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Deleting the mouse Hsd17b1 gene 
results in a hypomorphic Naglu 
allele and a phenotype mimicking a 
lysosomal storage disease
Heli Jokela1, Janne Hakkarainen1, Laura Kätkänaho1, Pirjo Pakarinen1, Suvi T. Ruohonen1, 
Manuel Tena-Sempere1,2, Fu-Ping Zhang1 & Matti Poutanen1,3

HSD17B1 is a steroid metabolising enzyme. We have previously generated knockout mice that had 
the entire coding region of Hsd17b1 replaced with lacZ-neo cassette (Hsd17b1-LacZ/Neo mice). This 
resulted in a 90% reduction of HSD17B1 activity, associated with severe subfertility in the knockout 
females. The present study indicates that Hsd17b1-LacZ/Neo male mice have a metabolic phenotype, 
including reduced adipose mass, increased lean mass and lipid accumulation in the liver. During the 
characterisation of this metabolic phenotype, it became evident that the expression of the Naglu 
gene, located closely upstream of Hsd17b1, was severely reduced in all tissues analysed. Similar 
results were obtained from Hsd17b1-LacZ mice after removing the neo cassette from the locus or by 
crossing the Hsd17b1-LacZ/Neo mice with transgenic mice constitutively expressing human HSD17B1. 
The deficiency of Naglu caused the accumulation of glycosaminoglycans in all studied mouse models 
lacking the Hsd17b1 gene. The metabolic phenotypes of the Hsd17b1 knockout mouse models were 
recapitulated in Naglu knockout mice. Based on the data we propose that the Hsd17b1 gene includes 
a regulatory element controlling Naglu expression and the metabolic phenotype in mice lacking the 
Hsd17b1 genomic region is caused by the reduced expression of Naglu rather than the lack of Hsd17b1.

The ES cells used in the present study were generated by using a method based on BAC recombineering technol-
ogy (VelociGene). The strategy replaced the entire open reading frame between the translation initiation codon 
(ATG) and the stop codon of the Hsd17b1 gene with the lacZ-neo cassette. The technique is efficient in gener-
ating large-sized deletions and inserting reporter genes into the translation initiation site and has been applied 
to generate targeted alleles in a high-throughput manner1. Targeting vectors, ES cells targeted by the method, 
and a collection of mouse models generated with the vectors are available for the scientific community by The 
International Mouse Phenotyping Consortium (http://www.mousephenotype.org/)2.

Deleting large regions of genomic sequence or inserting large DNA fragments might also result in unintended 
consequences on the regulation of adjacent and even distant transcriptional units, such as a severe downregula-
tion of neighbouring genes3–5. When the classical pronuclear injection technique is used for transgenic mouse 
production, the potential integration site effects on transgene expression or in the expression of other genes are 
typically controlled by generating several independent mouse lines6. However, in gene targeting studies, several 
mouse lines with different mutation strategies are typically not generated. Nevertheless, the potential impact 
of the gene targeting on the chromatin structure and on the expression of genes around the targeted locus has 
recently gained more interest. The recent results indicate the importance of considering the effect of the muta-
tion on the expression of closely located flanking genes5. These effects might well be one of the reasons for the 
observed differences in various knockout (KO) mouse models generated for the same gene.
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HSD17B1, the enzyme studied in the present report, belongs to hydroxysteroid (17-beta) dehydrogenases 
(HSD17Bs), which catalyse the conversion of 17-ketosteroids, such as oestrone (E1) and androstenedione 
(Adione), into the corresponding 17-hydroxysteroids, oestradiol (E2) and testosterone (T). The HSD17B activity 
is essential for the formation of the highly active circulating sex steroids in the gonads. However, HSD17B activ-
ity is also present in the peripheral target tissues of sex steroid action7, thereby regulating the local intra-tissue 
sex steroid concentrations8,9. The HSD17B family contains 14 members, HSD17B1-14, and each of them has a 
distinctive expression profile and physiological function7,10. Mouse Hsd17b1 is mainly expressed in the ovaries, 
while expression can also be detected in the testis and white adipose tissue11–13. In line with the expression profile, 
we have recently demonstrated that HSD17B1 activity has a critical role in ovarian steroid synthesis and fertility 
in female mice13. The enzyme has been shown to be responsible for 90% of the total HSD17B activity in mouse 
ovaries and the Hsd17b1-LacZ/Neo females are severely subfertile. In addition to the identified changes in ovar-
ian function, the phenotyping analyses carried out by the International Mouse Phenotyping Consortium (http://
www.mousephenotype.org/) associated the Hsd17b1 gene deletion in the Hsd17b1-LacZ/Neo mice with altered 
body composition, immune system phenotype and abnormal behaviour.

In the present study, we aimed to further define the potential role of HSD17B1 in phenotypic changes in 
non-reproductive tissues using the Hsd17b1-LacZ/Neo mice. Our data revealed that the deletion of the 
Hsd17b1 gene and its replacement with lacZ markedly reduced the expression of the immediate upstream gene, 
N-acetyl-alpha-glucosaminidase (Naglu). Our extensive characterisation of the metabolic phenotype of the 
mouse models that present with various genetic modifications at the Hsd17b1 and Naglu alleles indicates that 
the effects observed in the body composition and liver function in the Hsd17b1 knockout models are caused by a 
reduced expression of Naglu and are not due to a deficiency in HSD17B1 enzyme activity.

Results
Mouse Hsd17b1 gene includes a genomic region regulating Naglu gene expression.  We recently 
generated Hsd17b1 knockout mice by using the C57Bl/6N background ES cells obtained from the KOMP 
Repository13. In these targeted ES cells, the coding region of the Hsd17b1 gene was replaced with a sequence 
that included a lacZ reporter gene, which was inserted in the translation start site of the Hsd17b1 locus, fol-
lowed by a neo cassette (Fig. 1B, Hsd17b1-LacZ/Neo mice). In mice, Hsd17b1 is highly expressed in the ovary. 
Accordingly, our recent results demonstrated that the Hsd17b1-LacZ/Neo mice presented with altered ovarian 
function, associated with the expected reduced level of HSD17B1 activity and the increased ratio of 17-keto ster-
oids to 17-beta-hydroxysteroids13. However, the RNA sequencing data of two different tissues indicate that in the 
Hsd17b1-LacZ/Neo mice, the mRNA expression of immediate 5′ gene, N-acetyl-alpha-glucosaminidase (Naglu, 
located 8.3-0.7 kb upstream of the Hsd17b1 transcription start site), was severely reduced. This was confirmed 
by the qRT-PCR data indicating a marked decrease in Naglu mRNA in both the male and female tissues (7- to 
119-fold, Fig. 2A and Supplementary Figure S1A). The downregulation was gene-specific, as the RNAseq data 
obtained from the ovary and male adipose tissue showed that the expression of other genes located in the vicinity 
of Hsd17b1 (500 kb upstream and downstream) were not similarly altered (Supplementary Table S1).

Due to the potential effect of the human ubiquitin C (UBC) promoter, present as part of the inserted neo cas-
sette, we deleted the neo expressing cassette from the targeted Hsd17b1 locus by crossing the Hsd17b1-LacZ/Neo 
mice with those expressing Cre recombinase under the Rosa26 promoter14. In these mice (Hsd17b1-LacZ) the neo 
cassette was removed in the germ line, resulting in a lack of the selection cassette in all cells (Fig. 1C). However, 
the qRT-PCR results (Fig. 2A and Supplementary Figure S1A) indicated that in both males and females the Naglu 
mRNA expression was still downregulated in a similar fashion as was observed in the Hsd17b1-LacZ/Neo mice 
(11- to 228-fold). Thus, the presence of the neo cassette in the targeted locus was not the cause of the reduced 
expression of Naglu. The modest difference in the Naglu expression between the different Hsd17b1 knockout 
mouse lines is likely due to the different genetic backgrounds. We also sequenced the genomic region between the 
beginning of exon 6 of the Naglu gene and the Hsd17b1 transcription start site, as well as the 3′ end of the lacZ-neo 
cassette insertion site, and confirmed the proper targeting without the presence of any deletions or mutations at 
these regions. We next studied the Hsd17b1 expression in mice with the disrupted Naglu gene generated by an 
insertion of a neo cassette within exon 6 (Naglu-Neo mice)15. The data demonstrated that this insertion did not 
have an effect on the expression of Hsd17b1 (Fig. 2B). To further prove the interaction between the Hsd17b1 and 
Naglu loci, we generated two expression constructs for in vitro studies. One of the constructs extended from a 
site 5 kb upstream of the Naglu transcription start site until the 3′ region of the Hsd17b1 gene (Fig. 1F), and the 
other one was similar but lacked the 1.8 kb long coding region of the Hsd17b1 gene (Fig. 1G). By transfecting 
these constructs into COS cells, it was evident that significant transcription of Naglu was observed only with the 
construct including the Hsd17b1 gene region (Fig. 2C). Thus, both in vivo and in vitro data indicate the presence 
of an important regulatory region within the Hsd17b1 gene controlling Naglu expression. The Hsd17b1 gene 
deletion resulted in a hypomorphic Naglu allele and to undetectable level of NAGLU activity in the liver (Fig. 2D). 
In contrast, the disruption of the last exon of the Naglu gene did not interfere with Hsd17b1 expression (Fig. 2B), 
while the NAGLU activity was abolished (Fig. 2D).

Downregulation of Naglu in the Hsd17b1-LacZ/Neo mice results in an increase in cellular gly-
cosaminoglycan and lysosomal accumulation.  The Naglu gene codes for an enzyme that is involved 
in the catabolism of glycosaminoglycans (GAGs) by hydrolysing the terminal N-acetyl-D-glucosamine residues 
in N-acetyl-alpha-D-glucosaminides. Due to the reduced enzymatic activity, the accumulation of GAGs in var-
ious male and female organs was identified in the Hsd17b1-LacZ/Neo mice, similar to that measured in the 
Naglu-Neo mice. The highest GAG concentrations were measured in male and female liver and kidney (Fig. 3 and 
Supplementary Figure S1B), where the difference between the Hsd17b1-LacZ/Neo and WT mice was 2.5- and 
7.8-fold. A more modest difference in GAG concentration between the WT and Hsd17b1-LacZ/Neo mice was 
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observed in the ovary (Supplementary Figure S1B). Interestingly, in the testis with the highest Naglu expression in 
the WT mice, the remaining NAGLU activity present in the Hsd17b1-LacZ/Neo mice (10% from the WT mice) 
was enough to avoid the accumulation of GAG. To further assess the contribution of Hsd17b1 ablation to this 
GAG-accumulation, we overexpressed the human HSD17B1 enzyme in our null mouse model. As a result, very 
similar GAG accumulation was observed in Hsd17b1-LacZ and Hsd17b1-LacZ/Neo X HSD17B1TG mice. Thus, 
deleting the neo cassette or introducing HSD17B1 activity by a transgene (shown to result in increased HSD17B 
activity in previous studies16, and confirmed in the present study, Supplementary Figure S2) did not restore Naglu 
activity in mice with the disrupted Hsd17b1 gene.

The increased amount of GAGs within the tissues of Hsd17b1-LacZ/Neo mice coincided with the 
increased signal intensity for a lysosomal marker protein (LAMP1) measured by immunohistochemical 

Figure 1.  The schematic diagram of the alleles of mouse models used in this study. (A) Structure of the wild 
type (WT) locus of the Naglu and Hsd17b1 genes showing 6 exons presented as black boxes for both the Naglu 
and Hsd17b1 genes. (B) The targeted allele in Hsd17b1-LacZ/Neo mice with a deleted Hsd17b1 gene, including 
the targeting vector containing the lacZ and neo cassette13. (C) The targeted allele in Hsd17b1-LacZ mice, 
produced by crossing the Hsd17b1-LacZ/Neo mice with the Rosa26 transgenic mouse strain14. (D) Transgenic 
mice ubiquitously expressing the human HSD17B1 gene16 were crossed with Hsd17b1-LacZ/Neo mice to bring 
the HSD17B1 enzyme activity to an unrelated locus. In the HSD17B1 transgenic mice, human HSD17B1 cDNA 
was inserted between the CMV-enhanced chicken beta-actin promoter and rabbit beta-globin poly-A tail. 
(E) The targeted allele in Naglu-Neo mice15, showing a neo cassette inserted into exon 6. Arrows indicate the 
genotyping primer sites for all mouse models. (F) The interaction of the Hsd17b1 and Naglu gene region was 
also studied in vitro using expression constructs including a genomic fragment extending from a region 5 kb 
upstream of the transcription start site of Naglu until the 3′-region of the Hsd17b1 gene, and using a similar 
construct of which we deleted 1.8 kb long fragment of the Hsd17b1 gene.
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Figure 2.  Expression analysis of Naglu and Hsd17b1. Quantitative RT-PCR (A) analysis of the testis, 
epididymis, ovary, uterus, kidney, liver, adrenal gland, gonadal white adipose tissue (gWAT) and brown adipose 
tissue (BAT) showed the downregulation of Naglu expression in the Hsd17b1-LacZ/Neo mice (white bars), 
Hsd17b1-LacZ mice (dark grey bars) and Hsd17b1-LacZ/Neo X HSD17B1TG mice (light grey bars) compared 
with WT mice (black bars) at 3 months of age. (B) The Hsd17b1 mRNA expression was not altered in Naglu-
Neo mice ovaries. Bars demonstrate the mean of the relative expression normalised to the expression of L19 (the 
error bars show SD, n = 6). (C) The expression of Naglu was downregulated in the BAC vector with the entire 
Hsd17b1 gene deleted (expression normalised to luciferase gene expression and error bars show SEM, n = 6). 
(D) Naglu activity was proven to be disrupted in the livers of Naglu-Neo, Hsd17b1-LacZ/Neo and Hsd17b1-
LacZ/Neo X HSD17B1TG mice. Bars demonstrate the mean activity (Error bars SEM, n = 3–5). ND = not 
determined, NM = not measurable.

Figure 3.  Measurement of soluble GAG in the analysed tissues. Alcian blue precipitable GAG (mean ± SEM) 
was analysed from tissues of Naglu-Neo, Hsd17b1-LacZ/Neo, Hsd17b1-LacZ and Hsd17b1-LacZ/Neo X 
HSD17B1TG mice and their control littermates (n = 3). NM = not measurable.
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staining. The highest staining intensity was observed in the kidneys of males (Fig. 4B), epididymis (Fig. 4H) 
and uterus (Supplementary Figure S1D), and moderate staining was seen in the male liver (Fig. 4D) and ovary 
(Supplementary Figure S1F), while no difference in staining was observed in the testicular sections from WT 
and Hsd17b1-LacZ/Neo mice (Fig. 4E,F). The signal for LAMP1 immunohistochemistry co-localized well with 
the areas of large vacuoles present in the haematoxylin and eosin (HE) stained histological sections from the 
Hsd17b1-LacZ/Neo mouse uterus (Supplementary Figure S1H) and ovary (Supplementary Figure S1J). Similar 
results were obtained with another lysosomal marker, LIMP2, except that intense staining was also observed in 
the stromal vacuoles of the ovary (Supplementary Figure S3). Histological staining also confirmed the appear-
ance of these vacuoles in the Naglu-Neo mice (Supplementary Figure S1L,N). Thus, the vacuolated phenotype 
of the female reproductive tissues is most likely due to the accumulation of GAGs caused by the lack of proper 
expression of Naglu.

Although similar accumulation of GAGs was detected in the ovaries of Naglu-Neo mice and mice with a 
targeted disruption of the Hsd17b1 gene, the Naglu-Neo mice did not present with a severe subfertility, as was 
recently observed for the Hsd17b1-LacZ/Neo mice13. The Naglu-Neo females showed a regular estrous cycle and 
produced a similar litter size compared to the WT females, and did not display alterations in the expression of the 
steroidogenic genes (Supplementary Figure S4).

Metabolic phenotype of the Hsd17b1-LacZ/Neo male mice is associated with the reduced 
expression of Naglu.  It has been previously shown that decreased adiposity is a universal feature of 
lysosomal storage diseases17. Thus, we characterised the body weight and composition in the Naglu-Neo, 
Hsd17b1-LacZ/Neo, and Hsd17b1-LacZ/Neo X HSD17B1TG mice. Compared with the WT mice, the fat 
mass was markedly reduced and the lean mass was significantly increased in Naglu-Neo males, while the body 
weight was not altered (Fig. 5A). Similar alterations were also observed in Hsd17b1-LacZ/Neo (Fig. 5B) and 
Hsd17b1-LacZ/Neo X HSD17B1TG (Fig. 5C) mice. Furthermore, in all the mouse models a reduction in the 
fat mass corresponded to a reduced weight of all the fat pads analysed, and the amount of interscapular brown 
adipose tissue was also reduced (Fig. 5D). Histological examination of the subcutaneous white and brown adi-
pose tissue revealed smaller adipocyte size and browning of the white adipose tissue of the Naglu-Neo and 
Hsd17b1/LacZ/Neo males (Fig. 5E). The weight of the liver was significantly increased in both the Naglu-Neo 
(WT 1488 mg ± 159 mg vs Naglu-Neo 1956 mg ± 286 mg, P value < 0.001) and Hsd17b1-LacZ/Neo (WT 1692 
mg ± 196 mg vs Hsd17b1-LacZ/Neo 2547 ± 493 mg, P value < 0.001) mice. In line with this, histological analysis 
revealed an increased lipid accumulation in the liver of the Hsd17b1-LacZ/Neo (Fig. 6C) and Naglu-Neo (Fig. 6E) 
mice. The observed lipid accumulation was seen throughout the liver in the Hsd17b1-LacZ/Neo mice, while in 
the liver of the Naglu-Neo mice, the lipid accumulation was observed mainly in the centrilobular zone, as demon-
strated by Oil Red O staining of both the Hsd17b1-LacZ/Neo (Fig. 6D) and Naglu-Neo (Fig. 6F) mice. Despite 
the lipid accumulation in the liver, glucose tolerance was improved especially in Naglu-Neo mice (Fig. 6G), while 
the mechanism for this remains to be explored.

Figure 4.  Immunohistochemical analysis of Naglu-Neo and Hsd17b1-LacZ/Neo male mice. 
Immunohistochemical staining for LAMP1 was used to demonstrate lysosomes in the Hsd17b1-LacZ/Neo 
mice. Increased staining was observed in the kidney (B), liver (D) and epididymis (H) compared to the WT 
(A,C and G), while no difference in the intensity of staining was shown in testis sections from the WT and 
Hsd17b1-LacZ/Neo mice (E and F).
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Figure 5.  Measurement of the fat and lean mass in the Naglu-Neo, Hsd17b1-LacZ/Neo and Hsd17b1-LacZ/
Neo X HSD17B1TG male mice. (A) The fat mass was markedly reduced, and the lean mass was significantly 
increased in the Naglu-Neo mice (n = 9–10), while the body weight was not changed. Similar alterations 
were also observed in the Hsd17b1-LacZ/Neo (n = 10–11) (B) and Hsd17b1-LacZ/Neo X HSD17B1TG mice 
(n = 5–6) (C). (D) The weight of all the white adipose depots (scWAT = subcutaneous white adipose tissue, 
gWAT = gonadal white adipose tissue and pWAT = perirenal white adipose tissue), along with the brown 
adipose tissue (BAT), were decreased significantly. Statistical significance is marked with letters indicating P 
values: a, p < 0.001 compared to WT; b, p < 0.01 compared to WT; c, p < 0.05 compared to WT. Bars show mean 
value and error bars show SD. (E) Histological analysis showed smaller adipocytes in the WAT and the lipid 
droplets in BAT were smaller in size. Furthermore, the subcutaneous WAT of the Naglu-Neo and Hsd17b1-
LacZ/Neo mice showed signs of browning (arrows), which is shown more detailed in insertions.
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Discussion
It is widely recognised that the targeted disruption of the genome may affect the function of the neighbouring 
genes, even though only a limited number of reports exist. These off-target effects may hamper the conclusions 
made about the causality of the changes observed. One of the concerns has been that the expression vector used to 

Figure 6.  Liver histology and glucose tolerance test (GTT). When compared to the WT (A and B), the 
histology showed that both the Hsd17b1-LacZ/Neo and Naglu-Neo mice had lipid accumulation in the liver, 
as indicated by HE staining (C and E) and by Oil Red O staining (D and F). Glucose tolerance was improved 
in the Naglu-Neo mice (n = 9–10) despite the hepatic lipid accumulation (G). The P value is 0.0293. Error bars 
show SD.
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drive the antibiotic selection marker during gene targeting could affect the expression of other genes located close 
to the insertion site18,19. Furthermore, the targeting event may disrupt the regulatory and insulating elements, 
thereby effecting flanking genes3,20,21. The present study revealed that deleting the entire 1.8 kb long Hsd17b1 
gene from mice affects the transcription of the neighbouring 5′ gene coding for NAGLU. Consequently, severe 
downregulation of the Naglu expression was observed in all the Hsd17b1-LacZ/Neo tissues analysed. The end of 
the Naglu gene is located just 0.7 kb upstream from the transcription start site of the targeted gene. Therefore, we 
sequenced the critical parts of the targeted locus and confirmed the proper sequence between exon 6 of the Naglu 
gene and the transcription start site of Hsd17b1. Additionally, the sequencing confirmed that the 3′ end of the 
targeting construct showed a proper targeting event and the genomic region was clear of deletions or mutations.

There are many intragenic regulatory elements found in introns and in the 3′ and 5′ UTRs of genes regulat-
ing transcription. These elements have been shown to include secondary promoters, enhancer and repressor 
elements, and sequences coding for miRNAs22. Consequently, there is a risk for an unintended disruption of the 
genomic region coding for miRNA sequences during gene targeting, e.g. many miRNAs are encoded by regions 
located in the introns and exons of the protein coding genes23. Furthermore, according to the WashU Epigenome 
Browser (http://epigenomegateway.wustl.edu/browser/), the mouse Hsd17b1 gene contains three short inter-
spersed nuclear elements (SINEs). These nuclear elements are believed to be integrated into a complex regulatory 
network capable of modifying gene expression across the eukaryotic genome, e.g., by affecting the 3D structure of 
DNA or by directly interacting with transcriptional repressors and activators24,25.

In addition, it is recognised that the insertion of a neo cassette, coding for the selection gene used in the tar-
geting, can influence the regulation of neighbouring genes in the mouse18,26. However, in the case of the Hsd17b1 
locus, removing the UBC-neo cassette from the targeted locus did not restore the expression of the Naglu gene. 
Neither did the insertion of the neo cassette in the last exon of the Naglu gene (in the Naglu-Neo mice) disrupt the 
transcription of the downstream Hsd17b1 gene. We further confirmed that the lack of HSD17B activity was not 
the cause of reduced Naglu expression by expressing the enzyme in the Hsd17b1-LacZ/Neo mice by a transgene 
inserted in an unrelated genomic region. Thus, we conclude that the physical disruption of the genomic region is 
the cause for the downregulation of Naglu.

In line with the known enzymatic activity of HSD17B1, the Hsd17b1-LacZ/Neo mice presented with the 
increased ratio of 17-keto steroids over 17-beta-hydroxysteroids in the ovary and with severe subfertility, indi-
cating a critical role for the enzyme in female reproduction13. In addition, as shown in the present study, the 
Hsd17b1-LacZ/Neo male mice presented with reduced adiposity, increased lean mass and liver steatosis. Similar 
to the results obtained by us, decreased fat mass in the Hsd17b1-LacZ/Neo mice has been observed by work 
carried out in the IMPC (http://www.mousephenotype.org/). In contrast to our data, the IMPC analyses showed 
decreased lean mass in the Hsd17b1-LacZ/Neo mice. However, our data clearly indicate that the targeting method 
used to delete the Hsd17b1 gene also results in a marked downregulation of Naglu expression. The NAGLU 
enzyme is involved in the degradation of heparan sulfate, and reduced expression or a dysfunctional enzyme leads 
to the accumulation of heparan sulfate, especially in the liver and kidney, and to the vacuolisation of cells, includ-
ing macrophages, epithelial cells and neurons15. Previous studies on mouse models have shown that a defect in 
lysosomal functions is associated with a profound adipose deficiency, and in line with this, the Naglu knockout 
mice had significantly decreased fat mass and increased lean mass, as analysed by Woloszynek et al.17 and by us 
in the present study. The liver was also affected, with increased weight associated with lipid and GAG accumu-
lation, although glucose tolerance was found to be improved. Our observations on the metabolic phenotype of 
Hsd17b1-LacZ/Neo and Hsd17b1-LacZ/Neo X HSD17B1TG mice document a high degree of similarity with 
that found in the Naglu-Neo mice, except for a more severe lipid accumulation in the liver of the Hsd17b1-LacZ/
Neo mice. The very similar metabolic phenotypes strongly indicate that they are mainly caused by the defect in 
the Naglu gene in all the mutant mouse lines, thus being an off-target effect in the Hsd17b1-LacZ/Neo mice. The 
minor differences in the metabolic phenotypes between the Hsd17b1 mutant mouse lines are likely related to the 
differences in the genetic background of the mice. However, the fertility of the Naglu-Neo females was normal, 
indicating that the subfertility of the Hsd17b1-LacZ/Neo mice is caused by the observed lack of HSD17B1 activity 
rather than due to the reduced expression of Naglu, although the lysosomal accumulation appeared in the ovaries 
of both knockout mouse models.

Notably, Hsd17b1 and Naglu do not show similar expression patterns in mice. While Hsd17b1 is highly specific 
in the gonads11,12,27, Naglu is expressed broadly in most tissues (present study). Thus, it is interesting to note that 
deleting the Hsd17b1 allele results in a severe downregulation of the Naglu gene also in tissues not expressing 
Hsd17b1, while disrupting the 3′-end of the Naglu gene does not interfere with Hsd17b1 expression. The regula-
tory regions for the Hsd17b1 and Naglu gene in mice have not been characterised in detail. However, in rodent 
ovaries, Hsd17b1 is known to be regulated by cAMP-mediated pathways and TGF-beta family members28,29, 
although the genomic regions mediating these effects have not been determined. Interestingly, the correspond-
ing genomic regions coding for mouse and human HSD17B1 differ in their structure. The sequence between 
the HSD17B1 and NAGLU genes in humans extends up to 8.6 kb, including an untranscribed pseudogene of 
HSD17B130,31. It is well possible that the observed linkage between the two genes in mice is associated with the 
duplication of HSD17B1 gene in humans. However, it might be of interest to search for mutations also in the 
3′-non-coding region of NAGLU, including the genomic regions coding for HSD17B1 and pseudogene.

In summary, replacing the Hsd17b1 gene using a reporter cassette results in globally reduced expression of 
the neighbouring Naglu gene in all tissues. This off-target effect is likely responsible for the metabolic pheno-
type present in the Hsd17b1-LacZ/Neo mice described in the present study and on the International Knockout 
Mouse Consortium website (www.mousephenotype.org). The downregulation of Naglu was specific, as 
the expression of other genes in the genomic region was not similarly altered. Thus, the data suggest that the 
genomic locus of Hsd17b1 includes a strong regulatory region that specifically affects the Naglu expression, or 
that replacing the Hsd17b1 gene with the 4.3 kb long expression cassette with lacZ impacts on the chromatin 
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conformation-dependent Naglu gene expression. Other recent findings have identified various milder off-target 
effects within 500 kb long region surrounding the targeted locus5. Along with our data, this indicates the need to 
carefully characterise the effect of gene targeting on the expression of the surrounding genomic landscape.

Material and Methods
Genetically modified mouse models applied.  We have previously described the generation, main-
tenance, and genotyping of the Hsd171b-LacZ/Neo mice used in this study13. In short, Hsd17b1tm1(KOMP)Vlcg 
(referred to as Hsd17b1-LacZ/Neo in this publication) ES cells were obtained from the Knockout Mouse Project 
(KOMP) Repository (http://www.komp.org/). In the targeted allele, the entire coding region of the Hsd17b1 gene 
was replaced with a targeting vector, which included a lacZ reporter gene (inserted in the translation initiation 
site) followed by UBC promoter driven cDNA (neo) conferring neomycin resistance. In addition, Hsd17b1-LacZ 
mice were produced by crossing the Hsd17b1-LacZ/Neo mice with mice expressing Cre recombinase globally 
under the Rosa26 promoter32, removing the neo gene from the mutated Hsd17b1 locus. Furthermore, we estab-
lished a mouse line by crossing the Hsd17b1-LacZ/Neo mice with transgenic mice constitutively expressing 
human HSD17B1 (Hsd17b1-LacZ/Neo X HSD17B1TG)16. Moreover, mice with a disrupted Naglu gene were 
studied (Naglu-Neo). The Naglu-Neo mice were obtained from The Jackson Laboratory (Bar Harbor, ME, USA). 
In these mice, exon 6 was replaced with a cassette expressing the neo gene under the control of the phosphoglyc-
erate kinase (Pgk) promoter15. The structure of the Naglu and Hsd17b1 loci in the different mutant mice used are 
described in Fig. 1. The different mouse models were screened by PCR using primer pairs for detecting the pres-
ence of the targeted and wild type (WT) alleles (primer sequences in Supplemental Table 2).

Mice were housed under controlled environmental conditions (12 hours light/12 hours darkness, at 21 ± 3 °C 
and humidity 55 ± 15%) at the Central Animal Laboratory of the University of Turku. For the RNA and histolog-
ical analysis, mice were sacrificed using CO2 asphyxiation, followed by blood withdrawal from the heart before 
cervical dislocation. Tissues were weighed and snap-frozen in liquid nitrogen or fixed for histological analyses. 
All the animal experiments were approved by the Finnish Animal Ethics Committee, which fully met the require-
ments defined in the U.S. National Institutes of Health guidelines on animal experimentation.

Expression of the Naglu-Hsd17b1 genomic locus in vitro.  To determine whether the deletion of the 
Hsd17b1 gene affects Naglu expression in vitro, we generated two expression constructs in pACYC177 plasmid 
backbone (New England Biolabs, Ipswich, MA, USA) of this genomic region with and without the genomic 
fragment spanning the 1.8 kb coding region of Hsd17b1 (Fig. 1F and G). The constructs were co-transfected with 
a luciferase-expressing reporter plasmid (pRL Renilla luciferase reporter vector, Promega, Madison, WI, USA) 
into COS cells using TurboFect kit (Thermo Fisher Scientific, Wilmington, DE, USA) according to the instruc-
tions supplied by the manufacturer. Thereafter, the expression of Naglu in the transfected cells was analysed by 
qRT-PCR and normalised to luciferase expression (n = 6).

Studying the metabolic phenotype.  The weight of the Hsd17b1-LacZ/Neo (n = 10–11), Naglu-Neo 
(9–10), and Hsd17b1-LacZ/Neo X HSD17B1TG (n = 6) male mice and their WT littermates was measured 
weekly for three months starting at the age of eight weeks. Mice were given water and soy-free natural ingredient 
food (Special Diets Services, Witham, UK) ad libitum. The body composition, including the fat and lean mass, was 
measured once every two weeks by quantitative nuclear magnetic resonance (NMR) scanning (EchoMRI-700, 
Echo Medical Systems, Houston, Texas, USA). Glucose tolerance tests for the Hsd17b1-LacZ/Neo and Naglu-Neo 
mice were performed at the age of three months (n = 9–10). Prior to testing, mice were fasted for four hours, and 
the basal blood glucose level was measured. Glucose (1 g/kg mouse weight) was injected intraperitoneally (i.p.), 
and glucose was measured using FreeStyle Lite (Abbot Diabetes Care Inc., USA) from a blood sample obtained 
from the saphenous vein 20, 40, 60 and 90 minutes after the glucose injection.

RNA isolation, cDNA synthesis and quantitative real-time PCR.  Tissues were snap-frozen in liq-
uid nitrogen, and the RNA extraction was carried out with Trisure (Bioline Inc., Tauton, MA, USA) according 
to manufacturer’s instructions. The extracted total RNA was dissolved in nuclease free water. The quantity and 
quality were determined with a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, 
DE, USA) and agarose gel electrophoresis. The RNA was treated with DNase I (Invitrogen™, Life Technologies, 
Paisley, UK) or with DNase I (Sigma, Saint Louis, MO, USA), and cDNA synthesis was carried out with 
SensiFAST™ cDNA Synthesis kit (Bioline Inc., Tauton, MA, USA). Quantitative real-time PCR was performed 
using SYBR Green (Finnzymes, Thermo Scientific, Wilmington, DE, USA) and CFX96 real-time PCR detec-
tion system (Bio-Rad, Hercules, CA, USA). The mRNA expression of Hsd17b1 and Naglu was normalised to 
the expression of the ribosomal protein L19 (Rpl19), and the expression of mRNA was quantified using the 
PfaffI method33. The sequences of the primers used for Hsd17b1 were 5′-TTGTTTGGGCCGCTAGAAG-3′ and 
5′-CACCCACAGCGTTCAATTCA-3′; for Naglu, 5′TCCAACAGCACGAGTTTGAG3′ and 5′CTGCGATGGCTA 
ATCTGTCA-3′; and for luciferase, 5′-GATCAAAGCAATAGTTCACG-3′ and 5′-ATTTTTGATGGCAACA 
TGGT-3′). The expression of Hsd17b1 was analysed in the ovaries of the Naglu-Neo mice (n = 6), and the expres-
sion of Naglu was analysed in various tissues in the Hsd17b1-LacZ/Neo, Hsd17b1-LacZ, Hsd17b1-LacZ/Neo X 
HSD17B1TG mice at 3 months of age (n = 3) and in cells transfected with the BAC constructs (n = 6).

RNA sequencing.  RNA sequencing of the ovaries and male gonadal fat of the Hsd17b1-LacZ/Neo and WT 
mice was carried out at the Finnish DNA Microarray and Sequencing Centre (Turku Centre for Biotechnology, 
the University of Turku). RNA from the gonadal fat was isolated from 6 WT and 6 Hsd17b1-LacZ/Neo males, 
while the ovarian RNA was isolated from 6 pseudopregnant Hsd17b1-LacZ/Neo and 6 pseudopregnant WT 
females. The RNA quality was analysed with Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). The samples were sequenced using the HiSeq. 2500 instrument (Illumina, San Diego, CA, USA), according 
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to protocols provided by the manufacturer, using single-end sequencing chemistry with a 50 bp read length. The 
reads were aligned to the mouse reference genome version mm10 assembly available at UCSC (downloaded 
from Illumina iGenomes website (http://support.illumina.com/ sequencing/sequencing_software/igenome.
html)) using TopHat version 2.0.1034. HTSeq tool v.0.5.4p3 was used to count the uniquely mapped reads associ-
ated with each RefSeq annotated gene. The data were normalised using the Trimmed Mean of M-values (TMM) 
approach from the edgeR package, and statistical testing between sample groups (Hsd17b1-LacZ/Neo vs. WT) 
was carried out using the Limma package35,36. The cutoff for differential expression was set at a false discovery 
rate (FDR) < 0.01, absolute fold change above 2.0 and mean RPKM expression level > 0.125 in at least one of the 
groups.

Analysis of glycosaminoglycans.  The concentration of GAGs was measured according to a previ-
ously published method37. In brief, the snap-frozen samples (n = 3) were incubated in 0.9% NaCl, 0.2% Triton 
X-100 overnight at +4 °C with shaking and then homogenised with a TissueLyser (Qiagen, Hilden, Germany) 
using 7 mm metal beads. After homogenisation, the samples were centrifuged at 5000 g for 10 min at +4 °C, 
and the supernatant was collected for glycosaminoglycan quantitation. For this, the samples were mixed with 
8 M guanidine-HCl and incubated for 15 min at room temperature (RT). A solution containing 54 mM sulfu-
ric acid and 0.75% Triton X-100 was applied to the samples and mixed thoroughly. A solution of Alcian blue 
(Sigma-Aldrich, Saint Louis, MO, USA), 1.8 M sulfuric acid, 8 M guanidine-HCl and 10% Triton X-100 was 
added and the samples were incubated for 1 hour at +4 °C. Next, the samples were centrifuged at 12 000 g for 
15 min, and the supernatant was discarded. The pellet was washed with 40% DMSO, 50 mM MgCl2 solution, 
mixed with 4 M guanidine-HCl, 33% isopropanol and agitated at RT for 15 min. The absorbances of samples were 
then determined at a wavelength of 600 nm.

Histology and immunohistochemistry.  For histological analysis, tissues were fixed in 10% buffered for-
malin solution at RT for 24 h. After fixation, tissues were dehydrated and embedded in paraffin. Five µm thick 
sections were prepared, deparaffinised and rehydrated, and stained with haematoxylin and eosin. In addition, Oil 
Red O staining was performed on 10 μm thick cryosections according to standard procedures. Briefly, sections 
were fixed in buffered formalin solution followed by washing with water and isopropanol. The sections were 
stained in Oil Red O solution and then washed with isopropanol and water, followed by mounting with Aquatex® 
(Merck, Darmstadt, Germany).

For immunohistochemistry, formalin-fixed and paraffin-embedded samples were sectioned prior to depa-
raffinisation and rehydration. Five μm thick sections were exposed to antigen retrieval in a pressure cooker with 
sodium citrate buffer for 30 minutes. The blocking reaction with 10% goat serum and 3% bovine serum albumin 
(BSA; Sigma-Aldrich) in PBS for non-specific binding was performed, followed by overnight incubation with the 
primary antibody against LAMP1 (dilution 1:400, ab24170, Abcam, Cambridge, UK) or LIMP2/lpg85 (dilution 
1:400, NB400-129, Novusbio, Littleton, CO, USA) and CYP17A1 (dilution 1:2000, #PTGlab14447; Proteintech 
Group, Chicago, IL, USA) at 4 °C. Endogenous peroxidase activity was then blocked by incubation in 3% H2O2 for 
20 min at RT, followed by a 30 min incubation at RT with an anti-rabbit antibody conjugated with polymer-HRP 
(HRP-conjugated polymer against rabbit, Dako EnVision+ System; Dako, Carpinteria, CA, USA). The sections 
were then washed, and the bound antibody was visualised with Envision™+ System-HRP DAB staining (Dako, 
Carpinteria, CA, USA). The sections were counterstained with haematoxylin, mounted and digitised using a 
Pannoramic 250 slide scanner (3DHISTECH, Budapest, Hungary).

Measurement of NAGLU activity.  NAGLU activity was determined fluorometrically as previously 
described by Li et al. with minor modifications15. In brief, approximately 30 mg of tissue sample was homogenized 
in 0.9% NaCl/0.2% Triton-X 100 by hand with the pestle, rotated at +4 °C for 2 hours and centrifuged (5000 g for 
10 min) to remove the debris. Supernatants were collected and 25 µl aliquots were incubated for 1 hour in +37 °C 
with 25 µl of 0.2 mM 4-methylumbelliferyl-2-acetamido-2-deoxy-α-D-glycopyranoside (Abcam, Cambridge, 
UK) in 0.1 M Na acetate buffer (pH 4.3) containing 0.5 mg/ml BSA. Reaction was terminated by adding 1 ml of 
10 mM glycine buffer (pH 10.5). The 4-methylumbelliferone released was measured with fluorometer (excitation 
wavelength of 355 nm, emission wavelength of 460 nm, exposure time 0.1 sec; Victor x 4; PerkinElmer, Waltham, 
MA, USA). For determining the calibration curve, 4-methylumbelliferone (Sigma-Aldrich) was used and the 
NAGLU activity was determined as nmol/h/mg tissue weight.

HSD17B activity.  Kidney samples (approximately 30 mg in weight) were homogenized by incubating them 
in 0.9% NaCl, 0.2% Triton X-100 overnight at +4 °C with shaking and then homogenised with a TissueLyser 
(Qiagen, Hilden, Germany) using 7 mm metal beads. The depris was removed by centrifuging (5000 g for 
10 min). Reaction mixture (200 µl) containing 20 mM KH2PO4 with 1 mM EDTA and protease inhibitor (Roche 
Diagnostics, Indianapolis, IN, USA), pH 7.4, 1 mM β-NADPH (Merck), 30 nM E1 (Sigma-Aldrich), and 5 nM 
[3H]-E1 (PerkinElmer) was mixed with 10 µl sample homogenate and incubated for 2 hours at RT. Reaction was 
stopped with 6.1 N trichloroacetic acid (Sigma-Aldrich, final concentration 1% v/v). Samples were the applied 
to Waters Ostro sample preparation plates (Waters Co., Milford, MA, USA) and the steroids were eluted from 
the plate with 100 µl acetonitrile followed with 100 µl of MilliQ-water. The amount of [3H]-E1 and [3H]-E2 in the 
samples was analyzed with HPLC connected to on-line with a scintillation analyser. As HPLC we used Waters 
Acquity UPLC H-class (Waters Co.) equipped with XBridge C18 (3.5 µm, 4.6 × 50 mm; Waters Co.) column and 
XBridge VanGuard C18 (3.5 µm, 3.9 × 5 mm; Waters Co.) guard column. As mobile phase we used acetonitrile 
(VWR) – water (48/52 v/v) with flow of 1.2 ml/min. The eluent was mixed on-line with scintillant (Ecoscint A, 
National Diagnostics, Atlanta, GA, USA) with flow of 0,6 ml/min, and beta emission of the [3H]-steroids was 
counted on-line with Berthold FlowStar2 (Berthold Technologies GmbH, Bad Wildbad, Germany) scintillation 
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analyzer. The HSD17B activity was calculated based on the percentage of [3H]-E1 converted to [3H]-E2, and 
determined as pg of E2 formed/ug protein.

Statistical analyses.  Statistical analyses, except for the RNA sequencing data, were carried out using 
GraphPad Prism 7 software (GraphPad Software, Inc., La Jolla, CA, USA). Statistical significance between groups, 
which was set at P < 0.05, was determined using an unpaired t-test or 2-way ANOVA followed with Bonferroni 
post hoc test, and mean values ± SD or SEMs are presented.

Data availability statement.  All data generated or analysed during this study are included in this pub-
lished article (and its Supplementary Information files) or can be requested from the corresbonding author.
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