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Abstract
Circular RNAs (circRNAs) have a covalently closed circular conformation and are 
structurally stable. Those circRNAs with tumor‐suppressive properties play an im‐
portant role in tumorigenesis and metastasis and thus may be used as therapeutic 
targets of cancers. Herein, we review the current understanding of the classification 
of circRNAs and summarize the functions and mechanisms of circRNAs that have 
tumor‐suppressive roles in various cancers, including liver cancer (circARSP91, circ‐
ADAMTS13, circADAMTS14, circMTO1, hsa_circ_0079299, and circC3P1), bladder 
cancer (circFNDC3B, circITCH, circHIPK3, circRNA‐3, cdrlas, and circLPAR1), gastric 
cancer (circLARP4, circYAP1, hsa_cric_0000096, hsa_circ_0000993, and circPSMC3), 
breast cancer (circ_000911, hsa_circ_0072309, and circASS1), lung cancer (hsa_
circ_0000977, circPTK2, circ_0001649, hsa_circ_100395, and circ_0006916), glioma 
(circ_0001946, circSHPRH, and circFBXW7), and colorectal cancer (circITGA7 and 
hsa_circ_0014717). Thanks to their structural stability, these tumor‐suppressive cir‐
cRNAs may be used as potential and potent therapeutic targets. Moreover, we pro‐
pose a new method for the classification of circRNAs. Based on whether they can be 
translated, circRNAs can be divided into noncoding circRNAs and coding circRNAs.

K E Y W O R D S
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1  | INTRODUCTION

Those RNAs that do not encode proteins are called ncRNAs.1 
Regulatory ncRNAs are divided into lncRNAs and sncRNAs. 
LncRNAs can be linear or circular.2

Circular RNAs were first discovered in 1976.3 Since then, a vari‐
ety of circRNAs have been discovered.4,5 CircRNAs are more resis‐
tant to exonuclease and are more stable than other lncRNAs.3,6 They 
exist in exosomes and plasma.6,7 Li et al identified more than 1000 
circRNAs in human serum exosomes.6 Li et al found 343 differentially 

www.wileyonlinelibrary.com/journal/cas
https://orcid.org/0000-0002-8592-9251
http://creativecommons.org/licenses/by-nc/4.0/
mailto:xiaobingxiu@nbu.edu.cn


     |  3631LI et al.

expressed circRNAs in the plasma.2 Their expression profiles are 
specific in different cell types and developmental stages.3,4

In the present review, we first briefly summarize the character‐
istics of circRNAs, highlight the relationships between tumor‐sup‐
pressive circRNAs and cancers, and finally illustrate the mechanisms 
underlying circRNA‐mediated inhibition of cancer occurrence and 
development.

2  | CLASSIFICATION AND BIOGENESIS OF 
CIRCRNAS

According to their composition, circRNAs can be divided into three 
categories (Figure 1A): ecircRNAs,8 ciRNAs,9 and EIciRNAs.10 
According to their location, circRNAs can be divided into five cat‐
egories (Figure 1B): ecircRNAs, ciRNAs, antisense circRNAs, sense‐
overlapping circRNAs, and intergenic circRNAs.11

Simultaneously, recent studies have shown the potential of 
circRNAs in protein translation.12-14 CircMbl3 can be translated 
in a splicing‐dependent but cap‐independent way in fly head ex‐
tract.12 A single N6‐methyladenosine residue in circRNA may be 
sufficient to drive translation.13 Here, we propose a new method 
for the classification of circRNAs: based on whether they can be 
translated, circRNAs may be divided into noncoding circRNAs and 
coding circRNAs (Figure 1C). Specifically, coding circRNAs may 
have at least one IRES or have specific m6A site, which allows the 
ribosome to initiate translation directly in the mRNA sequence. In 
addition, coding circRNAs have an ORF. Merely meeting these two 
points is sufficient for classification as coding circRNAs. Most cir‐
cRNAs known today are produced by reverse splicing of pre‐mRNA 
(Figure 2A).15,16 There are two other biogenesis methods, intron‐
pairing circulation and RBP‐induced circulation (Figure 2B,C).17-19 

For some circRNAs, the reverse complementary Alu can be used to 
boost circularization.20-22

3  | BIOLOGICAL FUNCTIONS OF 
CIRCRNAS

Functions of circRNAs include the following: (i) regulation of tran‐
scription; (ii) competition as endogenous RNA or miRNA sponges; 
(iii) translation of proteins; and (iv) interaction with RBP.23 In addi‐
tion, some ecircRNAs may affect alternative splicing.

As the formation of some circRNAs and linear RNAs share some 
common exons, they may compete with each other.24 For example, 
circZKSCAN1 (hsa_circ_0001727) from the zinc finger protein with 
KRAB and SCAN domains 1 (ZKSCAN1) gene may retain endogenous 
RNA as a competitive inhibitor and regulate tumor cell proliferation 
and metastasis‐related gene expression. Both ZKSCAN1 and its re‐
lated circRNA (circZKSCAN1) inhibit HCC growth, migration, and 
invasion but through different signaling pathways.25

CircRNAs may function as ceRNAs to retain endogenous RNA 
and regulate the expression of related genes.26,27 For example, cir‐
cLARP4 from the LARP4 pre‐mRNA inhibits the occurrence and pro‐
gression of GC by affecting the expression of cavernous miR‐424 
and increasing the expression of LATS1.28

Increasing numbers of studies have shown that circRNAs have a 
potential role in translation.12,29,30 CircRNAs that can be translated 
to peptides or proteins mainly have the following characteristics: (i) 
they have an ORF with a longer length; (ii) they have an ORF that 
crosses reverse junctions; and (iii) they have some essential regula‐
tory elements upstream of the ORF at the start of translation, such 
as N6‐methyladenosine (m6A) near the initiation codon.13 For ex‐
ample, circSHPRH from exons 26 and 29 of the SNF2 histone linker 

F I G U R E  1   Categories of circular 
RNAs (circRNAs). A, Classification of 
circRNAs based on their compositions: 
Exonic circRNAs (ecircRNAs), circular 
intronic RNAs (ciRNAs), and exon‐intronic 
circRNAs (EIciRNAs). B, Classification of 
circRNAs based on their positions and 
their adjacent mRNAs: ecircRNAs, ciRNAs, 
antisense circRNAs, sense overlapping 
circRNAs, and intergenic circRNAs. C, 
Coding circRNAs may have at least one 
internal ribosome entry site (IRES) and 
have an open reading frame (ORF)
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PHD RING helicase (SHPRH) pre‐mRNA uses an overlapping genetic 
code to encode a 17‐kDa protein SHPRH‐146aa. This novel protein 
functions as a tumor suppressor by protecting its associated full‐
length SHPRH.31

Other circRNAs may also interact with different proteins, regu‐
late the transcription of parental genes, and promote protein‐protein 
interactions.20 For example, circFAT1(e2) (hsa_circ_0001461) from 
exon 2 of FAT atypical cadherin 1 (FAT1) can directly bind to YBX1 
and then inhibit the progression of GC.32

More importantly, a related primary consideration for circRNA 
function is their localization. EcircRNAs have been shown to be pre‐
dominantly cytoplasmic,33 but ciRNAs and EIciRNAs are localized to 
the nucleus, cytoplasm, or both.

4  | CHARACTERISTICS OF TUMOR‐
SUPPRESSIVE CIRCRNAS

Many circRNAs have been found to exert tumor‐suppressive ef‐
fects in several types of cancer (Table 1). A few of them, such as 
circFAT1(e2), are produced by a single exon.32 However, most cir‐
cRNAs are produced by multiple exons. For example, cSMARCA5 
(hsa_circ_0001445) is from exons 15 and 16 of the SWI/SNF‐re‐
lated matrix‐associated actin‐dependent regulator of the chro‐
matin subfamily A member 5 (SMARCA5) gene,34 and circASS1 
(hsa_circ_0089105) is derived from exons 9, 10, and 11 of the ASS1 
gene.35 Regarding localization, tumor‐suppressive circRNAs are 
mainly located in the cytoplasm.

From a functional point of view, tumor‐suppressive circRNAs 
mainly have the following functions (Figure 3): (a) acting as a sponge 
of miRNAs, (b) interacting with proteins, (c) translating proteins, and 

(d) regulating the transcription of linear RNAs. In addition, some cir‐
cRNAs may have several roles. For example, acting as sponges of 
miRNA and protein, cSMARCA5 inhibits HCC progression by modu‐
lating DHX9 and sponges miR‐17‐3p and miR‐181b‐5p, which target 
TIMP3.34

5  | TUMOR‐SUPPRESSIVE CIRCRNAS AND 
C ANCERS

5.1 | Liver cancer

Liver cancer is the sixth most common cancer in the world and the 
fourth‐leading cause of cancer death. The most common types of 
liver cancer are HCC and intrahepatic cholangiocarcinoma; there are 
also other rare types.36

CircADAMTS14, which is downregulated in the HCC cell line, 
acts as a sponge of miR‐572 to regulate the expression of RCAN1 
and thereby inhibit HCC progression.37 It has also been found that 
circADAMTS13 acts as a tumor suppressor during HCC progression 
through a functional pathway as a miR‐484 sponge.38 Another study 
found that circMTO1 acts as a sponge of miR‐9 and then upregu‐
lates the expression of P21 and inhibits the progression of HCC.39 
Compared with adjacent normal tissues, hsa_circ_0079299 expres‐
sion is downregulated in HCC tissues, and it inhibits cell prolifera‐
tion and blocks cell cycle progression in the G2/M phase through 
the PI3K/AKT/mTOR pathway.40 CircARSP91 is one of the circRNAs 
downregulated by AR in a double‐stranded RNA‐specific adenosine 
deaminase 1 (ADAR1)‐dependent method. In fact, AR is thought to 
play an important role in prostate cancer. Interestingly, circARSP91 
inhibits HCC tumor growth via the AR/ADAR1/circARSP91 axis.41 
As a tumor suppressor, circC3P1 acts as a sponge of miR‐4641, 

F I G U R E  2   Biogenesis of circular RNAs (circRNAs). A, Produced by reverse splicing of pre‐mRNA. B, Intron pairing cycle produces 
circRNA. C, RNA‐binding protein (RBP) induces circulation
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promotes PCK1 expression, and inhibits migration and invasion of 
HCC cells in vitro and in vivo.42

5.2 | Bladder cancer

Bladder cancer is the tenth most common cancer in the world and 
the ninth largest cause of cancer death.36

A study found that circFNDC3B is significantly downregulated 
in BCa tissues and is associated with pathological T staging, grading, 
lymphatic invasion, and overall patient survival.43 Mechanistically, 
circFNDC3B binds directly to miR‐1178‐3p, which targets oncogene 
G3BP stress granule assembly factor 2 (G3BP2) mRNA.43 Another 
BCa‐associated circRNA, circITCH was found to be reduced in BCa 
tissues and cell lines, and expression of P21 and phosphatase and 
tensin homolog (PTEN) was upregulated by sponging of miR‐17 
and miR‐224.44 CircITCH inhibits migration and invasion in  vitro 
and tumorigenesis in vivo.44 Li et al found that circHIPK3 inhibited 
heparanase expression by targeting miR‐558, thereby inhibiting 
the invasion and metastasis of BCa cells.45 In addition, circRNA‐3 
(BCRC‐3) acts as a tumor suppressor to inhibit BCa proliferation via 

the miR‐182‐5p/P27 axis.46 As the first identified circRNA that has 
a miRNA sponge role, Cdr1as is significantly downregulated in BCa 
tissue compared with adjacent normal tissues.47 In vitro and in vivo 
experiments further found that Cdr1as inhibits proliferation, in‐
vasion, and migration of BCa by binding to miR‐135a.47 In another 
study, circLPAR1 was found to be downregulated in MIBC tissues.48 
Patients with low expression levels of circLPAR1 had shorter dis‐
ease‐specific survival than patients with high expression levels.48 At 
the same time, it was found that circLPAR1 affected MIBC invasion 
and metastasis by sponging miR‐762.48

5.3 | Gastric cancer

Gastric cancer is the fifth‐leading cause of cancer death.36 Tumor‐
suppressive circLARP4 inhibits the development and progression of 
GC through a regulatory network of the circLARP4/miR‐424/LATS1 
axis.28 The expression level of circYAP1 in GC tissues was significantly 
lower than that in adjacent normal tissues, and the survival time of 
patients with low expression of circYAP1 was shorter than that of pa‐
tients with high expression of circYAP1.49 Moreover, circYAP1 acts as 

F I G U R E  3   Biological functions of cancer‐suppressive circular RNAs (circRNAs). A, Acting as a sponge of microRNA (miRNA). For example, 
circ_000911 competitively binds with miR‐449a, which binds with Argonaute 2 (Ago2) and targets notch homolog 1 (Notch 1) mRNA. B, 
Interacting with proteins. For example, circNOL10 first binds with sex comb on midleg‐like 1 (SCML1), then moves transcription factor 
binding sites (TFBS), and finally promotes the expression of human protein (HN) in lung cancer. C, Translating proteins. For example, the 
pre‐mRNA of F‐box and WD repeat domain containing 7 (FBXW7) may produce a circRNA called circFBXW7 and FBXW7α mRNA. The open 
reading frame (ORF) in circFBXW7, which is driven by the internal ribosome entry site, encodes a protein, FBXW7‐185aa. FBXW7‐185aa 
can bind with ubiquitin‐specific peptidase 28 (USP28) to prevent USP28 binding with FBXW7α mRNA, thereby reducing the half‐life of c‐
Myc and reducing the stability of c‐Myc. D, Regulating the transcription of linear RNA. For example, the pre‐mRNA of zinc finger protein 
with KRAB and SCAN domains 1 (ZKSCAN1) may produce a circRNA called circZKSCAN1 that acts as a competitive inhibitor to retain 
endogenous RNA and then regulates the expression of cell proliferation and apoptosis‐related genes, including apoptotic genes RAS‐
associated C3 botulinum toxin substrate 2 (RAC2), ephrin‐A3 (EFNA3), and caspase 3, transforming growth factor beta 1 (TGFB1), integrin 
beta 4 (ITGB4), and CXC motif chemokine receptor 4 (CXCR4)
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a sponge of miR‐367‐5p to inhibit P27Kip1 expression and inhibits GC 
cell growth and invasion.49 Our group found that hsa_cric_0000096 
inhibits the growth and migration of GC cells through regulating the 
expression of cyclin D1, cyclin‐dependent kinase 6 (CDK6), MMP‐2, 
and MMP‐9.50 Acting as a sponge of miR‐214‐5p, hsa_circ_0000993 
may be used as a target for the treatment of GC.51 It has also been 
found that circPSMC3 acted as a sponge of miR‐296‐5p to regulate 
PTEN expression in GC.52

5.4 | Breast cancer

Breast cancer is the second most common cancer and is the most 
common cancer in women.36 By acting as a sponge of miR‐449a, 
circ_000911 promotes the expression of notch homolog 1 (Notch1), 
thereby inhibiting the progression of breast cancer (Figure 3A).53 
Another study found that overexpression of hsa_circ_0072309 in‐
hibits miR‐492 activity and thus inhibits breast cancer progression.54 
In addition, circASS1 inhibits breast tumorigenesis and progression 
through the miR‐4443/ASS1 axis.35

5.5 | Lung cancer

Lung cancer is the most common cancer in the world. NSCLC ac‐
counts for 80% to 85% of all lung cancer cases.36

CircNOL10 (hsa_circ_0000977) affects mitochondrial func‐
tion by promoting the expression of the HN polypeptide family 
in lung cancer (Figure 3B).55 Alterations in mitochondrial function 
trigger a variety of signaling pathways and ultimately inhibit cell 
proliferation and cell cycle progression and promote apoptosis 
in lung cancer cells, thereby significantly inhibiting lung cancer 
progression.55 It was found that circPTK2 inhibited transform‐
ing growth factor β‐induced mesenchymal‐epithelial transition 
(EMT) and cell invasion via the miR‐429/miR‐200b‐3p/TIF1γ axis 
in NSCLC.56 CircPTK2 overexpression also decreases Snail ex‐
pression and inhibits the progression of NSCLC.56 Circ_0001649 
has a tumor‐suppressive effect by sponging   miR‐331‐3p and 
miR‐338‐5p.57 This means that the circ_0001649/miR‐331‐3p and 
circ_0001649/miR‐338‐5p regulatory axis may contribute to tum‐
origenesis and progression of NSCLC. Hsa_circ_100395 is down‐
regulated in lung cancer tissues and cells and acts as a sponge of 
miR‐1228 to regulate transcription factor 21 (TCF21) expression, 
thus inhibiting the proliferation activity, migration, and invasion 
of lung cancer cells.58 Another study found that circ_0006916 
bound miR‐522‐3p and then directly targeted the PH domain and 
leucine‐rich repeat protein phosphatases (PHLPP1).59 Therefore, 
circ0006916 may be used as a possible therapeutic target for lung 
cancer.

5.6 | Glioma

Glioma is one of the deadliest tumors, and two‐thirds of patients 
with glioma specifically have GBM.36 The mortality rate of glioma 
is very high.

Circ_0001946 promotes the expression of CDR1 by inhibiting 
miR‐671‐5p and inhibits the malignant proliferation of GBM cells.60 
CircSHPRH, which translates to SHPRH146aa using an overlapping 
genetic code, is used as a protective “bait” for SHPRH to prolong 
the half‐life of the relevant full‐length SHPRH, thereby reducing 
the malignant proliferation and phenotype of glioma.31 In another 
similar study, cross‐linked ORF in circFBXW7, driven by the IRES, 
was found to encode a new 21‐kDa protein called FBXW7‐185aa.61 
FBXW7‐185aa can bind with USP28 to prevent USP28 binding with 
FBXW7α mRNA, thereby reducing the half‐life of c‐Myc and inhib‐
iting proliferation and cell cycle progression, significantly inhibiting 
glioma progression (Figure 3C).61

5.7 | Other cancers

Many studies have found that circRNAs play an important role 
in the development of other tumors. CircITGA7 plays a role in 
the regulation of NF1 translation by competitive binding to miR‐
370‐3p.62 CircITGA7 inhibits the Ras signalling pathway, thus af‐
fecting the progression of CRC.62 In addition, hsa_circ_0014717 
inhibits CRC growth, possibly by upregulating P16 expression.63 By 
regulating miR‐136‐5p/ATXN1 and miR‐382‐5p/ATXN1 networks, 
hsa_circ_0008309 regulates cell proliferation and EMT in various 
cancers.64 In addition, circ004389 may be a target of histone H3 and 
BMI1 proto‐oncogene in esophageal cancer. It inhibits cell prolifera‐
tion, migration, and invasion and induces cell death.65

6  | TUMOR‐SUPPRESSIVE CIRCRNAS MAY 
BE USED AS TUMOR BIOMARKERS

The following characteristics of circRNAs indicate that they may 
be used as potential tumor biomarkers. (i) Stability: circRNAs are 
resistant to RNase R.10 (ii) Specificity: circRNAs are expressed in a 
tissue‐specific and developmental stage‐specific way. In particular, 
many studies have shown that circRNAs are distinctively expressed 
between cancerous and noncancerous tissues.26 (iii) Universality: 
circRNAs are considered to be the most widely distributed mole‐
cules in human cells. (iv) Conservatism: circRNAs are evolutionally 
conserved in different species.

In GC, our group found that there were differences in the ex‐
pression of hsa_circ_002059 between GC tissues and nontumor 
tissues and pairs of plasma samples before and after surgery.66 In 
another study, it was found that, compared with non‐tumor tissue, 
hsa_circ_0001649 was significantly downregulated in GC tissues, 
and its levels in serum samples of postoperative GC patients were 
significantly higher than those from preoperative patients.67 These 
results suggest that hsa_circ_002059 and hsa_circ_0001649 may be 
used as new biomarkers for GC.

Another study found that the expression of circFBXW7 was 
positively correlated with OS of patients with GBM.61 OS of the 
group with higher expression of circFBXW7 was approximately 
12.5  months longer than that of the group with low circFBXW7 
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expression.61 Thus, circ‐FBXW7 may be a potential prognostic bio‐
marker of GBM.

Expression levels of circITCH were positively correlated with 
histological grade in BCa but were not related to age, tumor lymph 
node metastasis, or tumor size.44 Thus, circITCH may be used as a 
valuable biomarker for the detecting prognosis of BCa and ovarian 
cancer.

7  | CONCLUSION AND FURTHER 
PERSPECTIVES

Circular RNAs play a crucial role in the development of various tu‐
mors. One of the mechanisms underlying tumor‐suppressive circR‐
NAs in cancer is that they act as sponges of miRNAs through the 
circRNA‐miRNA‐mRNA regulatory network. Tumor‐suppressive 
circRNAs can also interact with proteins to affect their biological 
functions. In addition, tumor‐suppressive circRNAs also function to 
regulate the transcription of linear RNAs.
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