
tified using peripheral blood have now been validated
using islet T cells, supporting the continued and comple-
mentary use of peripheral blood T cells for antigen iden-
tification efforts, and new specificities have also been
uncovered. Whether some specificities will be found
only in the islets, and not also in peripheral blood, remains
to be determined. However, it now appears that T cells
specific for islet antigens are enriched in the pancreas, but
not in the blood or pancreatic lymph nodes, of donors
having T1D compared with donors without diabetes
(20,31). Another important open question relevant to
both antigen identification and T-cell receptor repertoire
analyses is what proportion of the human islet-infiltrating
T cells are truly specific for islet antigens. Findings from
several mouse studies support the idea that islet-infiltrating
T cells may be largely B-cell-specific (32,33), but this
remains controversial (34,35) and ideally would be
addressed using human samples. These open questions
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Table 1—Major autoantigens used in human T1D diagnosis and risk assessment

Human T1D
Autoantigen Expression Subcellular location Antibodies CD4* T cells CD8* T cells
Insulin B-cell Secretory granule + + +
GAD65 Neuroendocrine Synaptic-like microvesicles + + +
1A-2 Neuroendocrine Secretory granule + + +
ZnT8 B-cell Secretory granule + + +

notwithstanding, the discovery of previously unknown
specificities using islet T cells has breathed new life into
the antigen identification efforts of the T1D community
and has encouraged collaboration and consultation with
those studying other related disease entities.

Modified Epitopes

Celiac disease is an enteropathy mediated by a T-cell re-
sponse to gluten peptides in which tissue transglutaminase
2 has converted at least one glutamine to glutamic acid
(36). The deamidation of glutamine residues in gliadin and
other wheat proteins generates high-affinity peptide
ligands for the disease-associated HLA-DQ alleles (36).
This reflects the preference of HLA-DQ2 and HLA-DQS8
for peptides with acidic residues, and the resultant con-
version of glutamine to glutamic acid facilitates the bind-
ing of these peptides to the disease-associated alleles.
Unlike in T1D, in celiac disease an immune response
with a defined onset can be experimentally induced in
humans with an oral gluten challenge, thus greatly facil-
itating the antigen identification efforts that led to these
discoveries. Despite this important difference, T1D inves-
tigators continue to draw inspiration from their celiac
disease colleagues, especially since the two diseases share
a genetic association with the same HLA-DQ alleles. Dea-
midated peptides of several classical T1D antigens, i.e.,
insulin (37,38), GAD65 (37,39), and IA-2 (26,40), have
recently been shown to be recognized by peripheral blood
and/or islet T cells from T1D patients.

The association of citrullination of arginine residues of
joint autoantigens with rheumatoid arthritis was first sug-
gested by a genetic association with a single nucleotide poly-
morphism that affects stability of the PADI4 transcript,
encoding protein-arginine deiminase type-4 (41). Subsequent
studies have indeed shown citrullinated joint autoantigens to
be the target of both autoantibodies (42,43) and also CD4" T
cells restricted by the rheumatoid arthritis—associated alleles

HLA-DR4 and -DR1 (44,45). Citrullination, at least in part,
appears to dictate the binding of autoantigen-derived
peptides to disease-associated HLA-DR molecules as well
as affecting T-cell recognition by some patient-derived
T-cell clones. As in rheumatoid arthritis, autoantibodies
(19,46) and T cells from patients with T1D, including islet-
infiltrating ones, have also been shown to respond to
citrullinated autoantigens including GRP78 (19,26),
GADG65 (39), and IAPP (26).

Another recent advance has been the identification of
so-called hybrid insulin peptides, which comprise peptide
fragments derived from both insulin and other insulin
secretory granule proteins that are fused together to form
the hybrid peptide. Though first identified as the cognate
antigens for pathogenic CD4" T-cell clones derived from
NOD mice, their potential importance in human T1D was
suggested by the finding that they are also recognized by
islet-infiltrating T cells obtained from patients (26,27).

These discoveries support the contention that antigen
identification efforts in T1D must continue, as novel and
important insights are still arising from such work. They
also suggest the cautionary note that antigen identifica-
tion efforts should consider posttranslationally modified
peptides and other forms of neoepitopes (e.g., ones
generated by translation of RNA splicing variants [20]
or alternative open reading frame usage [47]) whenever
feasible. For example, recently it was reported that a de-
fective ribosomal product, or DRiP (48), can be translated
from the human insulin mRNA when an out-of-frame
downstream AUG serves as a translation initiation site.
This leads to usage of an alternative reading frame that
includes the 3’ untranslated region and the synthesis of
a product having 43 amino acids (47). A nonapeptide
derived from this was predicted to bind well to the human
class I MHC molecule HLA-A*02:01 and was found to be
recognized by CD8" T cells from HLA-A*02:01-positive
T1D patients (47).

Table 2—Select additional established autoantigens in human T1D

Human T1D
Autoantigen Expression Subcellular location Antibodies CD4* T cells CD8" T cells
IGRP B-cell Endoplasmic reticulum + +
ChgA Neuroendocrine Secretory granule + +
IAPP B-cell Secretory granule + + +
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Table 3—Examples of recently identified autoantigens in human T1D

Human T1D
Autoantigen Expression Subcellular location Antibodies CD4* T cells CD8" T cells
Peripherin Neuroendocrine Filaments +
Tetraspanin-7 Neuroendocrine Plasma membrane +
P4Hb Not restricted Endoplasmic reticulum +
GRP78 Not restricted Endoplasmic reticulum + +
Urocortin-3 B-cell, a-cell Secretory granule +

Insulin gene enhancer protein isl-1 Not restricted

The burgeoning area of neoepitopes in T1D is ushering
in the idea of the B-cell contributing to its own demise
(49), in the sense that neoepitope formation, including
alternative open reading frame usage, can be enhanced
under conditions of endoplasmic reticulum stress and
inflammation (47,50,51), with the resulting neoepitopes
potentially contributing to the breakdown of immunolog-
ical self-tolerance. Furthermore, B-cells have recently been
shown to release peptides derived from insulin catabolism
into the circulation, and these peptides can subsequently
activate pathogenic insulin-specific T cells (52).

Disease Heterogeneity

It is now becoming appreciated that, whether designing
antigen identification strategies or clinical trials, T1D
should not simply be viewed as a single disease but rather
as a heterogeneous entity. Some aspects of heterogeneity,
e.g., age at onset, have long been known and appreciated,
while others, such as the pattern of autoantibody appear-
ance (53,54) and pancreatic immune cell presence (both
among individuals and among islets in a single individual)
(25,55,56), have only been ushered in relatively recently.
From studies of insulitic lesions, among other approaches,
investigators are now working to identify T1D endotypes, or
subsets of the disease likely sharing a common pathogenic
mechanism (57). Characterization of the spectrum of anti-
gens and epitopes recognized in each case will likely help in
these efforts. This is important work, as disease heteroge-
neity has been blamed, at least in part, for the failure of the
field to identify a robust preventive or reversal strategy for
T1D, despite years of earnest and exhausting efforts (58).

IDENTIFICATION OF NEW AUTOANTIGENS AND
EPITOPES IN T1D

With multiple established autoantigens well accepted by
the field (Tables 1 and 2), the quest to identify new
autoantigens may seem redundant on first inspection.
However, additional autoantigens may not only prove to
be powerful targets of immunomodulatory therapies but
also shed light on the pathogenesis of T1D. Moreover,
given the noted heterogeneity of the disease, a more
personalized approach to immune profiling will be facili-
tated through the validation of a broader spectrum of

Nucleus

disease-relevant autoantigens. Additional autoantigens
may also help to further stratify treatment modalities
and provide diagnostic or prognostic tests that go beyond
current clinical management of individuals with T1D.
Perhaps more importantly, there is still an immediate
requirement to identify the HLA class I- and class II-
restricted epitopes recognized by autoreactive T cells in
T1D, as the vast majority of identified and validated T-cell
epitopes are restricted to a mere handful of HLA alleles
(22,23). Given the independent associations of HLA class I
and class II alleles with disease (2), understanding the
T-cell reactivity on a personalized basis will herald in a new
era of T1D treatments and diagnostics.

In addition to a requirement to identify additional
autoantigens of relevance to different stages of the disease,
understanding the role of posttranslational modifications
of both new and established autoantigens is critical for the
launching of new therapies and for providing a molecular
basis of the disease. Posttranslational modification of
antigens can impact the liberation of immunogenic epit-
opes during antigen processing (59), altering the spectrum
of presented peptides. Modification of peptide antigens
can also affect their binding to different HLA alleles, with
some modifications enhancing binding to disease-associated
allomorphs (37,49,59,60) and others providing novel tar-
gets for T-cell recognition (61-70).

Besides modification of antigens by processes such as
deamidation and citrullination, a more novel class of
neoepitopes has also been implicated in T1D. This class
is potentially generated through transpeptidation, a re-
verse proteolysis reaction, that can generate spliced or
hybrid peptide antigens such as the hybrid insulin peptides
recognized by CD4" T cells discussed above (27). Likewise,
recent studies have also emphasized the contribution of
proteasomal or other posttranslational splicing reactions
to the class I MHC antigen processing pathway (71-75),
estimated in multiple studies (71,72), though not in all
(73), to contribute an astonishing 30% of peptides to the
peptide repertoire of antigen-presenting cells. While their
role in T1D is not yet apparent, such peptides may be
targets of the autoimmune response in T1D. Consistent
with this notion is the recent finding that a peptide derived
from noncontiguous parts of IAPP is recognized by islet-
infiltrating CD8" T cells from T1D patients (20).
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NOVEL TECHNOLOGIES IN T-CELL RESPONSE
AND AUTOANTIGEN IDENTIFICATION AND
CHARACTERIZATION

T1D has seen a recent uptake of new and novel technol-
ogies for the characterization of T-cell responses and the
identification of autoantigens. Prominent among these has
been recent progress in the development of autoimmune-
prone mice “humanized” to express HLA molecules for use
in epitope mapping and pathogenicity studies (76-78).
Similarly, the generation of tissue repositories has facili-
tated the production of islet-derived T-cell clone libraries
and related resources for the validation and discovery of
novel T-cell targets (25,26,29,30,79). Such resources can
be interrogated with synthetic peptides, antigen prepara-
tions from islets and other sources, or with relevant
peptide-MHC multimers. Though not limited to T1D-
related antigens, the Immune Epitope Database (iedb.
org) is a critical resource for the selection of candidates
for such screening efforts (80). In each case, appropriate
posttranslational modifications can be introduced, as is
particularly evident by recent studies with HLA class II
tetramers in T1D (19,40) and other autoimmune diseases
(45,81,82). Multiplexing these assays, particularly tet-
ramers with either coded fluorophores (83,84), mass
cytometry tags (85), or DNA bar codes (86,87), signifi-
cantly extends the use of this screening technology and
interfaces with single-cell genomic studies to study gene
expression in autoreactive T-cell clones (86,87). Indeed,
advances in single-cell analysis have led to extrapolation
of T-cell and B-cell reactivity profiles and the identifica-
tion of additional modifiers of disease. At least for class I
MHC-restricted T-cell epitopes, coupling peptide/MHC
multimer technology with other analyses may be of par-
ticular importance, given the recent finding that the
frequency of tetramer-binding islet-reactive CD8" T cells
in peripheral blood does not differ between T1D patients
and healthy control subjects (31).

Finally, continued development of unbiased approaches
for antigen and epitope identification is also urgently
needed. In one such strategy, small molecules are used
as “epitope surrogates” to enrich for T1D-specific autoanti-
bodies from patient sera (16). The enriched antibodies are
then used to identify the target protein(s), the approach
that yielded the identification of phosphorylated periph-
erin as an autoantigen in T1D (Table 3) (16). Likewise,
serum screening of a nucleic acid-programmable, cell-free
protein array, designed in an unbiased manner (i.e., with-
out regard to pancreas expression level), recently revealed
close to 20 previously unidentified targets of the autoan-
tibody response in T1D (88). These targets await further
study. It should be noted that each autoantigen discovery
approach has its own characteristic strengths and weak-
nesses (89). Thus, the different strategies are best viewed
as complementary rather than competing or redundant.

In the quest for unbiased approaches for antigen and
epitope identification, mass spectrometry has certainly
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risen to the fore. Improvements in sensitivity and speed of
this instrumentation now make peptidome profiling of
HLA-bound peptides relatively routine and have opened
up the possibility to work with limited patient-derived
material (90,91). Such analysis also allows for unambigu-
ous definition of posttranslational modifications of epit-
opes (92-95) or from proteome extracts (19,96-98) of
patient-derived material. To date, characterization of the
HLA class I-bound peptides from human 3-cells has been
limited, primarily due to difficulties in obtaining sufficient
material (20). Islets harvested from cadaveric donors with
T1D have very few B-cells remaining, and those from
donors without diabetes have naturally low levels of cell
surface HLA expression in the absence of inflammation,
making direct detection of presented peptides challenging.
To circumvent these issues, various approaches have been
used to discover epitopes of relevance to T1D including the
direct biochemical isolation and characterization of natu-
rally presented autoantigen-derived peptides from murine
B-cell lines (99), stably transfected human non—-cell lines
expressing autoantigen(s) and cell surface HLA allotypes of
interest (100,101), or human B-cell lines generated by
targeted oncogenesis (20). These latter approaches take
advantage of the cellular antigen processing machinery
and can directly identify the antigenic peptides sampled
for cell surface presentation by disease-associated MHC
molecules, although questions remain as to whether such
approaches faithfully represent natural presentation on
primary human B-cells. Peptidomics was recently com-
bined with transcriptomics to identify peptides derived
from two new autoantigens, insulin gene enhancer protein
isl-1 and urocortin-3 (Table 3), for which the cognate
T cells are enriched in the pancreata of T1D donors
compared with those without diabetes (20).

CONCLUSION

A more complete knowledge of the specificities of T and B
cells in T1D will assist in the development of targeted
immune tolerance as well as in diagnosis, patient charac-
terization, and pre- and posttherapy immune monitoring.
Exhilarating recent discoveries, such as T-cell recognition
of hybrid and other posttranslationally modified peptides,
have demonstrated that much remains to be discovered.
Targeted immune system tolerance remains a highly
sought-after yet elusive goal for the prevention and treat-
ment of T1D. The need is urgent, given that the incidence
of the disease is on the rise, and T1D associated with
immune checkpoint inhibitor therapy for cancer is an
emerging entity also requiring our focused and immediate
attention.
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