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Evaluating the performance 
of the Bayesian mixing tool 
MixSIAR with fatty acid data 
for quantitative estimation of diet
Alicia I. Guerrero1* & Tracey L. Rogers2

We test the performance of the Bayesian mixing model, MixSIAR, to quantitatively predict diets of 
consumers based on their fatty acids (FAs). The known diets of six species, undergoing controlled-
feeding experiments, were compared with dietary predictions modelled from their FAs. Test subjects 
included fish, birds and mammals, and represent consumers with disparate FA compositions. We 
show that MixSIAR with FA data accurately identifies a consumer’s diet, the contribution of major 
prey items, when they change their diet (diet switching) and can detect an absent prey. Results were 
impacted if the consumer had a low-fat diet due to physiological constraints. Incorporating prior 
information on the potential prey species into the model improves model performance. Dietary 
predictions were reasonable even when using trophic modification values (calibration coefficients, 
CCs) derived from different prey. Models performed well when using CCs derived from consumers fed a 
varied diet or when using CC values averaged across diets. We demonstrate that MixSIAR with FAs is a 
powerful approach to correctly estimate diet, in particular if used to complement other methods.

Quantitative dietary studies are important for ecosystem-based management and are needed to predict potential 
impacts on predator–prey  dynamics1,2. However, accurate dietary estimations are difficult to obtain as most of 
the traditional methods available, such as scat and stomach content analyses, provide a qualitative identification 
of the most recent dietary  intake3,4 or provide quantitative information that is potentially biased towards prey 
types containing hard  parts3, 5. Thus, biochemical methods have been proposed as a solution to some of these 
constraints. Biochemical compounds, such as fatty acids (FAs) and stable isotopes, are effective dietary tracers 
because they are predictably modified when transferred from the prey (“source”) to the tissues of the predator 
(“consumer”)6,7.

Stable isotope analysis has been widely used as a quantitative approach for ecological  studies7; mainly through 
the development of robust analytical tools such as the linear mixing model  IsoSource8, or the Bayesian mixing 
models  SIAR9 and  MixSIR10. More recently, Stock et al.11 developed another Bayesian framework, MixSIAR, 
which integrates a set of parameterizations that improve on the error structure of its predecessors SIAR and 
MixSIR, in terms of their assumptions about the predation  process12. This new generation of Bayesian tracer 
mixing model has already been widely applied to stable isotope data for ecological  studies13–15, however, although 
it can be used with other biochemical tracers, little is known about its performance with FA data.

Unlike stable isotopes, FAs have been used mostly as a qualitative tool, where similarities in FA signatures 
between sources and consumers are evaluated through the application of multivariate analyses e.g. Refs.16–19. 
Although FAs have proven to be a useful tool to elucidate dietary  patterns20, their quantitative use in foraging 
ecology studies has been slow compared to stable isotope studies. The first quantitative framework developed 
for FA data was the “Quantitative Fatty Acid Signature Analysis (QFASA)”  approach4, which uses a multivariate 
least-squares model to estimate the contribution of sources to the consumer’s FA  signature21. Bayesian mixing 
models, although originally developed for stable isotope data, are being increasingly applied to FA data to esti-
mate the diet of  consumers22–25. Galloway et al.22 quantified the diet composition of herbivorous zooplankton 
using “Fatty Acid Source Tracking Algorithm in R” (FASTAR). FASTAR uses the stable isotope equations of 
MixSIR or SIAR to calculate the proportional contribution of a consumer’s potential food  sources10. However, 
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the performance of FASTAR, using the MixSIR model and FA data, was less accurate than QFASA at predict-
ing the diet of captive  belugas26. Neubauer and  Jensen25 developed the mixing model framework “fastinR” that 
integrates stable isotope and FA data into a joint model to estimate diet. This model accounts for compositional 
constraints on FA data using an additive log-ratio transformation which makes the data approximately normal. It 
is unclear how dietary estimations could be affected by data transformation, as this tends to give artificial weight 
to FAs in small quantities, hence, minimizing the importance of more abundant  FAs27. FastinR also incorporates 
a multiplicative constant to account for trophic modification (differences in tracer values between consumer 
and  sources28) of FAs, which differs from models developed for stable isotope data. This model, however, has 
gathered little  attention29 and, to our knowledge, has not been tested in further studies.

For stable isotopes, the tracer value of the consumer equals the tracer value of the prey plus trophic modi-
fication (also named trophic fractionation, trophic discrimination, or discrimination factors). Thus, the tracer 
values of the consumer follow Eq. (1):

where yj is the tracer value j of the consumer y; pk is the proportional contribution of the source k to the diet of 
the consumer; µjk is the source k mean for tracer j; and tj is the trophic modification value for tracer j.

FAs, however, are predominantly presented as proportional values, and depending on the consumer’s metabo-
lism, FAs may be higher or lower than the proportions found in the prey. In the FA literature, the term used for 
trophic modification is calibration coefficient (CC)4. CCs are multiplicative values, where the tracer value of the 
consumer equals the tracer value of the prey multiplied by its corresponding CC (Fig. 1), as in Eq. (2):

Therefore, when using mixing models, most scientists have opted for using a FA resource library where 
trophic modification is already integrated (i.e. consumers fed single prey diets are used as sources, thus trophic 
modification is zero) e.g. Ref.23,30 or have simply omitted the use of CCs e.g. Ref.31.

To date, the most popular and well evaluated model to estimate diet using FAs is the numerical-optimization 
based method  QFASA30. The QFASA approach has limitations associated with not being able to account for 
multiple sources of uncertainty, as well as the inability to incorporate ecological mechanisms into the  models25. 
Given the complexity of biological systems, particularly that they are often influenced by multiple factors, it would 
be advantageous to use modelling approaches that allow for the inclusion of ecological information. MixSIAR 
models diet proportions as a function of ecologically meaningful  factors11; previous knowledge can be incorpo-
rated into models as informative priors, as can the uncertainty in source values, unlike QFASA which can use 
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Figure 1.  Diagram of trophic modification of fatty acids (FAs) when transferred from prey (source) to 
predator (consumer). FAs can be lower, equal or higher in the consumer compared to sources, depending on 
the consumer’s metabolism and nutritional state. Calibration coefficients (CCs) are a simple mathematical 
calculation to represent the modification of each FA from prey to predator, and they are calculated by means 
of feeding trials where consumers are fed certain diet until FA turnover is considered complete. The case in the 
figure applies for a consumer fed 100% a solely prey. Images by Alicia Guerrero.
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only mean source  values30. Despite the promise of MixSIAR with FA data, it has not been widely implemented, 
hence, its performance is still an open question.

Testing the performance of diet estimation methods is an important step prior to their implementation with 
field data. Here we aim to assess how incorporating the Bayesian mixing model approach, MixSIAR, performs 
in estimating diet based on FA data, by comparing model-derived dietary predictions with known diet. While to 
date most diet-estimation methods have been applied to single species or taxonomic groups e.g. Ref.23,25,26,29,32,33, 
we estimate dietary compositions across taxa including fish, birds and mammals. To evaluate MixSIAR’s perfor-
mance in predicting diet with FAs, we use published data from six species undergoing feeding experiments. We 
focus here on some aspects that could influence model prediction, including the effect of: (a) using CCs derived 
from a monotypic or a mixed diet; (b) modelling diet when FA turnover is incomplete; (c) consuming a low-fat 
diet; (d) inclusion of prior information in the model; and (e) other physiological and methodological factors 
that can affect the interpretation of diet estimates.

Methods
Data preparation. Using published literature, we selected six feeding trial studies, where animals were fed 
single or multiple prey types, and the FA signature of the consumer’s fat was analysed at some point of the experi-
ment. In the published literature, FA signatures are usually presented as mean and standard deviations. Since 
MixSIAR requires consumer values to be input as raw data, we generated normally-distributed random values 
for each FA, using the ‘rnorm’ function in  R34, based on the mean, standard deviation and sample size provided 
in each published study. Thus, simulated data follow MixSIAR assumptions about independence and normality; 
however, actual FA profiles do not. Therefore, our simulated data could act differently to compositional FA data. 
We assessed the effect of using simulated data derived from means and standard deviations instead of actual FA 
profiles, using experimental data from Stowasser et al.35 and the diet estimations obtained from both sets of data 
did not differ significantly (See details in Supplementary material 1). Thus, we assume that if actual FA profiles 
were used instead of simulated data, the outcomes would be the same or similar.

To quantify the relative contribution of sources to a consumer or “mixture”10,28, mixing models require tracer 
data (here, FA signature) of consumers, sources, and values for trophic modification (here, CCs). All CCs were 
obtained from published studies, where animals were fed a single or mixed diet over a period of time considered 
sufficient to represent complete FA turnover (See each case for details). Since MixSIAR treats fractionation as 
additive values, and CCs are multiplicative, we took sources to predator space by multiplying source FA values 
by its corresponding CC and thus used the resulting values as ‘sources’. Thus, since our sources already accounted 
for trophic modification, we set modification values to zero in all our models.

For each analysis, we used only those FAs present in amounts higher than 0.5% in the consumer, and those 
classified as “dietary” and “extended dietary”, according to Iverson et al.4. “Dietary” FAs are those that consumers 
are unable to synthesise whereas “extended dietary” FAs are both dietary and endogenous in  origin4. Additionally, 
we excluded FAs whose CC was higher than 2 units, since this indicates that the consumer has at least twice the 
proportion of that FA compared to its prey, suggesting that the origin is either endogenous (rather than dietary) 
or the consumer is exhibiting preferential accrual.

Mixing models require sources to be significantly  different36. Therefore, we assessed the differences in FA 
composition among sources using Permutational Multivariate Analysis of Variances (PERMANOVA) with the 
adonis function of the R package “vegan”37. When the number of sources was higher than two, we conducted 
pairwise multilevel comparisons in order to identify which prey species were different. These comparisons were 
conducted applying corrections for multiple testing, with the R package “pairwiseAdonis”38.

Diet estimation. To analyse the contribution of sources to the diet of consumers for all our cases, we used 
the Bayesian mixing model MixSIAR GUI v3.128. FA values of consumers were input as raw data. Although 
FA data are correlated, MixSIAR assumes multivariate normality, which accounts for the fact that tracer val-
ues can co-vary. Sources were input as mean and standard deviation, as suggested by Stock et al.11 when using 
proportional data, thus, FAs are assumed to be independent. We used non-informative priors, unless otherwise 
noted. The model is fit via Markov Chain Monte Carlo, which estimates entire posterior distributions for each 
variable, given the data. We set error structure as a multiplicative process (‘Residual*Process’), as this is an eco-
logically realistic  scenario12. Model convergence was assessed via Gelman–Rubin and Geweke  diagnostics39,40. 
For a more comprehensive understanding, we explain each feeding experiment in the results section, as well as 
further details about model settings. Datasets including FAs of consumers and sources (with incorporated CCs) 
are available as Supplementary Material 2. Data analyses were conducted using JAGS and R  software34,41. The 
posterior distribution medians and ranges obtained from each case are available as Supplementary material 3.

Results
Case 1: spectacled eiders, from Wang et al.42. The experiment. This case is based on captive feed-
ing trials conducted on 8 adult spectacled eiders, Somateria fischeri, which were maintained on an initial diet 
containing 1% Atlantic surf clam, 3% Antarctic krill, 88% Mazuri sea duck formula, 4% blue mussel and 4% 
Atlantic silverside, for 69 days prior to the start of the feeding experiment. After this, on day 0, a biopsy sample 
of the synsacral adipose tissue was obtained from each eider. With the FA data of the adipose tissue the authors 
calculated CCs. Feeding trials started on Day 0, and spectacled eiders were switched to diet A, consisting of 56% 
krill and 44% Mazuri sea duck formula for 21 days. On Day 21, eiders were biopsied again and switched to diet B 
consisting of 48% Mazuri formula and 52% silverside. On Day 50, a final biopsy sample was collected (Fig. 2A). 
FA turnover was considered near complete by 69 days.
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The model. This analysis is based on FA data from day 0, 21 and 50. We used the CCs calculated in this study 
after eiders were maintained on the same initial diet for 69 days. All sources were significantly different from 
each other (PERMANOVA, F4 = 9936.9, P = 0.001). ‘Day’ was set as fixed factor in the model.

Diet predictions. Based on FA data of day 0, MixSIAR estimated a contribution of 0.1% clam, 4% krill, 88% 
Mazuri, 6% mussel, and 1% silverside (Fig. 2B). After the first shift of diet, MixSIAR estimations changed to 28% 
krill and 62% Mazuri for FA data obtained on day 21. The final biopsy sample on day 50 produced estimations 
of 62% Mazuri, and 27% silverside.

Case 2: Steller’s eiders, from Wang et al.42. The experiment. This case corresponds to a feeding trial 
conducted simultaneously to the previous case by Wang et al.42, although the diet of Steller’s eiders, Polysticta 
stelleri, differed slightly. For 69 days prior to the start of the feeding trial, 8 adult Steller’s eiders were maintained 
on an initial diet containing 1% clam, 1% Antarctic krill, 88% Mazuri sea duck formula, 7% mussel, and 3% 
silverside. CCs were calculated after a biopsy was extracted to each eider on day 0. At the start of the feeding ex-
periment, on day 0, Steller’s eiders were switched to diet A, containing 66% krill and 34% Mazuri formula. Then, 
on day 21, they were switched to diet B, consisting of 34% Mazuri formula and 66% silverside. Biopsy samples 
were collected on days 0, 21 and 50 (Fig. 3A). FA turnover was considered near complete by 69 days.

The model. We used the CCs calculated in the same study after Steller’s eiders were maintained on the same 
diet for 69 days. All sources were significantly different from each other (PERMANOVA, F4 = 10,079, P = 0.001). 
‘Day’ was set as fixed factor in the model.

Diet predictions. Based on FA data of Day 0, MixSIAR estimated a contribution of 0.2% clam, 2% krill, 90% 
Mazuri, 4% mussel, and 3% silverside (Fig. 3B). After the first diet switch, MixSIAR estimations changed to 46% 
krill and 27% Mazuri. The final biopsy sample on day 50 produced estimations of 9% krill, 28% Mazuri, and 46% 
silverside.

Figure 2.  Spectacled eiders case. (A) Feeding experiment: spectacled eiders (n = 8) spent 69 days on the initial 
diet described in the figure; after this, on day 0 eiders were biopsied and switched to diet A. On day 21 they were 
biopsied again and switched to diet B. After 29 days on diet B, eiders were biopsied on day 50. (B) Plots for diet 
estimations of spectacled eiders fed different combined diets. The true diet is indicated in each plot by the blue 
asterisks. CCs were calculated using FA data of day 0. Images by Alicia Guerrero.
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Case 3: Atlantic salmon, from Budge et al.43. The experiment. For 22 weeks, tank-reared juvenile 
Atlantic salmon, Salmo salar (n = 132), were fed one of four different formulated feeds based on two marine oils: 
100% krill oil, 100% herring oil, a mixture of 70:30 herring to krill oil, or a mixture of 30:70 herring to krill oil. 
Muscle samples were analysed for FAs after the 22-week experiment, which allowed the calculation of CCs. In 
this experiment, two sets of CCs were calculated: one derived from salmon fed the diet based on 100% herring 
oil and another from salmon fed the diet based on 100% krill oil (Fig. 4A). Unlike the previous two cases, where 
CCs were derived from consumers eating a mixed diet, here CCs were obtained from consumers feeding on a 
single type of source: either herring or krill oil. This allowed us to evaluate whether the source used to calculate 
the CCs affected dietary predictions. Additionally, we calculated a combined CC (an average value between 
CCs derived from krill and herring diets) and run a separate model. FA turnover was considered complete after 
22 weeks on the same diet.

The model. We ran three independent models to estimate the diet of salmon fed each of the four diets: one 
using the set of CCs derived from herring oil, another using the CCs derived from krill oil, and one using 
the combined CCs. For each model, we used krill oil, herring oil and initial diet (commercial feed given to 
salmon prior to the experiment) as sources, and set ‘diet group’ as fixed factor. Significantly different FA compo-
sitions were found for the three sets of sources: those multiplied by herring oil CCs (PERMANOVA, F2 = 4008.7, 
P = 0.003), those multiplied by krill oil CCs (PERMANOVA, F2 = 3354.7, P = 0.002), and those multiplied by the 
combined CCs (PERMANOVA, F2 = 3677.2, P = 0.003).

Diet predictions. When we used CCs derived from salmon fed on a diet supplemented with herring oil only, 
MixSIAR correctly estimated the contribution of herring oil in the consumers (salmon) diet (98%). However, 
the contribution of herring was slightly overestimated where the consumers had been fed a mixture of herring 
and krill oil (Fig. 4B), and where the salmon’s diet was based on krill oil the contribution of krill oil was slightly 
underestimated (89%).

We found the opposite trend when we used CCs derived from salmon that had been fed a diet where krill 
oil had been the lipid source. Here, MixSIAR correctly estimated the contribution of krill oil in the salmon’s 

Figure 3.  Steller’s eiders case. (A) Feeding experiment: eiders (n = 8) were maintained on the initial diet 
described in the figure for 69 days after which biopsy samples were collected (day 0) and eiders were switched to 
diet A. After 21 days, eiders were biopsied again and switched to diet B. On day 50, after 29 days on diet B, eiders 
were biopsied one last time. (B) Plots of diet estimation for Steller’s eiders fed different combined diets. Diet 
estimates are based on biopsy samples collected on days 0, 21 and 50. The true diet is indicated in each plot by 
red asterisks. CCs were calculated using FA data of day 0. Images by Alicia Guerrero.
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diet when they had been fed a diet based on krill oil (98%) or a mixture of 70:30 herring to krill oil (33% krill) 
or 30:70 herring to krill oil (70% krill); however, when herring oil had been the only dietary source this dietary 
contribution was underestimated (81%) (Fig. 4B).

Our dietary estimates were less biased when we used CC values that had been derived from the average 
between the herring- and krill-oil treatments (Combined-CCs). For example, we estimated herring contribution 
to be 90% of the diet when the actual diet was supplemented only with herring oil, and an estimate of 95% krill 
contribution when the actual diet was supplemented with krill oil only, and when the actual diet was a combina-
tion of herring (70%) and krill (30%), the estimations were 71% and 27%, and where the actual contribution of 
herring was 30% and 70% of krill, the estimated diets were 34% herring and 65% krill (Fig. 4B).

Case 4: tufted puffin nestlings, from Williams et al. 44. The experiment. Tufted puffin, Fratercula 
cirrhata, nestlings (n = 6) underwent an experimental feeding trial in their own burrows. Chicks were fed by 
their parents for approximately 10 days since hatching. When they were estimated to be 10-days old, the access 
to the burrows was blocked, so adults could not continue feeding their chicks. Through another access hole 
excavated by the researchers, chicks began being fed Pacific herring once a day, for 27 days. To infer the diet of 
free-living puffin nestlings during the first 10 days after hatching, wire screens were placed at burrow entrances 
to collect whole fish dropped by the parents. The species identified, in descending order (by mass), were Pacific 
sandlance, capelin, Pacific sandfish, salmonid and Pacific cod. An adipose tissue sample was collected on days 
10 (start of the feeding trial), 19, 28 and 37. On day 37, assuming complete FA turnover after 27 days on a single 
prey diet (herring), the researchers calculated CCs (Fig. 5A). The data used to run this model included day 10, 
which represents the unknown diet provided by the parents, days 19, 28, and 37 which represent the herring diet 
at different extents. FA turnover was considered “close to, but not entirely complete” after 27 days44.

The model. We used the CCs derived from these chicks feeding on Pacific herring for 27 days. For biopsy sam-
ples collected on day 10, we conducted three separate analyses: the first model excluded herring as potential prey, 
and incorporated informative priors based on the amount of different fish (% by mass) dropped by the parents 
at the burrow entrances; the second model was exactly the same but without prior information; and the third 
model was run without priors, and included herring as potential prey in order to determine whether this prey 
could be identified as absent.

For days 19, 28 and 37, we ran another analysis and included herring as source and no informative priors. 
‘Day’ was set as a fixed factor in this model. All sources had significantly different FA compositions (PER-
MANOVA, F5 = 430.9, P = 0.001).

Figure 4.  Atlantic salmon case. (A) Feeding experiment: Atlantic salmon fed formulated feeds based on 
either solely herring (n = 36) or krill oil (n = 28), or in proportions of 70:30 or 30:70 herring to krill oil (n = 34 
each), for 22 weeks. (B) Plots of diet proportions estimated using MixSIAR for models using CCs derived from 
salmon fed a herring-oil diet (HO-CC), a krill-oil diet (KO-CC) or CCs averaged from these two treatments 
(Combined-CC). The true diet is indicated in each plot by black asterisks. Salmon image designed by Creazilla 
(https ://creaz illa.com).

https://creazilla.com
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Figure 5.  Tufted puffins case. (A) Nestlings (n = 6) were fed by their parents for approximately 10 days since hatching. After this, they 
were fed herring for another 27 days as the entrance to their burrows was blocked and parents could not feed their chicks. (B) Non-metric 
multidimensional scaling plots for FAs obtained from chicks at different stages of the experiment and their sources. When FAs of sources 
were multiplied by their respective CCs, source (herring) and consumer (chicks, day 37) overlap in the plot. (C) Plots of the three models run 
to estimate the diet of nestlings on day 10. From left to right: Model using informative priors based on meals brought by the parents after the 
burrows were blocked; the same model without informative priors; and a third model without informative priors but including herring as source 
even though it was not part of the nestlings’ diet. The red asterisks in each plot represent the potential diet fed by the parents (and used as priors 
in the first model). (D) Plots of diet estimations for tufted puffins fed herring, based on their FA profiles of days 19, 28 and 37. The true diet is 
indicated in each plot by red asterisks. CCs were calculated from tufted puffins fed herring, using FAs from day 37. Images by Alicia Guerrero.
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Diet predictions. In this example we included a non-metric dimensional scaling plot (Fig. 5B) to evaluate the 
effect of applying CCs to sources. Day 0 biopsies show greater variation than those of successive days, in both 
plots. When using original sources and consumer FA values, chicks are segregated from all the sources, although 
the similarity of the FAs increases toward the FA of herring as days pass, but they do not match. When CCs were 
applied to sources, the FA values of herring and chicks from day 37 overlap, indicating that they have the same 
FA compositions.

For day 0 (Fig. 5C), the estimated diet contributions were similar to meals brought by the parents when the 
model included informative priors, where the main dietary sources were sandlance (72%) and capelin (15%). 
Whereas estimates from the model without informative priors misrepresented the diet, as capelin was wrongly 
identified as the main dietary source (61%), cod the second most important prey (26%), and sandlance was 
incorrectly estimated to be only 6% of the diet. The third model including herring again identified capelin and 
cod as the main contributors (56% and 23%, respectively) whereas herring was identified as the least important 
prey, with 0.9% of contribution.

For day 19 (Fig. 5D), herring was identified as the main source, with 60% of contribution, followed by capelin 
and sandlance although with greater variation. From day 19 to 37, the contribution of herring increases from 
60 to 97%, respectively.

Case 5. Harp seals, from Kirsch et al.45. The experiment. This study evaluated the effect of a low-fat 
diet on blubber FAs of harp seals, Pagophilus groenlandicus. Only for this experiment, the fat content of the dif-
ferent sources was available. Juvenile harp seals (n = 5) had been maintained on a diet of Atlantic herring (≥ 9% 
fat) for approximately 1 year prior to the feeding trial. On day 0, a full-depth blubber sample was collected from 
the posterior flank of each animal. For 30 days, seals were kept on a diet consisting solely of Atlantic pollock 
(1.7% fat). Blubber biopsies were taken again on days 14 and 30 (Fig. 6A). FA turnover was not considered com-

Figure 6.  Diet estimates for juvenile harp seals fed a low-fat prey. (A) Feeding experiment: For a year prior to 
the feeding experiment, harp seals (n = 5) had been eating only Atlantic herring, a prey with a high-fat content. 
During the feeding experiment, seals were fed Atlantic pollock, a low-fat prey, for 30 days. (B) Plots of estimates 
derived from MixSIAR models based on FA data of whole blubber cores from days 0, 14 and 30. The black 
asterisks in the plots indicate the true diet. CCs correspond to harp seals fed herring, calculated using FAs from 
day 0. Images: fish by Lukas Guerrero Zambra, harp seal by Alicia Guerrero.
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plete after 30 days on the same diet, and authors suggest that a longer period on the diet, or higher intakes of fat, 
would be needed to accomplish it.

The model. Since seals had been feeding on the same source for a year, we calculated CCs using FA data from 
day 0. Thus, consumer values were divided by Atlantic herring values producing CCs that were applied to both 
herring and pollock FA data. Sources were significantly different (PERMANOVA, F1 = 3680.4, P = 0.001) and 
‘day’ was set as fixed factor in the model.

Diet predictions. For all three data sets (day 0, 14 and 30) the main contributor to the diet was Atlantic herring. 
The predicted proportion of Atlantic herring decreased only slightly from 99% on day 0 to 95% on day 30. Con-
sequently, the contribution of pollock increased from 1% on day 0, to 5% on day 30 (Fig. 6B).

Case 6: Harbour seals, from Nordstrom et al.46. The experiment. Estimations are based on a feeding 
experiment by Nordstrom et al.46. Prior to the feeding study, juvenile harbour seals, Phoca vitulina, were fed a 
homogenate of 2:1 Pacific herring to salmon oil for approximately three weeks, and then fed only Pacific herring 
for four to six days. The feeding experiment consisted of three diets: one group of seals was fed only herring for 
42 days (n = 3); the second group was fed only surf smelt for the same period (n = 6); and a third group (n = 7) 
was fed smelt for 21 days and then only herring for 21 days (Fig, 7A). Whole blubber core samples were collected 
on days 0, 21 and 42 for each group. Complete FA turnover was estimated to occur after at least 55 days on the 
same diet, although it could extend well beyond if turnover rate slowed with time.

The model. Since prey FA data was not provided in the same study, we used Pacific herring, surf smelt, and 
salmon FA values from Huynh and  Kitts47, which had significantly different FA composition (PERMANOVA, 
F2 = 87.7, P = 0.001). CCs were derived from other harbour seals on a Pacific herring diet for over a year, in the 
same  study46. We estimated the diet of the three groups of harbour seals, based on samples collected on day 42, 
setting ‘diet group’ as fixed factor in our model.

Diet predictions. Overall, diet differences were evident among groups, and the direction of the change was 
consistent with the shifts in diet. Estimates for harbour seals fed exclusively Pacific herring for 42 days, correctly 
showed that diet was predominantly based on herring (94.7%). For seals fed surf smelt for 42 days; however, 
estimates showed that surf smelt only accounted for 26.6% of the diet whereas herring remained to be the main 
component. For seals fed surf smelt for 21 days and then herring for another 21 days, MixSIAR again identified 
herring as the main component, with 90.9%, whereas surf smelt was only 3% (Fig. 7B).

Discussion
Simulations based on real FA data derived from feeding studies allowed us to evaluate the performance of Mix-
SIAR under a variety of scenarios. Although not all cases provided accurate diet estimates, MixSIAR correctly 
identified the main dietary components and changes in diet. Although the FA turnover of consumers was not 
always known, and therefore a quantitative evaluation of MixSIAR was not possible, our results support the use 
of MixSIAR with proportional FA data for ecological studies.

There is considerable uncertainty regarding the trophic modification of FAs and this is probably the weakest 
aspect in the application of Bayesian mixing models to FA data. CCs are a basic calculation that tries to describe 
the complex biochemistry behind trophic modification; however, they are to date the only means we have for 
accounting for consumer  metabolism42. In this regard, MixSIAR accurately estimates known diets when CCs 
were calculated from the same data used in the model (same consumer eating the same sources used to calculate 
CCs). CCs are calculated by dividing the FA data of the consumer by that of the feed (Fig. 1), and when we take 
sources to the predator space (prior to modelling) we conduct the opposite mathematical operation (multiply 
sources by CCs), producing source FA values that are exactly equal to those of the consumer. This is evident in 
Fig. 5B, where herring FA values match those of tufted puffins from day 37. Consequently, MixSIAR estimates 
are expected to match the actual diet. This is the case of salmon fed either solely krill or herring (Fig. 4B), tufted 
puffins on day 37 (Fig. 5D), and harp seals on day 0 (Fig. 6B). The very minor differences between the estimated 
and the actual diets may be due to noise introduced by creating random values from means and standard devia-
tions of the original FA values.

In the case of spectacled and Steller’s eiders, the CCs were calculated using a mixed diet and not a single diet 
source. Nevertheless, MixSIAR produced diet estimations that closely resemble the actual diet (Figs. 2 and 3). 
Although, a better evaluation of the performance of MixSIAR would be to use CCs not calculated from the same 
data. As expected, the best dietary predictions were obtained with the FA data used to calculate the CCs (day 0); 
however, estimates over successive days followed the direction of the diet switch. Our results for the spectacled 
eiders were similar to those of the original study, where Wang et al.42 used the QFASA method. For spectacled 
eiders, samples collected on day 21 showed an increase in the contribution of krill and decrease in Mazuri for-
mula, resembling the diet given to the eiders for the 21 days prior to the biopsy collection. The proportions of 
each source were not expected to equal their actual diet, since 21 days is insufficient for complete FA turnover; 
therefore, their adipose tissues would still reflect part of their diet prior to the feeding study. A similar pattern 
was observed with the samples collected on day 50, which was only 29 days after the second diet shift, and where 
the contribution of silverside increased but not as much as in the actual diet. Our results for Steller’s eiders were 
closer to the true diet than those obtained with QFASA in the original study. The contribution of mussel, how-
ever, was overestimated on days 21 and 50, and showed a bimodal distribution by day 21. In the original study, 
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QFASA also overestimated the proportions of mussel when the model was run using extended dietary FAs, 
but was more accurate with reduced FA subsets. These examples suggest that MixSIAR produces correct diet 
estimations, even when the CCs have been calculated based on a different diet (initial diet). However, a longer 
period is needed for eiders to replace their FAs completely, which coincides with the conclusions drawn by the 
authors of the original  study42. Unfortunately, the uncertainty regarding the FA turnover prevents us evaluating 
the performance of MixSIAR in a quantitative manner; and this is a serious limitation.

The best-case scenario, is to incorporate into the models not only the FA data for the consumers, but those 
of potential prey items, as well as CCs derived under controlled conditions (i.e., feeding trials), this however, 
will not always be possible, particularly when studying wild populations in remote regions. The use of CCs, or 
trophic modification values, are an important consideration for quantitative diet estimation, regardless of the 
statistical method selected. It is proposed that when controlled feeding experiments are not feasible, an alterna-
tive is to use CCs (or trophic fractionation factors, in the case of stable isotopes) derived from related species, or 
the same species fed on a different diet. Although, caution needs to be highlighted, as FA data for CCs that have 
been obtained from captive animals may differ from their wild counterparts, and CCs can vary depending on 
the diet the test subjects were  fed48,49. Although, dietary predictions were reasonable even when using trophic 
modification values (CCs) derived from different prey, the model performance improves when we use CC values 
averaged across single-diet studies. In our study with the Atlantic salmon as consumers, where we used CCs 
derived from a herring-oil diet we tended to overestimate the contribution of herring oil in the salmons’ diet. 
However, where we used the CCs derived from a krill-oil diet, our estimates of the salmon’s diet were closer to 
their actual diet, although if salmon had been fed only herring oil, it was underestimated in their diet. Our find-
ings are similar to those of Rosen and  Tollit50 using QFASA, where they found that when using CCs derived from 
seals fed herring, the model predicted the amount of herring consumed more accurately than when they used 

Figure 7.  Diet estimates for harbour seals. (A) Feeding experiment: For 42 days, seals were fed the following 
diets: solely herring (n = 3), solely surf smelt (n = 6), or surf smelt for the first 21 days and then herring for the 
remaining 21 days (n = 7). Prior to the feeding experiments they had been fed a mixture of herring and salmon. 
(B) Plots for MixSIAR diet estimations, based on blubber FAs obtained on day 42. The red asterisks indicate the 
true diet. CCs were obtained from harbour seals (other individuals) fed herring for over a year. Image by Alicia 
Guerrero.
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CCs derived from seals fed eulachon. Similarly, dietary predictions overestimated the contribution of eulachon, 
when the CCs were derived from seals fed eulachon.

Interestingly, although we find some differences where we use CCs derived from different prey, overall, the 
prey composition estimates were similar to the true diet. This was also found in the study that used QFASA to 
estimate dietary  composition43. Similarly, in our harbour and harp seal cases, CCs were calculated using herring 
and, in both cases herring was overestimated compared to the true diet. Since mixing models are sensitive to vari-
ation in trophic fractionation  values51, the specificity of CCs strongly influences model performance. Indeed, the 
trophic modification of the biological tracer (i.e., CC’s for FA data) between the prey’s tissue and incorporation 
within the consumers’ tissue, remains the weakest aspect in the ability of mixing models to reconstruct  diet51,52. 
This is not unique to modelling with FA data, as it is true also for modelling with all biochemical tracers (i.e., 
stable isotopes), and all diet-estimation methods. Bond et al.51 showed that varying trophic discrimination fac-
tors changed substantially the dietary estimates produced by SIAR with stable isotope data. We show, with our 
Atlantic salmon case, that the same is true when modelling FAs, as our diet estimations, although not absolutely 
accurate, were less biased where we averaged CCs across values derived from two treatments where consumers 
had been fed single-prey diets than if we used a single, prey-specific CC. Another alternative to using single-prey 
CC’s could be to use CCs calculated from consumers fed on mixed diets, rather than on one-prey diets only.

Brett et al.33 state that it is critical to measure and directly account for trophic fractionation for all the major 
food sources. One way to implement this method is to use the FAs of consumers fed various single-prey diets 
instead of the FAs of the actual sources. The development of resource libraries; however, is time consuming, eco-
nomically costly, limited to animals relatively easy to manipulate in  captivity48, and furthermore, the FA profiles 
of captive animals might not be comparable to their free-living counterparts. Since this is an important limitation 
of diet-estimation methods, other modelling approaches have been developed to estimate trophic modification 
values. The R package SIDER, for example, estimates trophic discrimination factors of stable isotopes based on 
tissue type, feeding ecology and phylogenetic information of the consumer. Regardless of the method used to 
account for trophic modification, the diet estimation process can benefit from the use of additional information, 
such as field observations, or other complementary  methods51.

The case of tufted puffins allowed us to evaluate how the addition of prior information can improve diet 
estimates. The model with prior information was very similar to the proportions of meals brought by the par-
ents (with sandlance as the main prey), suggesting that the priors have great influence on the outcomes. The 
model without priors selected capelin as the main prey item, whereas sandlance was not a very important prey. 
These two species had similar FA compositions (Fig. 5B), and although they did differ statistically, their overall 
similarity could confound the model resulting in numerous outliers in their posterior distributions (Fig. 5C). If 
this is the case, informative priors could be particularly helpful to distinguish sources with similar tracer values. 
Litmanen et al.30 suggest that if prior information is available, MixSIAR is recommended to estimate diet over 
other methods. We, therefore, recommend the use of MixSIAR based on FA data in complement with other 
methods such as stomach or faeces content analysis, direct observation, and/or stable isotopes.

The tufted puffin case also allowed us to test whether a source could be identified as absent. In Bayesian 
models none of the diet proportions can be zero, therefore a very low estimated proportion can also indicate an 
absent of a source. In our example, there was a small proportion of herring estimated (i.e., 0.009 or 0.9%) which 
was the smallest proportion of all the sources. Litmanen et al.30 found that both Bayesian and QFASA methods 
had more problems identifying absent sources for herbivorous zooplankton when the number of absent sources 
was higher; however, there were exceptions. Although here MixSIAR did produce a small estimate for herring, 
more systematic testing is needed in order to understand when an absent source can be correctly identified. 
Compared to the fish and bird studies our models with FA data were less accurate at estimating the diet of the 
mammal species in our study, the harbour and the harp seal. There are several possible factors, associated with 
both metabolism and model settings, that may explain these differences. The mammals were marine mammals, 
and have stratified blubber, where the FAs vary in the position along the blubber  core16,53,54. The transverse vari-
ation in FAs across the blubber has been attributed to the different roles that the outer and inner blubber layers 
 play55–57. The FAs of the inner blubber layer have an active turnover rate as they are more directly influenced by 
the consumer’s  diet56,58,59 while the FAs in the outer blubber play an active role in  thermoregulation55, they are 
more stable and less affected by short-term dietary  changes55,60,61. For example, Struntz et al.61 observed that 
the outer layer of bottlenose dolphins, Tursiops truncatus, remained unchanged after a period of undernourish-
ment. Similarly, fin whales, Balaenoptera physalus, did not obtain their energy reserves from the outer layer 
during  pregnancy62. Guerrero and  Rogers55 found that the FAs of the outer blubber of pinnipeds in cold higher 
latitudes have increased desaturation in line with the outer blubbers’ increased thermoregulatory role. The FA 
data we used for our two seal cases were derived from full-depth blubber cores, so that this data included FAs 
from the outer blubber, where FAs are more stable. This means that although the FAs from the feeding trial diet 
were likely to be adopted into the inner blubber layer they were less likely to have been assimilated into the outer 
blubber layer, where FAs are very stable. Our study pooled the FA results from across the blubber layers; the 
effect of incorporating FA values from both the inner and outer layers of the blubber may have dampened the 
ability to detect the FAs due to the dietary changes in the feeding  trial63,64. The group of harbour seals fed surf 
smelt showed the highest estimated contribution of this prey of the three groups, whereas the group fed both 
surf smelt and then herring was estimated to consume lower proportions of surf smelt than the group fed solely 
smelt, but higher proportions than the group fed solely herring. Thus, the estimated diet proportions moved in 
the same direction as the diet change, and in concordance with what we know about how diet influences blubber 
FAs. It is worth noting that for this case, FA values of the potential sources were obtained from the literature, and 
probably differ at some degree from the actual prey used to feed the seals, which likely also affected the outcomes.

For consumers fed on low-lipid diets, such as our harp seal case, there may be a bias in diet estimates. Lipids 
are stored in the blubber only when food intake is greater than their energy  expenditure65 so that where an 
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animals’ diet does not meet maintenance energy needs, they may not store dietary  lipids44. Thus, in our case, harp 
seals could be using all the energy derived from the pollock for their daily metabolic processes, in which case the 
FAs in the blubber would not reflect recent dietary FAs, since there would have been little or no surplus energy 
(FAs) to be stored. In fact, Kirsch et al.45 simulated the FA composition of harp seals under three scenarios: where 
100%, 50% or 25% of the FAs from diet were deposited in the blubber. They found that the final FA composition 
of harp seals on day 30 was more like the scenario where 25% of the FA had been deposited, suggesting that 
their blubber did not closely reflect their current diet. Therefore, for both our seal cases, physiological factors 
were likely to have influenced FA turnover. Thus, although these cases still support the use of MixSIAR with FA 
data to estimate diet, we recommend caution is exercised in interpreting the results with particular attention 
to the potential effect of nutritional state on lipid  metabolism44. Diet estimation based on FA data represents 
information stored in the adipose tissues of the consumer and, therefore, it is dependent on the fat content of 
each source. Models could give fat-rich prey a greater contribution due to their high fat content. This can be 
accounted for in the diet estimation model by incorporating “concentration dependence”28. We suggest taking 
this into account when performing quantitative dietary studies.

A limitation of our study is the use of simulated FA data due to the unavailability of the consumers’ raw FA 
data. The simulated data may not act like actual FA profiles, which are correlated. Our simulated data, however, 
although not correlated for a single individual, are compositional for the entire sample (i.e. the summed FAs 
do co-vary). Therefore, since our models were conducted for the whole sample each time, and not for a single 
individual, this should not be a problem. As detailed in the Supplementary Material 1, the comparison between 
simulated and actual FA data produced the same diet estimates for wild squids.

The cases tested show that this Bayesian mixing approach is useful for FA data, and we suggest that if used to 
complement other dietary methods, for example FA and stable isotope data in parallel, it has potential to explain 
trophic  interactions25. The use of FA data could improve taxonomic resolution when used alongside stable isotope 
data. Unlike stable isotope analyses, where usually only two variables are used (e.g., δ13C and δ15N), there are a 
great number of FAs in animals’ tissue (i.e., > 2025), which facilitates species discrimination. Where closely related 
source species, such as fish, can have similar stable isotope values, commonly they have different FA composi-
tions. This emphasizes the potential of using FA data with this Bayesian framework. We encourage the use of FA 
as quantitative tracer alongside other methods to help improve diet estimations.

Data availability
All data supporting the conclusions of this article are within the paper and the supplementary materials.
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