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BACKGROUND Cardiac implantable electronic devices (CIEDs) may
enable early identification of COVID-19 to facilitate timelier inter-
vention.

OBJECTIVE To characterize early physiologic changes associated
with the onset of acute COVID-19 infection, as well as during and
after acute infection, among patients with CIEDs.

METHODS CIED sensor data from March 2020 to February 2021 from
286 patients with a CIED were linked to clinical data from electronic
health records. Three cohorts were created: known COVID-positive
(n 5 20), known COVID-negative (n 5 166), and a COVID-
untested control group (n 5 100) included to account for testing
bias. Associations between changes in CIED sensors from baseline
(including HeartLogic index, a composite index predicting
worsening heart failure) and COVID-19 status were evaluated using
logistic regression models, Wilcoxon signed rank tests, and Mann-
Whitney U tests.

RESULTS Significant differences existed between the cohorts by
race, ethnicity, CIED device type, and medical admissions. Several
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sensors changed earlier for COVID-positive vs COVID-negative pa-
tients: HeartLogic index (mean 16.4 vs 9.2 days [P 5 .08]), respi-
ratory rate (mean 8.5 vs 3.9 days [P 5 .01], and activity (mean
8.2 vs 3.5 days [P 5 .008]). Respiratory rate during the 7 days
before testing significantly predicted a positive vs negative
COVID-19 test, adjusting for age, sex, race, and device type (odds
ratio 2.31 [95% confidence interval 1.33–5.13]).

CONCLUSION Physiologic data from CIEDs could signal early signs
of infection that precede clinical symptoms, which may be used to
support early detection of infection to prevent decompensation in
this at-risk population.
KEYWORDS Physiologic monitoring; COVID-19; Cardiac pacemaker;
Implantable defibrillators
(Cardiovascular Digital Health Journal 2022;3:247–255) © 2022
Heart Rhythm Society. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Patients with cardiovascular disease, especially heart failure,
are at increased risk for contracting and suffering worse out-
comes from severe acute respiratory syndrome coronavirus 2
or COVID-19.1,2 Early identification of infection in this high-
risk cohort would be important to be able to deliver timely
and more effective treatment, for example with monoclonal
antibodies,3 and prevent further transmission. Cardiac
implantable electronic devices (CIEDs) capture moment-
by-moment physiologic data on cardiac patients, allowing
for remote patient surveillance. Prior studies have demon-
strated the power of using CIEDs to remotely monitor pa-
tients’ cardiac health at home.4,5 Given the well-described,
broad effects of COVID-19 on the cardiac and respiratory
systems,6 it is possible that certain CIED sensors may also
detect a COVID-19 infection, potentially before symptom
onset. The potential to use CIEDs to identify early signs of
COVID-19 has not been well explored beyond small case se-
ries studies.7,8

This study seeks to characterize early physiologic changes
associated with an acute COVID-19 infection among patients
with CIEDs during the COVID-19 pandemic in New York
City. The primary hypothesis was that significant differences
in CIED sensor data would be observed during the immediate
time period before COVID-19 testing for patients who tested
positive compared to those who tested negative. Addition-
ally, we aimed to characterize differences in sensor changes
at the time of COVID-19 testing between patients who tested
positive, tested negative, and did not receive a COVID-19
test. Finally, we aimed to compare the resolution of sensor
CC BY license https://doi.org/10.1016/j.cvdhj.2022.07.070
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KEY FINDINGS

� Respiratory rate, activity, and HeartLogic index (a com-
posite index of multiple sensors that signals potential
worsening heart failure) deviated from baseline approx-
imately 7 days before symptom onset and testing,
which was significantly earlier for COVID-positive vs
COVID-negative patients. Respiratory rate during the
7 days before testing significantly predicted a positive
vs negative COVID-19 test, adjusting for age, sex,
race, and device type, suggesting sensors may have
future predictive potential.

� A higher proportion of COVID-positive patients had an
implantable cardioverter-defibrillator vs other device
type, indicating more severe heart failure, and on
average their HeartLogic index was elevated above
baseline 2 weeks prior to symptom onset and testing,
which precedes the viral incubation period for COVID-
19. It is possible that early sensor changes may have
represented worsening heart failure status, which
created a greater susceptibility to a COVID-19 infection.

� Distinct cardiac implantable electronic device sensor
changes were also observed during the testing period
and for several days following testing among COVID-
positive compared to COVID-negative patients. Specif-
ically, for COVID-positive patients, respiratory rate, ac-
tivity, thoracic impedance, and HeartLogic index also
remained significantly changed from baseline for
several days or weeks after COVID-19 testing.
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changes after COVID-19 testing among patients who tested
positive compared to those who tested negative.
Methods
Study design
In this cohort study, CIED sensor data were evaluated from
March 2020 through February 2021 among patients at 2
large, urban, academic medical centers that are part of the
NewYork-Presbyterian (NYP) Hospital network: NYP-
Cornell and NYP-Columbia. Data originated from 3 sources:
CIEDs, institutional COVID-19 repositories, and institu-
tional electronic health record (EHR) data warehouses.

Data sources
CIED data were retrieved from Boston Scientific, where data
from remotely monitored permanent pacemakers, implant-
able cardiac defibrillators (ICDs), and cardiac resynchroniza-
tion therapy (CRT) devices are stored. Boston Scientific
captures and stores all sensor data from its devices, creating
a longitudinal dataset for each patient over time. Ten CIED
sensors were examined: respiratory rate, activity, heart rate,
night heart rate, temperature, rapid shallow breathing index,
thoracic impedance, heart sounds (S1, S3), and HeartLogic
index.
HeartLogic is a proprietary algorithm that uses multiple
sensors to track physiological trends and combines them
into 1 composite index to send as a proactive alert of potential
worsening heart failure.9 It is a cumulative index of the other
sensors measured with CIEDs. The HeartLogic algorithm
was previously reported to detect heart failure decompensa-
tion events with 70% sensitivity with a median of 34 days
prior to an event.9 Because it relies on general physiologic
sensors in addition to cardiac-specific sensors, HeartLogic
may also predict other forms of decompensation, such as
acute infection.

Some sensors (activity, respiratory rate) are measured in
all patients with devices while others are only available in a
subset of patients. For example, HeartLogic and its compo-
nent sensors, including heart sounds and thoracic impedance,
is only available for ICDs and certain types of CRT devices,
and therefore only measured in patients with indications for
those devices (predominantly patients with heart failure
with reduced ejection fraction).

Pulse generator temperature is monitored as an internal
feature of these devices at the location of the implant. It is
used within the devices for component monitoring purposes,
such as battery status, and is not intended to provide a mea-
sure of core body temperature. Deviations in core body tem-
perature could be reflected in the device’s temperature
measurements, but the use of this feature in this setting is
investigational.

Institutional COVID-19 repositories consist of COVID-
19-related data from the EHRs of all patients who have
received a COVID-19 polymerase chain reaction test docu-
mented at NYP-Cornell or NYP-Columbia. COVID-19 test
date and test status were obtained from institutional
COVID-19 repositories.

Demographics (age, sex, race, ethnicity), clinical charac-
teristics (body mass index, heart failure diagnosis), and
events at the time of COVID-19 testing (medicine admission,
intensive care unit admission, and death) were obtained from
institutional EHR warehouses. We conducted a chart review
of COVID-positive patients’ EHRs to determine the timing
of symptom onset and types of symptoms reported as docu-
mented by clinicians in the emergency department or inpa-
tient admission notes.

This study was approved by the Weill Cornell Medicine
and Columbia University Irving Medical Center Institutional
Review Boards.
Study population
All patients who had an actively transmitting Boston Scien-
tific CIED during the study period at NewYork-
Presbyterian Hospital network, including Cornell and
Columbia, and were aged 18 years or older were eligible
for inclusion. Initially a total of 2210 patients meeting inclu-
sion criteria were successfully linked to Boston Scientific and
institutional EHR data. In the setting of limited available
COVID-19 polymerase chain reaction tests during the first
fewmonths of the study period, institutional testing protocols



Figure 1 Timeline of COVID-19 test dates during the study period among patients included in the study (n 5 286).
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were designed to prioritize testing for patients with a prob-
able COVID-19 infection based on presenting signs and
symptoms. Therefore, during part of the study period,
COVID-negative patients were acutely ill enough to warrant
a test. The timeline of when the COVID-19 tests were admin-
istered to patients in the study by test result (positive vs
negative) is shown in Figure 1. The greater proportion of
COVID-positive tests from March through May of 2020,
and subsequent shift towards a greater proportion of
COVID-negative tests thereafter, likely reflects these
changes in institutional testing protocols as tests became
more widely available and asymptomatic patients were able
to receive tests.

To account for this testing bias in the first fewmonths of the
study period, we created a cohort of 100 randomly selected un-
tested “true” control patients. Thus, 3 cohorts of patients were
created using COVID-19 test date and status documented in
the institutional COVID-19 repositories: (1) patients with a
positive COVID-19 test (“COVID-positive”), (2) patients
with a temporally concordant negative COVID-19 test
(“COVID-negative”), and (3) patients who had a Boston Sci-
entific CIED but did not have a COVID-19 test (“control”).
Statistical analysis
Characteristics of each cohort were described using fre-
quencies and percentages or means and standard deviations
for categorical and continuous variables, respectively. Ten
CIED sensors were examined in each analysis. Baseline pa-
rameters were computed using average sensor data from 60
to 30 days before COVID-19 testing for each patient. Pretest
parameters were computed as the average sensor data during
the 7 days preceding COVID-19 testing for all sensors except
temperature, for which we selected the maximum value
instead of the average. Event parameters were computed us-
ing maximum temperature and average of other sensors dur-
ing the 15-day window surrounding COVID-19 testing.

The number of days before COVID-19 testing that the
sensors considerably differed from baseline was identified
for each sensor. We determined a priori that a sensor value
is considered significantly different from baseline if it
increased or decreased 1 standard error above or below that
patient’s baseline and continued to remain different until
the COVID-19 test date. This ensures that all days following
the first significant day are also significantly different. The
number of days after COVID-19 testing until sensors re-
turned to baseline values was identified for each sensor was
also identified using 1 standard error difference.

The primary comparison was between COVID-positive
and COVID-negative patients. This comparison allowed
changes that were specific to COVID-19 infection, and not
other causes of acute decompensation, to be identified. As
a sensitivity analysis to account for testing bias, COVID-
positive patients were also compared to 100 randomly
selected untested control patients. In the absence of a
COVID-19 test to anchor the analytic window for control pa-
tients, a 15-day window between March 1 and July 1, 2020,
was randomly selected to serve as a simulated event. This
time frame was selected because it includes the first
COVID-19 shutdown period in New York City, allowing
possible changes in activity, breathing, heart rate, and other
sensors that may be due to either stay-at-home orders, change
in activity levels, or overall stress and anxiety owing to the
pandemic.

The number of days before COVID-19 testing that the
sensors significantly differed from baseline and the number
of days that elapsed after a test before sensors returned to
baseline were compared between COVID-positive and
COVID-negative patients. Logistic regression models were
used to identify whether the presence of sensor changes
greater than 1 standard deviation in the 7 days before a test
were associated with test status (positive vs negative). Multi-
variable model selection included screening univariate sensor
associations (P, .5) and adjusting for age, sex, race, and de-
vice type. Wilcoxon signed rank tests were used to compare
sensor changes from baseline to event within cohorts (paired
test). Mann-Whitney U tests were used to compare the
magnitude of mean change in each sensor between cohorts.

All statistical analyses were conducted using R statistical
software (R Core Team, Vienna, Austria). A data engineer
from Boston Scientific (R.A.) conducted all statistical ana-
lyses because of his knowledge and prior experience
analyzing and interpreting the volume and variety of data
collected from CIED sensors. The data engineer met weekly
with 2 researchers not employed by the company (M.R.T.,
D.S.) to discuss the ongoing study, identify appropriate sta-
tistical analyses, and interpret findings. All raw data and an-
alytic files were shared with the 2 researchers for
transparency purposes. Furthermore, all coauthors met regu-
larly to discuss the ongoing analysis and contribute insights
from their clinical expertise and experience caring for cardiac
patients with COVID-19. Therefore, we made a concerted,



Figure 2 Sampling strategy of patient cohorts: COVID-positive (n 5 20), COVID-negative (n 5 166), and untested controls (n 5 100).
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conscientious effort to ensure research findings were inter-
preted in the context of clinical relevance only.
Results
Patient characteristics
Of the 2210 patients meeting eligibility criteria, 433 had a
COVID-19 test result in the institutional repositories during
the study period and 1777 did not (Figure 2). Of the patients
with COVID-19 tests, 45 tested positive and 388 tested nega-
tive. Twenty COVID-positive and 166 COVID-negative pa-
tients had usable CIED sensor data; these formed the cohorts
used in this analysis. The remaining patients were excluded
because they did not have usable sensor data, either because
the device data were not available in the remote server owing
to missed transmissions or because the timeframe of data
transmission did not overlap with the test date (for example,
devices implanted after a COVID-19 test). Additionally, the
100 randomly selected control patients were selected from
the pool of 1777 patients without a COVID-19 test in the
institutional repositories.

Demographic characteristics of the 3 cohorts are reported
in Table 1. Comparing COVID-positive vs COVID-negative
vs control patients, significant differences existed by race
(White: 25% vs 52% vs 42%; Black/African American:
20% vs 18% vs 19%; Other: 35% vs 14% vs 11% [P 5
.04]) and ethnicity (Hispanic/Latino: 45% vs 19% vs 11%
[P 5 .004]). Age, sex, and body mass index did not signifi-
cantly differ between the 3 cohorts.

There were also significant differences by device type.
Comparing COVID-positive vs COVID-negative vs control,
more COVID-positive patients had an ICD (65% vs 29% vs
47%) and fewer COVID-positive patients had a pacemaker
(20% vs 50% vs 25%). There was no difference in the propor-
tion of patients diagnosed with heart failure between the co-
horts. A higher proportion of COVID-positive patients had a
medical admission at the time of COVID-19 testing
compared to COVID-negative (80% vs 32%, P , .001),
but there was no difference in intensive care unit admissions
or deaths.

Heart failure status by device type is reported in
Supplemental Table 1. The majority of patients with CRT de-
vices (83%) or ICDs (67%) were diagnosed with heart fail-
ure, whereas few patients with pacemakers were (22%).

COVID-19 symptom information for COVID-positive pa-
tients is reported in Supplemental Table 2. The most
commonly reported symptoms were cough (65%), dyspnea
(55%), and subjective fever/chills (35%). The median symp-
tom onset before COVID-19 testing was 3 (IQR 3–7) days
prior to COVID-19 testing.
Early sensor changes prior to COVID-19 testing
Figure 3 shows the average sensor changes among the 3 pa-
tient cohorts from 60 days prior through 60 days following
COVID-19 testing. The figure illustrates sensor changes
distinct to COVID-positive patients; specifically, for
COVID-positive patients, several sensors (respiratory rate,
activity, thoracic impedance, and HeartLogic index) signifi-
cantly changed from baseline several days prior to symptom
onset, and all sensors significantly changed from baseline
prior to COVID-19 testing. Respiratory rate, activity,
thoracic impedance, and HeartLogic index also remained
significantly changed from baseline for several days or weeks
after COVID-19 testing.

The illustrated unique sensor changes associated with
COVID-positive patients and not COVID-negative patients
were confirmed in statistical tests. Table 2 compares the num-
ber of days before COVID-19 testing that the sensors
changed more than 1 standard deviation from baseline for
COVID-positive and COVID-negative patients. Multiple
sensors changed sooner for COVID-positive compared to
COVID-negative patients: HeartLogic index (mean 16.4 vs
9.2 days; P 5 .08), respiratory rate (mean 8.5 vs 3.9 days;
P5 .01), activity (mean 8.2 vs 3.5 days; P5 .008), and tem-
perature (mean 2.3 vs 1.0 days; P 5 .08).



Table 1 Demographic characteristics of COVID-positive, COVID-negative, and control patient cohorts

COVID-positive (n 5 20) COVID-negative (n 5 166) Control (n 5 100) P value†

Age 68.2 (13.3) 71.3 (15.1) 67.9 (14.8) .18
Sex .31
Male 10 (50) 98 (59) 61 (61)
Female 10 (50) 68 (41) 37 (37)
Other/unknown 0 (0) 0 (0) 2 (2)

Race .04*
White 5 (25) 86 (52) 42 (42)
Black / African American 4 (20) 30 (18) 19 (19)
Asian 1 (5) 14 (8) 10 (10)
Other 7 (35) 23 (14) 11 (11)
Unknown 3 (15) 13 (8) 18 (18)

Ethnicity .004*
Hispanic/Latino 9 (45) 32 (19) 11 (11)
Non-Hispanic/Latino 9 (45) 107 (65) 64 (64)
Unknown 2 (10) 27 (16) 25 (25)

BMI 30.3 (7.0) 27.8 (5.4) 27.0 (5.1) .09
Unknown 3 (15) 48 (29) 43 (43)

Heart failure 7 (35) 74 (45) 36 (36) .48
Unknown 0 10 7

Device type ,.001*
CRT 3 (15) 35 (21) 28 (28)
ICD 13 (65) 48 (29) 47 (47)
Pacemaker 4 (20) 83 (50) 25 (25)

Medicine admission‡ 16 (80) 53 (32) — ,.001*
Unknown 0 (0) 12 (7) —

ICU admission‡ 0 (0) 5 (3) — .86
Unknown 3 (18) 22 (13) —

Death‡ 0 (0) 0 (0) — .37
Unknown 0 (0) 12 (7) —

Values are mean (SD) or n (%) test for categorical measures.
Statistically significant P values are indicated by an asterisk.
BMI 5 body mass index; CRT 5 cardiac resynchronization therapy; ICD 5 implantable cardioverter-defibrillator; ICU 5 intensive care unit.

†P values were calculated using ANOVA for continuous measures and c2

‡Refers to events at the time of the COVID-19 test. Medicine admissions exclude surgical admissions for which routine preoperative COVID-19 testing was con-
ducted. Not evaluated for the control group, who did not have a COVID-19 test.
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In unadjusted multivariable logistic regression models,
respiratory rate, activity, and temperature significantly pre-
dicted a positive COVID-19 test (Table 3). After adjusting
for age, sex, race, and device type, respiratory rate during
the 7 days before COVID-19 testing significantly predicted
a positive COVID-19 test (odds ratio: 2.31 [95% confidence
interval 1.33–5.13]).

Sensor changes at the time of COVID-19 testing
Among COVID-positive patients, we observed statistically
significant changes in respiratory rate (15% increase), tem-
perature (1% increase), HeartLogic index (227% increase),
and activity (44% decrease) from baseline to event
(Supplemental Table 3). Among COVID-negative patients,
we observed statistically significant changes in activity
(12% decrease) from baseline to event. There was a signifi-
cantly greater mean change for respiratory rate, activity, tem-
perature, and HeartLogic index among COVID-positive
patients compared to COVID-negative patients. In the sensi-
tivity analysis, we observed statistically significant changes
in activity (6% decrease) and temperature (0.3% increase)
in the control patient cohort from baseline to event
(Supplemental Table 4). There was a significantly greater
mean change for respiratory rate, activity, temperature, and
HeartLogic index among COVID-positive patients compared
to control patients.
Sensor changes following COVID-19 testing
Table 4 compares the number of days after COVID-19 testing
before sensors returned to baseline between COVID-positive
and COVID-negative patients.

Multiple sensors returned to baseline later for COVID-
positive compared to COVID-negative patients: HeartLogic
index (mean 22.4 vs 13.5 days; P 5 .08), activity (mean
18.2 vs 6.1 days; P 5 .007), and respiratory rate (mean
13.0 vs 4.0 days; P 5 .006).
Discussion
This is the first study to systematically evaluate the early
physiological changes prior to the onset of an acute
COVID-19 infection indirectly detected by CIEDs. We
found that respiratory rate, activity, and HeartLogic index
deviated from baseline approximately 7 days before



Figure 3 Average sensor changes among COVID-positive (n 5 20), COVID-negative (n 5 166), and control (n 5 100) patient cohorts.
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symptom onset and testing, which was unique to COVID-
positive patients, and respiratory rate during the week before
testing predicted a positive test. Distinct CIED sensor
changes were also observed during the testing period and
for several days following testing among COVID-positive
compared to COVID-negative patients.

It is possible that the early changes in CIED sensors may
have represented worsening heart failure status, and that pa-
tients may have been more likely to later develop moderately
or severely symptomatic COVID-19 in the setting of
worsening heart failure. HeartLogic index, which was origi-
nally developed to predict heart failure decompensation, was
Table 2 Average number of days prior to COVID-19 testing with signifi
negative patients

Sensors

COVID-positive (n 5 20)

N†
Number of days
(mean 6 SD)

Respiratory rate 14 -8.5 6 8.5
Activity 18 -8.2 6 8.3
Night heart rate 8 -2.1 6 2.8
24-Hour heart rate 15 -3.5 6 4.3
Temperature‡ 17 -2.3 6 2.7
RSBI 8 -3.1 6 4.0
Thoracic impedance 8 -7.1 6 11.1
Heart sound S1 8 -2.6 6 4.6
Heart sound S3 8 -2.6 6 3.5
HeartLogic index 8 -16.4 6 12.5

Mann-Whitney U test (Wilcoxon rank sum test) was used to compare COVID-po
Statistically significant P values are indicated by an asterisk.
RSBI 5 rapid shallow breathing index.

†N represents the number of patients with devices containing specified sensors an
‡Temperature represents the pulse generator temperature at the location of the im
elevated above baseline 2 weeks prior to symptom onset and
testing among COVID-positive patients–which precedes the
viral incubation period for COVID-19.10 Several prior case
reports have described sharp increases in HeartLogic index
in patients with a confirmed COVID-19 infection.11–13 This
possibility is also supported by the higher proportion of
COVID-positive patients with an ICD vs other device type,
suggesting severe heart failure requiring an ICDmay be asso-
ciated with a greater susceptibility to a COVID-19 infection.
While the HeartLogic algorithm was created to provide early
warning of possible heart failure exacerbation, by integrating
data from multiple physiologic sensors and monitoring for
cant changes from baseline, comparing COVID-positive to COVID-

COVID-negative (n 5 166)

P valueN†
Number of days
(mean 6 SD)

113 -3.9 6 7.5 .01*
154 -3.5 6 6.1 .008*
35 -2.3 6 4.2 .80
98 -3.3 6 5.1 .62
139 -1.0 6 1.5 .08
35 -4.3 6 8.9 .75
35 -11.4 6 11.3 .29
34 -3.0 6 5.5 .80
33 -1.3 6 2.6 .29
33 -9.2 6 12.6 .08

sitive to COVID-negative.

d with valid sensor value during baseline and test period.
plant.



Table 3 Odds ratios and 95% confidence intervals for mean
cardiac implantable electronic device sensor changes during the 7
days prior to COVID-19 testing associated with COVID-19 test status
(positive vs negative patients), unadjusted and adjusted for age,
sex, race, and device type

Sensor
Unadjusted OR
(95% CI)

Adjusted OR
(95% CI)

Respiratory rate 1.75 (1.29–2.44)* 2.31 (1.33–5.13)*
Activity 0.36 (0.15–0.85)* 2.88 (0.32–27.4)
Night heart rate 1.06 (0.92–1.21) —
24-Hour heart rate 1.01 (0.90–1.14) —
Temperature† 2.15 (1.40–3.49)* 2.96 (0.97–10.99)
RSBI 1.36 (0.99–1.96) —
Thoracic impedance 0.99 (0.85–1.19) —
Heart sound S1 0.53 (0.05–2.98) —
Heart sound S3 212.90 (0.12–833264.27) —
HeartLogic index 1.09 (1.00–1.22) —

Odds ratios indicated by asterisks are statistically significant. Only vari-
ables with significant associations with the outcome variable in unadjusted
models were included in adjusted models.

CI5 confidence interval; OR5 odds ratio; RSBI5 rapid shallow breath-
ing index.
†Temperature represents the pulse generator temperature at the location of
the implant.
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variations, the algorithm may be triggered by other physio-
logical changes. Therefore, it is important for clinicians to
be cognizant of the fact that an elevated HeartLogic index
may indicate other acute illnesses, such as sepsis.

We present evidence that the observed sensor changes are
in some way associated with COVID-19 infection because
the magnitude of change was significantly different for
COVID-positive vs COVID-negative and control patients.
For instance, although activity significantly decreased among
all patient cohorts, likely owing to stay-at-home orders
limiting activity for all New York City residents as observed
in prior studies,14 we observed a significantly greater
decrease in activity for COVID-positive patients. Similarly,
Table 4 Average number of days after COVID-19 testing that sensors r
patients

Sensors

COVID-positive (n 5 20)

N†
Number of days
(mean 6 SD)

Respiratory rate 14 13.0 6 16.5
Activity 18 18.2 6 20.5
Night heart rate 8 4.5 6 8.3
24-Hour heart rate 15 6.7 6 10.4
Temperature‡ 17 1.3 6 1.3
RSBI 8 2.4 6 3.1
Thoracic impedance 8 12.8 6 20.5
Heart sound S1 8 13.1 6 21.1
Heart sound S3 8 3.1 6 3.2
HeartLogic index 8 22.4 6 21.5

Mann-Whitney U test (Wilcoxon rank sum test) was used to compare COVID-po
RSBI 5 rapid shallow breathing index.

†N represents the number of patients with devices containing specified sensors an
‡Temperature represents the pulse generator temperature at the location of the im
we observed distinctly different sensor changes between
COVID-positive and COVID-negative patients. Because
testing protocols in the early phase of the study period meant
that only acutely ill patients received a test during these first
months, COVID-negative patients may have been acutely ill
with another condition, such as a heart failure exacerbation.
In fact, we observed elevated HeartLogic index in both
groups. Nonetheless, the sensor changes including Heart-
Logic index were more dramatic for COVID-positive pa-
tients, suggesting unique physiologic changes for these
patients that were detected by CIEDs.

Therefore, our findings provide early evidence of the po-
wer of remote monitoring with CIEDs for the early detection
of physiologic changes that may be subtle and may precede
clinical symptoms. Prior case studies have demonstrated
CIED sensor changes at the time of a COVID-19 infection7

and noted an increase in device-detected respiratory rate at
symptom onset, prior to a COVID-19 diagnosis.12,15 Build-
ing on these early observations, this cohort study with 286
patients provided robust evidence that these changes
occurred before symptom onset and diagnosis, and were de-
tected by CIEDs. In particular, others have noted, and our
study supports, the potential to use HeartLogic index to
actively monitor and identify perhaps both heart failure–
related and non–heart failure–related decompensation early
in the course of disease.11–13 This index measures the
magnitude of change in an array of sensors, most notably
activity and respiratory rate, that are captured by a broad
range of CIEDs and even commercially available devices,
suggesting a number of devices may be useful in
monitoring cardiovascular disease patients during the
pandemic. While some of the other CIED vendors measure
transthoracic impedance to monitor for heart failure
exacerbations, only Boston Scientific displays and
integrates data from multiple physiologic sensors,
integrates the data into an algorithm, and has approval from
the U.S. Food and Drug Administration to alert clinicians.
eturned to baseline, comparing COVID-positive to COVID-negative

COVID-negative (n 5 166)

P valueN†
Number of days
(mean 6 SD)

112 4.0 6 9.6 .006*
154 6.1 6 12.4 .007*
35 4.5 6 12.0 .67
98 5.1 6 11.5 .23
139 1.5 6 2.6 .35
35 3.7 6 10.9 .67
35 11.9 6 16.5 .75
34 4.6 6 13.4 .79
33 2.4 6 6.5 .23
33 13.5 6 22.0 .08

sitive to COVID-negative.

d with valid sensor value during baseline and test period.
plant.
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The early detection capabilities of machine learning
algorithms leveraging data from CIEDs (such as
HeartLogic index) may also be extended to identify other
types of non–heart failure–related decompensation, such as
influenza or pneumonia infections, among high-risk groups.
Thus, while CIEDs have traditionally been used for cardiac
monitoring, including during the pandemic to reduce expo-
sure associated with avoidable in-person cardiac
care,4,5,16,17 this study suggests CIEDs may also be used
for surveillance and early detection of other forms of acute
decompensation, including but not limited to COVID-19.
The ability to follow a high-risk cohort of cardiac patients
remotely and receive alerts when they may be in the early
stages of an infection may significantly improve clinicians’
early intervention abilities in clinical care.

We also observed unique footprints of a more prolonged
post-COVID recovery through CIED sensors; respiratory
rate and HeartLogic index remained higher and activity re-
mained lower for weeks following the test date for
COVID-positive patients. Already numerous studies have re-
ported a range of cardiac-specific postacute sequelae of
COVID-19 infection related to persistent cardiac injury,
placing patients at elevated risk of heart failure, myocardial
infarction, myocarditis, pericarditis, and arrhythmia.6,18

CIED data offer continuous longitudinal measures of physi-
ologic function following COVID-19 infection and thus may
be a powerful tool in characterizing true cardiac injury or
exacerbation of underlying cardiopulmonary status resulting
from the infection, especially when paired with other clinical
datasets, including those originating from EHRs.

Despite a small number of COVID-positive patients, the
overall size of the sample including the COVID-negative
and control cohorts is a strength of this study, relative to pre-
vious case series examining CIED data among COVID-
positive patients.11,13 Given that New York City was an early
epicenter of COVID-19 infections in the United States,19 we
were able to accrue and follow a cohort of COVID-19 pa-
tients with CIEDs for a longer period of time compared to re-
gions of the United States that experienced their first surges
of COVID-19 later.

Limitations include limited generalizability of the sample,
the small number of positive patients, and the small number
of sensors that could be measured in the entire sample owing
to sensor differences between device types. It is possible that
the sensors that were available in all devices were also signif-
icantly different between cohorts (eg, respiratory rate and ac-
tivity). It is possible that we may have detected significant
differences in other sensors if we had been able to examine
more devices that measured a wider range of sensors. Specif-
ically, there were no significant differences on a number of
sensors between COVID-positive and COVID-negative pa-
tients that we may have been able to detect with greater sta-
tistical power. Future work determining differences in
sensors changes between larger cohorts of COVID-positive
and COVID-negative patients, including those with devices
that measure a range of sensors, are needed. Larger cohorts
could also be used to build and validate a predictive classifier
of COVID status using sensor data, which we were unable to
do because of the small number of positive cases. An addi-
tional limitation is classification bias owing to rapid changes
in institutional testing protocols and accuracy of COVID-19
tests during the study period, together with a lack of access to
COVID-19 tests performed outside our institutions. There-
fore, patients in the COVID-negative or control cohorts
may have actually been infected with COVID-19. Finally,
the data analyst was unable to remain blinded to the study
question or COVID test status because of the data science
needed to create the 3 cohorts, which may have introduced
bias into the analysis.

In conclusion, physiologic data from remotely monitored
CIEDs provide a unique opportunity to detect physiologic
changes that may be associated with COVID-19 infection
early in the course of illness. Sensor changes in COVID-
positive patients signal early signs of infection that precede
clinical symptoms, which may be used to support early detec-
tion of infection to prevent decompensation in this at-risk
population.
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