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Fc gamma receptors (FcgR) are cell surface glycoproteins which trigger specific effector-
cell responses when cross-linked with the Fc portions of immunoglobulin (IgG) antibodies.
During HIV-1 infection, the course of disease progression, ART response, and viral
reservoir size vary in different individuals. Several factors may account for these
differences; however, Fc gamma receptor gene polymorphisms, which influence
receptor binding to IgG antibodies, are likely to play a key role. FcgRIIa (CD32) was
recently reported as a potential marker for latent HIV reservoir, however, this assertion is
still inconclusive. Whether FcgR polymorphisms influence the size of the viral reservoir,
remains an important question in HIV cure studies. In addition, potential cure or viral
suppression methods such as broadly neutralizing antibody (bNAbs) may depend on
FcgRs to control the virus. Here, we discuss the current evidence on the potential role
played by FcgR polymorphisms in HIV-1 infection, treatment and vaccine trial outcomes.
Importantly, we highlight contrasting findings that may be due to multiple factors and the
relatively limited data from African populations. We recommend further studies especially
in sub-Saharan Africa to confirm the role of FcgRIIa in the establishment of latent reservoir
and to determine their influence in therapies involving bNAbs.

Keywords: FcgR polymorphisms, HIV-1 latent reservoirs, HIV-1 cure strategies, HIV-1 disease progression, broadly
neutralizing antibodies
Abbreviations: ART, Anti-Retroviral Therapy; ADCC, Antibody-Dependent Cellular Cytotoxicity; ADCD, Antibody-
Dependent Complement Deposition; ADCP, Antibody-Dependent Cellular Phagocytosis; ADCVI, Antibody-Dependent
Cell-mediated Virus Inhibition; bNAbs, Broadly neutralizing antibody; CD4 T cells, Cluster of Differentiation 4 T cells; CNVs,
Copy Number Variations; DC’s, Dendritic Cells; EC, Extracellular Domain; FcgR, Fc gamma receptors; FCGR, Fc gamma
receptor gene; GPI, Glycosylphosphatidylinositol-anchored; HLA, Human Leukocyte Antigen; HIV, Human
Immunodeficiency Virus; ITAM, Immunoreceptor Tyrosine-based Activation Motif; ITIM, Immunoreceptor Tyrosine-
based Inhibitory Motif; IgG, Immunoglobulin; IC, Intracellular Domain; NK, Natural Killer Cells; SNPs, Single Nucleotide
Polymorphisms; TM, Transmembrane Domain.
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INTRODUCTION

An estimated 37.9 million people are infected with the human
immunodeficiency virus (HIV). The burden of disease is highest
in sub-Saharan Africa, where approximately 25.6 million people
live with the virus (1).

For most patients infected with HIV, antibodies elicited by
the host immune system have limited potential to neutralize the
virus. The result is a gradual decline of host CD4+ T cells leading
to full blown acquired immune deficiency syndrome (AIDS) over
time. Antiretroviral therapy (ART) is able to suppress the virus
and reverse the decline in CD4 count in most patients. However,
ART does not provide cure due to a stable latent reservoir
established early in the infection process in resting CD4+ T
cells, macrophages and other cells.

The course of HIV-1 infection, disease progression, ART
response, and reservoir size vary in different individuals. For
instance, long term non-progressors can maintain high CD4
count, and control the virus for up to 10 years without ART (2–4),
compared to “rapid progressors” who develop full blown AIDS
within 3-4 years of infection (5, 6). Then, there is the rare group of
HIV-1 infected individuals called “elite controllers”, who can
maintain a viral load of less than 50 copies/ml without ART for
even longer periods (7, 8). These elite controllers and long term
non-progressors, have a smaller viral reservoir (9, 10). Viral
factors such as deletions or mutations in key viral genes have
been implicated in the differences in natural HIV control. Factors
such as source of HIV infection, timing of ART and ethnicity have
all been cited as potential determinants of viral reservoir size (11).
However, host genetic factors such as human leukocyte antigen
(HLA) and polymorphisms in Fc gamma receptor (FCGR) genes
which influence the receptor binding to immunoglobulin (Ig) G
antibodies are likely to be even more critical. FcgR gene copy
number variations (CNVs) and/or single nucleotide
polymorphisms (SNPs) could cause differences in Fc gamma
receptor (FcgR) expression density on effector cell surface,
binding affinity to IgG subclasses and signaling potential which
would influence HIV-1 infection risk, disease progression and
vaccine efficacy (12, 13). In this review, we summarize current
knowledge on the role of FcgR gene polymorphisms and HIV-1
infection, in relation to ART outcomes and control of the viral
reservoir. We will explore the idea that FcgR polymorphisms
could help explain the differences in HIV-1 infection outcomes,
responses to ART and broadly neutralizing antibodies (bNAbs)
and influence the size of the viral reservoir.
OVERVIEW OF FCgRS AND THEIR ROLE
IN HOST IMMUNITY

FcgRs are cell surface glycoproteins that bind the Fc portions of
different IgG subclasses to trigger different cell effector functions
(14, 15). FcgRs are expressed on most immune cells including
monocytes, natural killer (NK) cells, B cells, eosinophils,
basophils, dendritic cells, platelets, macrophages, and some
subpopulations of T cells (16–18).
Frontiers in Immunology | www.frontiersin.org 2
There are three main classes of FcgRs namely FcgRI (CD64),
FcgRII (CD32) and FcgRIII (CD16) each with different isoforms
encoded by different genes (Figure 1). The FcgRI family of
receptors consist of 3 genes (FCGR1A, FCGR1B and FCGR1C)
that share about 98% sequence homology and thought to flank
the centromere of chromosome 1 at bands 1p12 (FCGR1B) and
1q21 (FCGR1A and FCGR1C) (19). FcgRIA is the only known
high affinity FcgR. It is expressed by monocytes, dendritic cells
(DC’s), macrophages and neutrophils (20) and plays a role in
antibody mediated phagocytosis. The FcgRII family of receptors
have low binding affinity for IgG and are encoded by three genes
(FCGR2A, FCGR2B and FCGR2C) located on chromosome
1q23.3 (16, 21). They are expressed on neutrophils, DC’s,
monocytes, B cells, NK cells, myeloid cells, and platelets.
FcgRII family of receptors do not use the common Fcg-chain
for activation (FcgRIIa and FcgRIIc) or inhibitory (FcgRIIb)
signaling because their Immunoreceptor Tyrosine-based
Activation Motifs (ITAM) or Immunoreceptor Tyrosine-based
Inhibitory Motifs (ITIM) are located directly in the intracellular
cytoplasmic domain (22). The FcgRIIc gene is expressed on NK
cells only with 13Q allele due to the glutamine (Q)/stop (STP)
polymorphism at codon 13 located in the first extracellular
domain (23, 24).

FcgRIII family is encoded by 2 genes (FCGR3A and FCGR3B)
for the receptors (FcgRIIIa and FcgRIIIb). Although these
receptors are also low affinity binding, they can both bind
efficiently to multimeric IgG and immune complexes. FcgRIIIa
receptor can also bind with intermediate affinity and expressed
on monocytes, tissue specific macrophages, dendritic cells, NK
cells and gamma/delta T cells (21). The FCGR3B gene, encodes a
glycosylphosphatidylinositol (GPI)-anchored receptor, which is
highly expressed on neutrophils (25). These FcgR proteins bind
to different IgG subclasses and regulate immunity by causing cell
activation or inhibition depending on the receptors engaged (16).
The mechanisms for Fc-mediated activities include antibody-
dependent cellular cytotoxicity (ADCC), antibody-dependent
cellular phagocytosis (ADCP), antibody-dependent cell-
mediated virus inhibition (ADCVI), antibody-dependent
complement deposition (ADCD), aggregation, and immune
activation (26–28). They also induce cytokine production via
their immune activating or inhibitory motifs (22). Thus FcgR
polymorphisms may influence diverse effector functions such as
cytotoxicity, phagocytosis, cytokine production, antigen
presentation and degranulation and may contribute to the
outcome of infections (29). For instance, in encapsulated
bacterial infections, FcgRIIa-131H may be involved in efficient
clearance of IgG2-coated particles since it has a higher binding
affinity for IgG2 (30–32). Conversely, homozygous FcgRIIa-131R
genotype has been associated with severe forms of encapsulated
bacterial infection (30, 31, 33, 34).

The allelic differences that affect FcgR function are also
important in host immune mechanisms against viral infections.
FcgRIIa-131H/H homozygous infants were found to be
more susceptible to perinatal HIV transmission (35) but in
other studies no associations between FcgRIIa genotypes and
HIV infection rates were noted (36), suggesting further
May 2021 | Volume 12 | Article 656894
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investigations are needed. In HIV-1 patients, FcgRIIIa-V176F
genotype is associated with the development of Kaposi’s sarcoma
and cryptococcal disease (12, 37, 38). Other studies have
implicated the FcgRIIa-R131 allele in Dengue (39–41), and
other viral infections (34, 42, 43). FcgRIIb inhibits activation
signals from activating FcgRs (18) and the FcgRIIb-232T allele
elicits reduced inhibitory signaling and has been associated with
inflammatory diseases (44), however, it has not been extensively
studied in HIV (45). These studies show that different FcgR
polymorphisms influence effector functions in diverse ways and
subsequently impacts on infection outcomes differently
(Table 1).
FCgR POLYMORPHISMS AND THE RISK
OF HIV-1 INFECTION WITH AND
WITHOUT VACCINES

Studies have not provided conclusive data on the association
between FcgR polymorphisms and HIV-1 infection (56). For
instance, contrasting results were reported when FcgRIIa and
FcgRIIIa were examined with the risk of perinatal HIV-1
infection among infants in Kenya (35, 48). Whereas Brouwer
et al., found that infant FcgRIIa-H131H (rs1801274) genotype
was associated with susceptibility to perinatal HIV-1
transmission, Milligan and colleagues observed no such
association with both FcgRIIa and FcgRIIIa. Rather, they
observed that maternal FcgRIIIa-V176F genotypes may lead to
higher risk of mother to child transmission compared to the
Frontiers in Immunology | www.frontiersin.org 3
homozygous (V/V or F/F) genotype carriers. The differences in
these results could be attributed to differences in the cohort
design as well as statistical rigor (48). More work is needed to
define the role of these genotypes in mother to child HIV-1
transmission. Such a study may involve using harmonized
protocols in a multi-center recruitment of a reasonably large
number of HIV-1 infected pregnant women, determining their
FcgR genotypes and monitoring their viral load throughout the
pregnancy till birth. The HIV-1 infection status and FcgR
genotypes of the child could then be determined to assess the
genotype association with mother to child HIV-1 transmission.

A study that used samples from the European Multicenter
AIDS Cohort Study (MACS), found an association between
FcgRIIa-131R/R genotype and a faster rate of CD4+ T cell
decline and disease progression compared to individuals with
the R131H or H131H genotypes (12). This may be due to the
weaker binding of the 131R/R receptor to IgG2 and IgG3
immune complexes. In-vitro experiments have shown that
monocytes bearing this receptor do not efficiently internalize
HIV-1 complexes, compared to 131H/H receptors (12, 58).
Furthermore, the expression of FcgRIIa on immune cells leads
to the activation and production of proinflammatory cytokines,
an indication that FcgRIIa-mediated T-cell activation would be
more efficient in individuals carrying the FcgRIIa-H/H genotype
(59, 60). This suggests that FcgRIIa polymorphism may also
indirectly influence CD4+ T cell function, and subsequent
disease progression through its effect on immune complex
internalization by monocytes and dendritic cells leading to
their activation (59, 60).
FIGURE 1 | The human FCGRs consists of 3 classes; FcgRI (CD64), FcgRII (CD32) and FcgRIII (CD16), of which FcgRI has high affinity to bind to antibody Fc-
fragment. FcgRII and FcgRIII have low affinity for IgG binding. They are also classified as activating or inhibitory due to the signals induced by FcR crosslinking. The
FcgRI, FcgRIIa/IIc and FcgRIIIa and FcgRIIIb proteins contain the immunoreceptor tyrosine based activating motifs (ITAM), whiles FcgRIIb is the only receptor that
contains the immunoreceptor tyrosine based inhibitory motif (ITIM), in its cytoplasmic domain. Additionally, the FcgRIIIb gene encodes a glycosylphosphatidylinositol
(GPI) -anchored receptor, and this encodes human neutrophil specific antigen 1 (HNA1a, b and c). Several functional polymorphisms exist in the FcgR genes,
including the FcgRIIa-131H/R of which the 131-H allele has a high binding affinity to IgG2 and FcgRIIIa-176V/F with the 176-V allele being more effective at mediating
phagocytosis. The FcgRIIc gene encodes either a glutamine (Q) or a stop codon (STP) at position 13 while the 232-T allele of the FcgRIIb 232I/T polymorphism has a
reduced inhibitory signaling capacity. EC, extracellular domain; TM, transmembrane domain; IC, intracellular domain. Summaries of studies that have investigated
different interactions between the receptors on different HIV infection outcomes have been provided in Tables 1, 2.
May 2021 | Volume 12 | Article 656894
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Surprisingly, the 131R/R genotype was found to be associated
with decreased AIDS-induced pneumonias compared to the
131H/H genotype in the MACS cohort. Given that FcgRIIa
also binds to C-reactive proteins (61), it is possible that during
bacterial infections, carriers of the 131R/R genotype may have
higher levels of CRP to opsonize IgG2-coated microbes and
activate the complement receptors to clear infection (62).
Frontiers in Immunology | www.frontiersin.org 4
A recent study showed that HIV-1 patients with homozygous
176V for the FcgRIIIa-V176F (rs396991) polymorphisms and/or
Y158H (rs396716) genotypes have higher HIV-1 specific ADCC
response (49). It was hypothesized that the V176F
polymorphism improves the binding capacity between the Fc
receptor and anti-HIV-1 antibody, indicating that the FcgRIIIa
receptor expressed on NK cells induced strong ADCC response
TABLE 1 | Studies of FcgR polymorphisms and infection outcomes.

Population
from

Type of
study

Sample size Receptor Main outcome Reference

Kenya In vitro 250 female sex
workers

FcgRIIa (rs1801274)
and FcgRIIIa (rs 396991)

No association with HIV-1 disease progression, viral set point
or CD4 decline. Examined with individuals with FcgRIIa 131-
H/R or H/H and FcgRIIIa 176-F/V, F/F or V/V genotypes.

(46)

USA,
African
Americans

Genotyping 172 HIV-1
progressors and
natural viral
controllers

FcgRIIa (rs1801274) and FcgRIIIa and (rs
396991)

FcgRIIIa-V176 but not FcgRIIa-H131 was significantly
associated with HIV-1 disease progression.

(47)

Kenyan Genotyping 379 mother-infant
pairs

FcgRIIa (rs1801274) and FcgRIIIa
(rs396991)

Infant FcgRIIa and FcgRIIIa were not associated with risk of
HIV-1 infection or disease progression. Risk of transmission
increased with maternal FcgRIIIa.

(48)

India Genotyping
and in vitro

63 HIV-1 infected
individuals and 76
HIV-1 controls

FcgRIIIa (rs396991 and rs396716) FcgRIIIa-V176F (rs396991) and Y158H (rs396716) genotypes
significantly associated with higher HIV-1 specific ADCC
response.

(49)

USA Genotyping 559 HIV-1 infected
males

FcgRIIa (rs1801274) and FcgRIIIa
(rs396991)

Association with risk of HIV-1 infection progression and
faster rate of CD4 decline for FcgRIIa-131RR. FcgRIIIa-V176F
alleles were associated with risk of Kaposi’s sarcoma.

(12)

Rwanda
and Zambia

Genotyping
and in vitro

836 HIV-1 infected
Heterosexual sero-
discordant couples

FcgRIIa and FcgRIIIa No clear FcgRIIa-H131R and FcgRIIIa-V176F association with
time to HIV-1 acquisition, viral load in early infection, or CD4+
T-cell decline over time after infection.

(50)

Paris In vitro 12 HIV-1 infected
individuals

FcgRIIa (CD32a) A marker for HIV-1 reservoir. (51)

Thailand In vitro 125 HIV-1 infected
individuals

FcgRIIc (rs114945036) Associated with protection from HIV-1 infection in RV144
vaccine recipients in individuals carrying the FCGR2C
126C>T genotypes.

(13)

Spain In vitro 23 HIV-1 infected
males

FcgRIIa (CD32a) A marker for T cell activation, but not for HIV-1 reservoir. (52)

USA In vitro 58 HIV-1 infected
males and females

FcgRIIa and FcgRIIIa All genotypes were associated with enhanced FcgR signaling
in HIV-1 viremic controllers.

(53)

South Africa In vitro 193 HIV-1 infected
and control
subjects

*FcgRIIc (rs138747765, rs78603008,
rs373013207 rs201984478) and FcgRIIIb
(rs34322334, rs61803026, rs34085961)

FCGR2C-TATA and FCGR3B-AGA haplotypes increased the
risk of HIV-1 acquisition in some HVTN 505 vaccinees but
not in others.

(54)

Kenya In vitro 448 HIV-1
seropositive
women and their
infants

FcgRIIa
(rs1801274)

Infant FcgRIIa-H131H genotype was associated with risk of
perinatal HIV-1 transmission.

(35)

Kenya In vitro 903 pregnant
women

FcgRIIa
(rs1801274)

FcgRIIa-131H/H genotype associated with high risk of
placental malaria in HIV-1 positive women compared to HIV
negative women.

(55)

Europe Genetic
association
studies

7,247 population
samples

FcgRIIa (rs1801274) and FcgRIIIa
(rs396991)

No association of these polymorphisms in HIV-1 acquisition (56)

USA In Vitro/In
vivo

1725 male subjects FcgRIIa (rs1801274) and FcgRIIIa
(rs396991)

Homozygous FcgRIIIa V176 allele individuals were more likely
to acquire HIV -1 among vaccinees. No association of
FcgRIIa genotype and HIV-1 infection rate

(36)

South India In vitro 120 Periodontitis
subjects and
controls

FcgRIIIa
(rs396991)

FcgRIIIa-V176V genotype may be a risk factor for chronic
periodontitis

(57)

USA In vitro 250 male subjects FcgRIIIa
(rs396991)

FcgRIIIa-V176F genotype significantly associated with the risk
of developing Kaposi’s sarcoma during HIV-1 infection.

(37)

USA In vitro 164 HIV infected
cases and controls

FcgRIIIa
(rs396991)

An association between the FcgRIIIa-176V allele and risk for
HIV-1 associated cryptococcal disease.

(38)
May 2021 | Volume 12 | Art
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for viral clearance (63, 64). When Geraghty et al. examined the
role of FcgRIIa-(rs1801274) and FcgRIIIa-(rs396991)
polymorphisms in 6300 HIV+ adults with European ancestry
from a previous GWAS (65), they did not find any association
between these polymorphisms and HIV acquisition (56).
Furthermore, in the largest study of its kind in Africa,
Connolly and colleagues also found no association between
FcgRIIa-H131R (rs1801274) and FcgRIIIa-V176F (rs396991)
variants and HIV infection or CD4+ T-cell decline in two
cohorts in Rwanda and Zambia (50).

Accumulating evidence suggest that FcgR polymorphisms
may play a key role in HIV-1 acquisition when vaccines are
involved (13, 36, 54, 66–68). In the recombinant HIV-1
glycoprotein (gp120) Vax004 vaccine trial in the USA, those
homozygous for the FcgRIIIa V176 allele in the lowest behavioral
risk group were more likely to acquire HIV compared to
individuals carrying the FcgRIIIa 176F or V176F genotypes in
the same behavioral risk group (36). However, in that same
study, no FcgRIIa-H131R (rs1801274) genotype was associated
with increased risk of HIV among vaccine and placebo
recipients. Furthermore, in the RV144 trial in Thailand, a SNP
in FCGR2C (126C>T, rs114945036) was associated with vaccine
efficacy. The study found an 11 to 15% efficacy in CC subjects
compared to 64 to 91% in CT/TT subjects with the HIV subtype
CRF01_AE 169K HIV-1 (13). On the contrary, in the HVTN 505
vaccine trial, the effect modification of this SNP with respect to
vaccine efficacy was not significant. However, other four SNPs;
(FCGR2C-exon06-441-C/T, rs138747765, FCGR2C-intron06-
590-G/A, r s78603008 , FCGR2C - in t ron15-403-C/T,
rs373013207 and FCGR2C-intron15-433-G/A, rs201984478),
were associated with increased risk of acquiring HIV in those
vaccinated compared to the placebo group (54). These studies
provide evidence that FcgR polymorphisms impact HIV-1
infection outcomes differently in vaccine recipients. The
affinity of different IgG isotypes and the expression pattern of
these FcgR on effector cells could account for these differences.
For instance, when neutralizing antibodies induced during HIV-
1 vaccination (69, 70) are ineffective against the virus, the
antibody-virus complexes formed could lead to antibody
dependent enhancement, resulting in virus spread among cells
expressing these receptors (71–73).

It is also possible that vaccine types and their modes of
delivery could trigger different FcgR responses. For instance,
the RV144 vaccine consists of recombinant canarypox vector
containing HIV antigens and recombinant gp120 administered
in a prime-boosted regimen, while the HVTN 505 vaccine was
made of a recombinant adenovirus serotype 5 vector boost
(DNA/rAd5). The HVTN 505 vaccination increased the risk of
HIV-1 acquisition. In addition, there were additional FcgR SNPs
in HVTN 505 (FCGR3B SNPs) that modified vaccine effect in
relation to HIV-1 acquisition compared to the RV144 vaccine
recipients who had no such SNP associations (54). Furthermore,
some minor SNPs identified on FCGR2C intron 6 were found to
be in high linkage disequilibrium with others. This SNP may
have selectively modulated the expression of FcgR effector
functions differently in the two vaccines mentioned above (54).
The FCGR2C polymorphisms, which was found in Thai RV144
Frontiers in Immunology | www.frontiersin.org 5
vaccinees (13), was absent in Africans. This has implications for
determining vaccine responses in other populations, if these
FCGR2C polymorphisms are used as a proxy for FcgRIIc
expression (45). Hence, it is possible that ethnic group, vaccine
types and methods for delivering the vaccines may all trigger
differences in FcgR dependent responses.

It has been proposed that during vaccination, FcgR
polymorphism influence HIV-1 acquisition through their effect
on the innate immune response. During HIV-1 infection,
plasmacytoid dendritic cells produce high levels of interferon,
which restricts the replication of virus (74). However, when viral
particles are opsonized, there is suppression of type I and III
interferons that are produced via FcgR-mediated mechanisms.
This results in the lowering of the interferon levels required to
block infection (54, 75).

FcgR polymorphisms also determine the affinity to the Fc
region of IgG and alter its functionality after vaccination. For
instance, in the HVTN 505 vaccine trial, differences in FcgRIIa
binding and gp140-specific ADCP activity among the vaccine
and control groups occurred in only one genotype of the FcgRIIa
and FcgRIIb SNPs (54). This suggests that FcgR polymorphisms
influenced the variation observed in the Fc region of the IgG
induced after HVTN 505 vaccination (54). Also, studies have
shown variation in Fc glycosylation of HIV-specific antibodies in
HIV-1 infected patients and vaccine recipients, an indication
that it regulates antibody and FcgR interaction (76, 77). Although
these findings suggest possible mechanisms associated with
increased risk of HIV-1infection in HVTN-505 vaccine among
individuals carrying certain FcgRIIc genotypes, the same effect
could not be established among recipients of the RV144 vaccine.
These studies underscore the need to consider FcgR
polymorphisms in HIV-1 vaccine trials, since they regulate
vaccine-induced immunity, which impacts on HIV infection
outcomes (36, 54).
FCgR Polymorphisms, HIV Disease
Progression and ART Outcomes

Several studies have evaluated FcgR polymorphism and infection
progression in European populations, however, studies on FcgR
polymorphisms and ART outcomes are lacking. FcgR
polymorphisms have been shown to affect the viral reservoir
size in acute HIV-1 patients who were put on early ART (78, 79).

In a meta-analysis of several genome-wide association studies
comprising 7,266 patients in the International Collaboration for
the Genomics of HIV (ICGH), no association between FcgRIIa
(rs1801274) and FcgRIIIa (rs396991) polymorphisms and viral
set point was found [reviewed in (56)]. Similarly, in a sub-
analysis of 467 long-term non-progressors and 517 rapid
progressors, there was no association between FcgRIIa
polymorphisms and HIV-1 disease progression. Finally, in the
same meta-analysis, FcgRIIIa polymorphisms were not
associated with HIV-1 disease progression in the Swiss HIV
Cohort Study (SHCS) (56). Although another study found
homozygous FcgRIIIa-176V/V to be highly prevalent in HIV
progressors on ART compared to untreated natural viral
May 2021 | Volume 12 | Article 656894
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suppressors, they could not conclude on this polymorphism’s
association with viral set point (47). This is probably because the
use of ART for HIV progressors in this study influenced their
viral load, hence analysis with this polymorphism with respect to
viral load could not be substantiated. Similarly, a study
conducted in 253 Kenyan women to evaluate the impact of
Fc gRI I a -131H/R geno types and Fc gRI I I a -176F /V
polymorphisms on HIV-1 disease progression could not find
an association between these polymorphisms with viral load set
point, decrease in CD4 count or increase in viral load (46).

The studies above agree that FcgRIIa and FcgRIIIa genotypes
have no effect on viral load set point, but the results on disease
progression differ. The divergent results on disease progression
could be due to sample size, different study populations (i.e., men
versus women), clinical definitions and the rigorousness of
statistical methods employed. Additionally, the differences in
these genotypic profiles among the different study populations
and association with infection progression may be due to other
factors such as viral type, host immunity and genetics. Future
studies investigating the role of FcgRs in HIV-1 disease
progression should comprehensively address potential
population substructure, and longitudinally, pre-existing
neutralizing antibodies and genetic variability in the virus to
ascertain how these variables influence the outcome. Though
haplotype analyses within and between the FcgR genes may offer
crucial information on why these differences exist, such studies
have been few (11, 80). Differences within the FCGR locus for
different populations have been established (81–85). For
instance, FcgRIIIa-176V was found to be underrepresented in
Kenyan population (23.7%) compared to Europeans and Dutch
Caucasians, whiles FcgRIIa-131H and FcgRIIc were highly
prevalent in Asians compared with Caucasians (45). In
addition, the distribution of FcgRIIIb-HNA1a/HNA1b
allotypes were different among different populations, however,
the FcgRIIIb-HNA1a and FcgRIIb- 232T variants were highly
prevalent in black South Africans compared with Caucasians
(45). Different effector functions have been observed in these
populations with respect to enhanced cell activation and
neutrophil-mediated phagocytosis as a result of these
polymorphisms (45). Furthermore, gene copy number
variations (CNVs) in FcgRIIc, FcgRIIIa and FcgRIIIb were
shown to play a key role in association with HIV-1 infection
and ART outcomes (45, 80).

Most of the studies on FcgR polymorphisms were conducted
in Europe, USA, Asia and a few in South Africa. Data on the
impact of FcgR polymorphisms and CNV on HIV-1 infection are
limited in most African populations (12, 13, 45). One study
examining the effect of FcgRIIc, FcgRIIIa and FcgRIIIb CNV in
Ethiopian and Tanzanian cohorts found no effect on immune
reconstitution post ART (80). Thus, supporting the limited role
of poorly neutralizing or non-neutralizing antibodies in HIV-1
control (67, 86). This was contrary to the hypotheses that
different FcgRs play a key role in mediating a balance between
activating and inhibitory functions, IgG binding affinity to
receptors and antibody mediated responses in HIV-1 infection
progression. These findings in the Tanzanian and Ethiopian
cohorts could also be due to epistatic interactions between
Frontiers in Immunology | www.frontiersin.org 6
these FcgR variants and IgG affinity, that will mediate HIV
pathogenesis as evidenced in KIR/HLA variants (87).

Importantly, data is lacking on FcgR influence on HIV-1
disease progression and ART responses in African populations,
though the continent bears the brunt of the epidemic. Therefore,
large studies conducted in populations with African ancestry are
needed. This will provide increased power to detect population
specific genetic variations in association with disease progression,
when combined with data from European populations (11, 88).
FCgR POLYMORPHISMS AND
VIRAL RESERVOIR

Though ART has been used successfully in the management of
HIV-1 infection, replication-competent viruses persist as latent
reservoirs after long term ART usage (89). Even HIV-1 elite
controllers and long term non-progressors, harbor viral
reservoirs (9, 10). The extent of viral clearance in HIV-1
infection, will be dependent on both an efficient HIV-1 specific
immune response and a very low reservoir size (90). To achieve
an HIV cure or remission, the viral reservoir must be eliminated
or reduced to a minimum, since the size of the viral reservoir has
been shown to be a marker for disease progression and clinical
outcomes (91, 92). Therefore, reduction of the reservoir can be
used as a criterion for ART interruption in HIV-1 cure studies
(92). The impact of FcgRs on ART outcomes needs further
evaluation, since it has been hypothesized that some
polymorphisms affect the viral reservoir size in patients with
acute HIV-1 infection initiated on early ART (78, 79). However,
such studies analyzing FcgRs polymorphisms and HIV reservoir
size are currently lacking.

There is now increased focus on identifying markers for these
latent reservoirs to help in the HIV-1 cure efforts. Receptors
expressed on infected cells such as CD30 and CD32 (FcgRIIa)
and some immune checkpoint inhibiting molecules on the
surfaces of infected cells have been identified as potential
markers for latently infected cells (51, 52, 93). Recently, CD32a
(FcgRIIa) was identified as a marker of latently infected CD4 T
cells. In this study CD4+ T cells expressing CD32a+ molecules
were observed to be highly enriched in HIV-1 DNA and
contained replication competent proviruses compared to the
CD32a- CD4+ T cells (51). However, these findings were not
replicated in other studies. Some investigators reported lower
enrichment for HIV-1 DNA in cells expressing CD32 in certain
individuals (52, 93). Others could not verify that CD32a is
expressed on latent reservoirs, nor enriched in CD4+ T cells
carrying viral DNA (94–96). A study that used 10 chronic HIV-1
patients on ART also observed no enrichment for HIV-1 DNA in
CD32+ CD4 T cells (95). Some investigators proposed that the
CD32+ cells may have been derived from adherent non-T cells
and other cell conjugates (T-B cell conjugates) expressing this
marker (95). Another study proposed that CD32 (FcgRII) is not a
specific biomarker for most CD4 T cell populations because they
found a greater number of HIV-1 latent reservoirs occurred in
CD3+CD4+ CD32- T cells using a quantitative viral outgrowth
assay (qVOA) (97).
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Some studies have suggested that the inconsistencies in these
findings could be attributed to cell sorting techniques that was
not able to isolate pure CD4 T cells that express only CD32+
marker, but rather T-B cell doublets (96, 98). In addition, it has
been shown that there is a higher proportion of antigen
presenting cells (APC) expressing CD32+ cells than what is
expressed on CD4+ T cells. Therefore, high number of residual
non-T cells found in sorted CD32+ cell population, can bias
these findings (93, 95, 99, 100). The cell sorting challenges seem
to have been overcome by Darcis and colleagues using an
improved isolation and purification technique. They performed
two rounds of CD4+ T cell negative selection by magnetic cell
sorting before CD32 isolation. Using this method, they observed
an increased HIV-1 DNA enrichment in the CD32+ CD4+ T
cells (100) as seen in the original study by Descours et al.

Further studies that replicate the sequential cell sorting
techniques used by Darcis and colleagues are needed (99) to
firmly establish FcgRIIa as bona fide marker of latently infected
CD4+ cells. After that, several questions still remain: Is FcgRIIa
just a marker of these latently infected cells or does it have
functional consequences on the size or reactivation capacity of
the reservoir? Do polymorphisms and CNVs in FcgRIIa and
other Fc receptors determine the size of the reservoir in
individuals treated with ART? Does it matter if the persons are
treated early during HIV infection? What about the tissue
reservoirs, do they also express FcgRIIa and if so, do
polymorphisms and CNV matter in that context? Investigators
have started to address some of these important questions. Some
have hypothesized that the differences in reservoir size in people
who started early on ART may be due to polymorphisms in
FcgRIIa (78, 101), since there has been previous association of
this gene with HIV-1 disease pathogenesis. However, this
hypothesis needs to be tested. Notably, these reservoirs are
diverse in nature, occurring in various infected cells and
tissues, and thus may enhance the long-term persistence of
replication competent viruses (99, 102, 103). Also, since there
is some evidence that CD32 (FcgRIIa) marks transcriptionally
active HIV-1 infected cells, they could be used to identify
persistent HIV-1 infected CD4 T cells that may contribute to
viral persistence during antiretroviral treatments (104, 105). The
co-expression of CD32a (FcgRIIa) with other markers such as
PD-1 in lymph node CD4+ T cells (105) as well as CD32a
occurring with CD30 in CD4+ T cell tissues (104), shows these
reservoirs are heterogenous in nature.

In a previous study of HIV controllers and non-controllers,
epistatic interactions between of genes (GM on chromosome 14)
encoding variability in the Fc portion of IgG and FcgR genes (on
chromosome 1) were reported to influence the control of HIV-1
viral replication in Caucasian Americans (106). Homozygous
FcgRIIa-H individuals who were also GM21 non carriers
(homozygous GM5) were more likely to be HIV controllers
than GM21 carriers. A similar interaction between GM
determinants and FcgRIIIa alleles on HIV control albeit mush
weaker compared to that with FcgRIIa. Interestingly, these
epistatic interactions between FcgR and GM genes were not
observed in the African-American population in the same study
highlighting population specific effects of these genes in HIV
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control (106). In a more recent study, the FcgRIIa AA genotype
(rs10800309) was found to increase FcgRIIa expression on
myeloid cells and was associated with HIV-1 control
independent of HLA-B57 and HLA-B27 (107), which are well
established markers involved in controlling viral load and long-
term non-progression of HIV infection (108, 109). Taken together,
these studies underscore the importance of studies assessing the
role of FcgR polymorphisms in HIV to be designed to adequately
address inter-ethnic differences in these genes and the potential
impact of genetic variability affecting not only the receptor-ligand
interphase but also receptor expression levels.
FCgRS, BROADLY NEUTRALIZING
ANTIBODIES AND HIV-1 REMISSION
ATTEMPTS
Investigators are exploring different approaches to achieve a
remission or cure for HIV (Table 2). First, there are strategies
that seek to boost the host immune system using vaccines that
produce broadly neutralizing antibodies (bNAbs) to suppress the
virus, or chimeric antigen receptors to engage and destroy the
latently infected cells. Second, genetic methods like the CRISPR/
Cas9 gene editing technology to excise or mutate the integrated
virus or render patients resistant to HIV by taking their CD4+ T
cells, mutating essential receptors such as CCR5 and reinfusing
them back into the patient (126–128). Third, and probably the
most studied of the HIV cure methods is the shock and kill
approach which seeks to use compounds to reactivate the latent
virus with the hope that infected CD+ T cells will die by viral
cytopathic effects or immune clearance (129–132). The use of
bNAbs, chimeric antigen receptors, and the ‘kill’ part of the
shock and kill approach may all involve the engagement of Fc
gamma receptors. FcgR binding seems to be a key requirement
for bNAbs to efficiently protect from infection, viral suppression,
and clearance. Studies conducted in animal models observed a
decrease in broadly neutralizing antibody activity from simian-
human immunodeficiency virus (SHIV-1) challenge when the
FcgR and complement activities were disabled (118). Similarly,
bNAbs enhanced binding capacity for activating FcgRs FcgRIIa
and FcgRIIIa, which were demonstrated to be protective in
humanized murine models (133).

In contrast, though both the WT PGT121 and LALA PGT121
bNAbs administered to macaques, conferred protection against
cell associated SHIV SF162P3 challenge, when tested in vitro, the
Fc-dependent function was greatly reduced. Although, these two
bNAbs have been shown to be associated with reduced plasma
viremia both in macaques and humanized mice models (133,
134), indication that the protection conferred by PGT121, may
not be dependent on Fc-mediated NK cells responses (120, 135,
136). It has been suggested that the mechanism by which these
bNAbs neutralize both cell-free virus and cell-associated virus
and confer protection could be through the fragment antigen-
binding (Fab) region, as well as epitope specificity of these
antibodies (120). Additional studies on other bNAbs and other
modified bNAbs in different animal models are needed to
validate these results (120). These findings have emphasized
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the differences in the formulation of bNAbs, and how it affects
their function in HIV control. Delineating what influences bNAb
function either more through an Fc-mediated mechanism or
otherwise would be very important in HIV cure research aimed
at using bNAbs as immune-therapeutic tool in effective control
and management of HIV.

During HIV-1 infections, broadly neutralizing antibodies
(bNAbs) coordinate with Fc receptors to activate effector cells
to clear the virus through mechanisms such as ADCC (21, 67,
122). In addition, there is evidence that neutralizing antibodies
block cell-free virus through a mechanism that prevents cell-cell
transmission. For instance, certain classes of CD4 binding site
inhibitors (CD4b) such as mAb VRC01 only block free virus but
has low activity during cell to cell transmission (121). Other
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mAbs such as membrane-proximal external region (MPER),
CD4bs and anti-coreceptor agents are involved in blocking free
virus transmission (137, 138). Subsequent studies have shown
that mAb VRC01 may engage FcgRs and prevent cell to cell HIV-
1 transmission and also reduce the half-lives of infected cells and
free virions (70, 121). While a potent HIV-1 vaccine must block
cell free virus and cell-cell virus transmission (121), using two or
more bNAbs that bind different epitopes in combination could
enhance efficacy and offer broader protection against HIV-1
infections. This was demonstrated when the combination of
CD4bs and VRC07 resulted in the neutralization of about 98%
viruses in one study (139). This notwithstanding, the role of
antibodies in cell-cell HIV inhibition is divergent, since these
findings were based on experiments conducted with several viral
TABLE 2 | Vaccine and bNAb studies.

Research Type Type
of

study

Performed
in

Mechanism of Action Main Outcome Reference(s)

Phase 1 HIV-1
Clinical Trial

In
vivo/
In
vitro

USA
volunteers

Targets CD4-binding site of the HIV-1 envelope
glycoprotein.

Fc modified -VRC01LS (bnMAbs) vaccine was well
tolerated, with 4-fold increase in half-life, compared to
wild type.

(66)

RV144 ALVAC-HIV In
vivo/
In
vitro

USA
volunteers

RV144 HIV-1 vaccine protection partially due to
ADCC-mediating antibodies.

Antibody binding to envelope V1V2 was associated
with HIV-1 infection risk.

(67, 110–116)

Phase III RV144
ALVAC/AIDSVAX
clinical trial

In
vivo/
In
vitro

Thai
volunteers

Vaccine-induced FcR-mediated antibody function
was associated with reduced risk of HIV-1 infection

FCGR2C tag SNP (rs114945036) was associated
with VE against HIV-1 subtype CRF01_AE. Individuals
with CC SNPs had 15% vaccine efficacy compared
91% of those carrying CT or TT.

(13)

bNAbs In
vitro

Cell lines Impair clustering and fusion of infected and target
cells, blocked the transfer of virions to uninfected T
cells

VRC01, NIH45-46 bNAbs prevented HIV-1 cell-to-cell
transmission

(70)

bNAbs In
vivo/
In
vitro

humanized
mouse
models

Fc domain-engineered bNAb variants 3BNC117
(GASDALIE) and mouse IgG1 variant (D265A)

Fc domain engineering of anti-HIV-1 bNAbs
enhanced interaction with activating FCGRs in an in-
vivo model of HIV-1 entry.

(117)

bNAbs In
vivo/
In
vitro

Rhesus
macaque
model

KA (K322A) variant blocks complement activity but
active in FCGR binding. The L234A, L235A (LALA)
variant is defective of both complement and FCGR
binding

Decreased protection of bNAbs against SHIV
challenge when Fc receptor and complement-binding
activities were engineered out of the antibody.

(118, 119)

bNAbs In
vivo/
In
vitro

Macaque
model

WT bNAbs PGT121 and a LALA mutant of
PGT121 (impaired Fc-dependent function) was
experimented for ability to protect pigtail macaques

Potent neutralizing capacity of PGT121 renders the
Fc-dependent functions of the Ab are less effective

(120)

mAbs In
vitro

Swiss
volunteers

use of neutralizing monoclonal antibodies, gp41
and mAb VRC01 in blocking HIV-1 infectivity

CD4bs mAbs blocked free virus transmission but
allowed HIV-1 to spread among cell-cell contacts.

(121)

Antibodies In
vitro

Australian
volunteers

ADCC to activate NK cells, either from HIV-1
positive or healthy donors.

NK cells from the HIV+ subjects induced ADCC
responses to either gp140 Env protein or HIV-1
peptide pools

(122)

Vaccine trial In
Vitro/
In
Vivo

Americans Infected immune complexes easily bind, enter, and
infect susceptible FcgRIIIa-176V/V genotypes to
establish infection

Homozygous FcgRIIIa V176 allele individuals were
more likely to acquire HIV-1 among gp120 vaccinees.

(36)

Vectored
Immunoprophylaxis

in
Vitro

Humanized
mouse
models

Use of vectored monoprophylaxis (VIP), a
specialized adeno-associated virus vector that
produces full-length antibody and induces lifelong
expression of these monoclonal antibodies.

Humanized mice were fully protected from HIV-1,
when challenged intravenously with very high doses
of replication-competent virus

(123)

HIV-1 Gag-Pol
vaccine

In
Vitro

Australia Use of recombinant fowl pox virus inserted with HIV
Gag-Pol genes and interferon gamma to control
HIV-1 after ART is ceased.

There was lower replication of HIV-1 in patients with
IgG2 anti-p24 and carriers of FcgRIIa-131 R/H
polymorphisms

(68, 124, 125)
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strains and antibodies, different donor and target cell types, as
well as various HIV-1 transmission models (140). Hence some
studies have reported similar HIV-1 inhibition for cell-free virus
compared to cell-to-cell transmission (141–143), while others
observed a decreased antibody effect in cell-to-cell transmission
compared to cell free virus inhibition (70, 121, 144). These
controversies appear to have been resolved in comparative
studies that obtained similar results when experimental designs
were normalized with respect to target cells used, and antibody
inhibition activities (141–143, 145). Thus, normalization of
these factors must be done in terms of the type and quantity
of virus and cell types using standardized assays to establish
the role of these antibodies in cell free or cell-to-cell HIV
transmission (140).

FcgR differences could also affect the efficacy of bNAbs as
HIV-1 prevention agents. In animal studies, bNAbs confer
protective immunity against HIV-1 or SHIV-1 challenge in
humanized mouse models (Hessell et al., 2007, Balazs et al.,
2012, Lu et al., 2016). Recently, Simone and colleagues observed
that among a cohort of 23 individuals, 13 developed broadly
neutralizing antibodies to HIV-1, which was significantly
associated with antibody binding to FcgRIIa. These antibodies
were associated with higher Fc polyfunctionality early in the
course of infection (146). Furthermore, FcgRIIIa-V176F
(rs396991) and FcgRIIIa-Y158H (rs396716) polymorphism are
associated with enhanced ADCC in HIV-1 patients (49), giving
the indication that the expression of FcgRIIIa receptor on NK
cells led to the induction of strong ADCC response for viral
clearance (63, 64). These studies suggest that bNAbs have
potential as therapeutic or prophylactic treatment in humans.
It is becoming clearer that if bNAbs are to become successful in
eliminating the reservoir, FcgR-mediated actions will play a
pivotal role. It is therefore imperative to determine at this early
stage if polymorphisms and CNVs affect how bNAbs can
suppress or eliminate HIV-1 in different populations. This is
especially crucial since inter-ethnic variations have been reported
for polymorphisms in FcgRIIa that influences its affinity for IgG
binding (45, 147, 148).
PERSPECTIVES AND CONCLUSION

Although several studies have evaluated the impact of FcgR
polymorphisms on HIV progression, they do not appear to
play a major role in viral load set point or natural control of
Frontiers in Immunology | www.frontiersin.org 9
the virus. However, when it comes to HIV vaccine responses and
remission attempts, FcgR polymorphisms and/or CNVs may
play a variety of roles. First, if FcgRIIa (CD32) is confirmed as
a true marker of the latent reservoir, it will raise many crucial
questions as enumerated above. One such critical question is
whether FcgR polymorphisms determine the size of the viral
reservoir. Second, the use of bNAbs either for reservoir
elimination or long-term suppression may depend on
engagement with FcgRs. It is important to determine if
expression of different variants of FcgRs determine why these
antibodies are successful in some persons but not others. Also, it
will be significant to determine if FcgRs play a role in the
development of resistance or immune tolerance to these
antibodies. Third, FcgRs may need to be engaged in cure
methods such as the ‘shock and kill’ approach, which seeks to
reactivate the reservoir for clearance by the immune system. The
‘kill’ portion of this approach may involve interventions such as
bNAbs or chimeric antigen receptors. The role of FcgRs in
mediating successful killing of T cells that have been
reactivated also need to be investigated especially after ART
initiation as well as the synergistic effect between FcgRs and ART
outcomes need to be evaluated. Finally, the responses to most
HIV-1 vaccines are likely to be dependent on FcgRs as the few
unsuccessful vaccine trials have shown. Therefore, investigations
into FcgR variations in different populations offer an important
area of inquiry in the HIV cure research era.
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43. Zúñiga J, Buendıá-Roldán I, Zhao Y, Jiménez L, Torres D, Romo J,
et al. Genetic Variants Associated With Severe Pneumonia in A/H1N1
Influenza Infection. Eur Respir J (2012) 39(3):604–10. doi: 10.1183/
09031936.00020611

44. Tarasenko T, Dean JA, Bolland S. FcgammaRIIB as a Modulator of
Autoimmune Disease Susceptibility. Autoimmunity (2007) 40(6):409–17.
doi: 10.1080/08916930701464665
May 2021 | Volume 12 | Article 656894

https://doi.org/10.1086/597278
https://doi.org/10.1097/COH.0b013e328344f35e
https://doi.org/10.1097/COH.0b013e328344f35e
https://doi.org/10.1371/journal.ppat.1001300
https://doi.org/10.1371/journal.ppat.1001300
https://doi.org/10.1097/QAD.0b013e32833b61ba
https://doi.org/10.1097/QAD.0b013e32833b61ba
https://doi.org/10.1186/s12977-016-0272-y
https://doi.org/10.4049/jimmunol.179.11.7916
https://doi.org/10.1172/JCI75539
https://doi.org/10.2174/1573395511309010006
https://doi.org/10.1007/82_2010_86
https://doi.org/10.1111/imr.12482
https://doi.org/10.1111/imr.12339
https://doi.org/10.1111/imr.12339
https://doi.org/10.1002/9780470015902.a0000916.pub2
https://doi.org/10.1159/000134330
https://doi.org/10.1046/j.1365-2567.1997.00381.x
https://doi.org/10.1038/nri2206
https://doi.org/10.1038/gene.2009.35
https://doi.org/10.1007/s00109-001-0294-2
https://doi.org/10.1182/blood-2007-03-079913
https://doi.org/10.1038/333568a0
https://doi.org/10.1097/COH.0000000000000357
https://doi.org/10.1186/s12977-017-0380-3
https://doi.org/10.1186/s12977-017-0380-3
https://doi.org/10.1097/COH.0b013e32832f0a89
https://doi.org/10.1007/978-3-319-07911-0_13
https://doi.org/10.1007/978-3-319-07911-0_13
https://doi.org/10.1128/CVI.00037-09
https://doi.org/10.1086/514935
https://doi.org/10.1086/314920
https://doi.org/10.1086/313588
https://doi.org/10.1111/j.1399-0039.2005.00476.x
https://doi.org/10.1111/j.1399-0039.2005.00476.x
https://doi.org/10.1097/00002030-200405210-00012
https://doi.org/10.1182/blood-2012-05-431361
https://doi.org/10.1182/blood.V95.7.2386.007k04_2386_2390
https://doi.org/10.1128/mBio.00573-13
https://doi.org/10.1099/vir.0.014829-0
https://doi.org/10.1099/vir.0.014829-0
https://doi.org/10.1016/j.ijid.2010.09.008
https://doi.org/10.4269/ajtmh.2010.09-0353
https://doi.org/10.3109/10428194.2012.762512
https://doi.org/10.3109/10428194.2012.762512
https://doi.org/10.1183/09031936.00020611
https://doi.org/10.1183/09031936.00020611
https://doi.org/10.1080/08916930701464665
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lamptey et al. FcgR Polymorphisms and HIV-1 Infection
45. Lassauniere R, Tiemessen C. Variability At the FCGR Locus: Characterization
in Black South Africans and Evidence for Ethnic Variation in and Out of
Africa. Genes Immun (2016) 17(2):93. doi: 10.1038/gene.2015.60

46. Weis JF, McClelland RS, Jaoko W, Mandaliya KN, Overbaugh J, Graham
SM. Fc Gamma Receptors IIa and IIIa Genetic Polymorphisms do Not
Predict HIV-1 Disease Progression in Kenyan Women. AIDS Res Hum
Retroviruses (2015) 31(3):288–92. doi: 10.1089/aid.2014.0209

47. Poonia B, Kijak GH, Pauza CD. High Affinity Allele for the Gene of FCGR3A
is Risk Factor for HIV Infection and Progression. PLoS One (2010) 5(12).
doi: 10.1371/journal.pone.0015562

48. Milligan C, Richardson BA, John-Stewart G, Nduati R, Overbaugh J.
FCGR2A and FCGR3A Genotypes in Human Immunodeficiency Virus
Mother-to-Child Transmission. Open Forum Infect Dis (2015) 2(4). doi:
10.1093/ofid/ofv149

49. Talathi SP, Shaikh NN, Pandey SS, Saxena VA, Mamulwar MS, Thakar MR.
Fcgriiia Receptor Polymorphism Influences NK Cell Mediated ADCC
Activity Against HIV. BMC Infect Dis (2019) 19(1):1053. doi: 10.1186/
s12879-019-4674-z

50. Connolly S, Wall KM, Tang J, Yu T, Kilembe W, Kijak G, et al. Fc-Gamma
Receptor IIA and IIIA Variants in Two African Cohorts: Lack of Consistent
Impact on Heterosexual HIV Acquisition, Viral Control, and Disease
Progression. Virology (2018) 525:132–42. doi: 10.1016/j.virol.2018.09.015
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