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a b s t r a c t

Emblic medicine is a popular natural source in the world due to its outstanding healthcare and therapeutic
functions. Our preliminary results indicated that the quality of emblic medicines might have an apparent
regional variation. A rapid and effective geographical traceability system has not been designed yet. To trace
the geographical origins so that their quality can be controlled, an integrated spectroscopic strategy
including spectral pretreatment, outlier diagnosis, feature selection, data fusion, and machine learning
algorithm was proposed. A featured data matrix (245 � 220) was successfully generated, and a carefully
adjusted RF machine learning algorithm was utilized to develop the geographical traceability model. The
results demonstrate that the proposed strategy is effective and can be generalized. Sensitivity (SEN),
specificity (SPE) and accuracy (ACC) of 97.65%, 99.85% and 97.63% for the calibrated set, as well as 100.00%
predictive efficiency, were obtained using this spectroscopic analysis strategy. Our study has created an
integrated analysis process for multiple spectral data, which can achieve a rapid, nondestructive and green
quality detection for emblic medicines originating from seventeen geographical origins.
© 2019 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The development of a generalized geographical traceability
system for natural medicines remains a significant challenge
because the growing environment always has a noticeable influ-
ence on their quality [1]. This interference is multidimensional and
unpredictable. Primary and secondary metabolite compounds,
which are mainly responsible for the healthcare and therapeutic
functions of natural medicines, always vary significantly because of
their different geographical origins [2,3]. Effective analytical
methods and instruments for obtaining more insights into the
metabolic characterizations and regional variation of natural
medicines are essential because these variations affect both pro-
ducers and consumers. The well-identified to geographical origin
for a natural product is a prerequisite to its optimal application.
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At present, many strategies such as molecular, chromatographic
and spectroscopic methods have been applied to identify the ori-
gins of natural products based on their respective advantages
[4e8]. Especially, spectroscopic analytical instruments have
attracted more and more attention to characterizing natural
products originating from different geographical origins. These
techniques are worth to be recommending because they are rapid,
simple and environment-friendly. These advantages can further
promote the efficiency and safety of the quality control process for
natural medicines. However, natural products are always an espe-
cially complex mixture with diversified metabolic ingredients. The
descriptive information generated from different spectroscopic
sensors is always sizable, so there are still a large number of irrel-
evant and redundant attributes. A large number of data optimiza-
tion algorithms have been developed to enhance the availability of
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Fig. 1. The data flow diagram for the geographical traceability model, including the
steps of feature selection, data fusion and machine learning algorithm of the analysis
process.

Fig. 2. The visualization of regional variation of emblic products constructed by the
levels of six metabolites in these medicines.
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spectral data.
For example, feature selection is one of these requisite algo-

rithms regarding a geographical traceability task. It can produce a
clean and informative sub-dataset, which is necessary to improve
the accuracy of analysis and to decrease the computation cost.
Generally, feature selection algorithms can be classified into three
types of filter, wrapper and embedded models, which have
different efficiency for feature selection with respective criteria [9].
Another effective strategy for measuring geographical traceability
is data fusion. It is utilized to integrate multi-source descriptive
information when two or more instruments are implemented
simultaneously [10]. It can provide a complementary approach to
constructing a more effective geographical traceability model
regarding the regional variation of natural products. These data
optimization algorithms further enlarge the application of spec-
troscopic techniques.

Generally, a complete spectral analysis process for a geograph-
ical traceability model should contain several key steps, including
spectral pretreatment, outlier diagnosis, feature selection, and
machine learning algorithm. Each step needs to be strictly opti-
mized. So far, many spectroscopic geographical traceability studies
of natural medicines have been conducted [11e16]. A limited
number of studies can use a complete spectroscopic analysis pro-
cess for geographical traceability, and the universality of developed
models is insufficient especially for the quality assessment of nat-
ural medicines.

The fruit of emblic (Phyllanthus Emblica L.) belonging to
Table 1
The levels of active compositions of emblic materials from different geographical origins

Geographical origins Gallic acid (mg/g) Corilagin (mg/g) Chebulagi

Zhangzhou, Fujian (ZZ) 18.06 ± 1.71 4.82 ± 0.38 9.89 ± 0.3
Quanzhou, Fujian (QZ) 16.99 ± 1.99 4.1 ± 0.94 7.68 ± 1.4
Huzhou, Guangdong (HZ) 8.85 ± 1.78 4.49 ± 0.97 13.22 ± 3.
Shantou, Guangdong (ST) 4.86 ± 0.40 9.82 ± 1.78 12.23 ± 2.
Nanning, Guangxi (NN) 16.03 ± 3.30 6.24 ± 1.87 12.39 ± 3.
Anshun, Guizhou (AS) 45.7 ± 2.87 7.82 ± 0.77 24.93 ± 2.
Qianxinan, Guizhou (QXN) 41.43 ± 4.38 7.23 ± 1.00 32.31 ± 4.
Dechang, Sichuan (DC) 38.06 ± 4.18 7.00 ± 0.60 16.91 ± 1.
Huili, Sichuan (HL) 48.52 ± 4.26 6.53 ± 0.70 16.00 ± 1.
Miyi, Sichuan (MY) 4.48 ± 1.77 0.77 ± 0.22 4.82 ± 1.3
Puwei, Sichuan (PW) 50.47 ± 3.12 5.80 ± 0.37 15.06 ± 1.
Datong, Sichuan (DT) 50.31 ± 4.53 3.73 ± 0.19 12.53 ± 0.
Jingxing, Sichuan (JX) 46.28 ± 2.11 5.54 ± 0.30 16.31 ± 0.
Panzhihua, Sichuan (PZH) 30.30 ± 1.66 5.09 ± 0.36 13.87 ± 1.
Yanyuan, Sichuan (YY) 46.53 ± 5.36 5.28 ± 0.41 14.84 ± 0.
Chuxiong, Yunnan (CX) 61.00 ± 2.48 3.97 ± 0.32 14.55 ± 0.
Dali, Yunnan (DL) 52.72 ± 5.24 5.84 ± 0.81 15.08 ± 2.
Euphorbiaceae is a popular natural medicine for treating cough and
indigestion in China. It has been recorded in “Chinese Pharmaco-
poeia”. The World Health Organization has designated this species
as a plant worth of extensive cultivation in the world because of its
outstanding healthcare and medicinal functions. Phytochemical
and pharmacological researchers have demonstrated that this
product has a broad range of metabolic ingredients such as
phenolic, flavonoids and terpenoids. These compounds are capable
of producing many biological benefits such as antidiabetic, anti-
oxidant, anticancer, and other additional benefits [17e21]. This
fruit, especially rich in vitamin C, has greater than 100 times the
vitamin C contained in an apple. To the best of our knowledge, it is
extensively distributed in many countries, including China, India
and the American Continent. There is a considerable variance in the
quality of embolic medicines that comes from these different re-
gions. A rapid and effective spectroscopic quality aseessment
strategy concerning different geographical origins is still lacking.
Such a quality control strategy is required for the consistent supply
of top-quality original materials.
.

c acid (mg/g) Ellagic acid (mg/g) Quercetin (mg/g) Vitamin C (mg/g)

3 6.02 ± 0.30 0.42 ± 0.05 2.03 ± 0.57
2 5.19 ± 0.73 0.39 ± 0.02 1.21 ± 0.27
17 6.72 ± 1.66 0.34 ± 0.12 0.47 ± 0.11
32 8.84 ± 1.57 0.41 ± 0.02 0.56 ± 0.07
90 9.35 ± 3.09 0.96 ± 0.13 0.99 ± 0.23
68 13.00 ± 1.17 1.99 ± 0.16 3.05 ± 0.76
85 12.11 ± 1.82 1.30 ± 0.14 3.10 ± 1.03
72 11.5 ± 0.89 1.42 ± 0.17 1.18 ± 0.38
71 12.33 ± 1.24 1.85 ± 0.18 1.21 ± 0.33
8 0.90 ± 0.30 0.42 ± 0.13 14.56 ± 3.80
22 8.97 ± 0.45 2.47 ± 0.19 2.45 ± 0.62
81 5.40 ± 0.36 2.58 ± 0.24 7.16 ± 2.55
76 7.57 ± 0.49 2.51 ± 0.20 1.74 ± 0.30
12 5.07 ± 0.36 1.48 ± 0.14 3.90 ± 0.67
90 8.43 ± 0.69 1.96 ± 0.17 3.61 ± 1.33
70 5.62 ± 0.22 2.21 ± 0.20 10.31 ± 2.56
28 8.81 ± 1.24 3.60 ± 0.23 2.46 ± 0.63
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With these ideas in mind, this study aimed to design a rapid and
effective spectroscopic geographical traceability model for natural
emblic medicines. Our research team collected different emblic
materials (cultivated and wild) from seventeen geographical ori-
gins in six provinces of China during 2017. The main bioactive
compounds (gallic acid, corilagin, chebulagic acid, ellagic acid,
quercetin, and vitamin C) were first determined using a high-
performance liquid chromatography-ultraviolet detection (HPLC-
UV) method. These ingredients largely determine the healthcare
and medicinal properties of these materials so that the result can
reveal the quality variations of them about their different
geographical origins. An integrated spectroscopic analysis process
was proposed using two high-throughput spectroscopic techniques
of Fourier transform near-infrared (FT-NIR) and Fourier transform
mid-infrared (FT-MIR). This workflow included spectral pretreat-
ment, outlier diagnosis, feature selection, data fusion, and machine
learning algorithm. Especially, twelve feature selection models
including filter, wrapper and embedded were applied to collect
informative spectral variables comparatively. Data fusion theory
was further used to combine the information learned from two
spectroscopic techniques. We hope this study can provide a uni-
versal geographical traceability strategy for emblic medicines and
also promote the application of spectroscopic techniques for the
quality assessment of multi-source natural medication.
Fig. 3. FT-NIR and FT-MIR spectra after
2. Materials and methods

2.1. Reagents

Methanol (chromatographic grade) was purchased from
Thermo Fisher Scientific (Shanghai, China). Deionized water used
for chromatographic analysis was produced using an ultrapure
water system (Millipore, USA). Chemical standards of gallic acid,
corilagin, chebulagic acid, ellagic acid, quercetin, and vitamin C
were provided by Chroma-Biotechnology Co., Ltd. (Chengdu,
China). Other analytical grade reagents were supplied by Chron
Chemicals Co., Ltd. (Chengdu, China).
2.2. Sample preparation

The detailed information of collected emblic materials from
seventeen geographical origins in six provinces of China is shown in
Table S1. Their fresh fruits and medicinal materials are shown in
Fig. S1. The fruits of these plants were collected from September to
December 2017. After removing the dirt from the surface, these
samples were put into a drying oven for 24 h at 60 �C. Then they
were labelled according to their geographical origins and smashed
using a powder machine. Power filtered with an 80 mesh sieve was
used for final chromatographic and spectral analysis. Professor
spectral pretreatment optimization.
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Yuntong Ma of Chengdu University of Traditional Chinese Medicine
authenticated all the plants of P. emblica.
2.3. Chromatographic and spectral analysis

A Shimadzu system (Shimadzu, Japan) equipped with an LC-
20AT quaternary pump, a SIL-20A XR autosampler, a CTO-20AC
column oven, and an SPD-20A UV/Vis detector was utilized to
determine bioactive compounds of emblic fruits. An Agilent ZOR-
BAX Eclipse XDB-C18 (4.6 mm � 250 mm, 5 mm) column was
applied to separate objective compounds.

For the determination of gallic acid, corilagin, chebulagic acid,
ellagic acid and quercetin, each sample of 0.100 g was first weighed.
The powder was ultrasonically extracted in 10 mL methanol solu-
tion for 60min. Other HPLC-UV conditions are listed below: column
temperature: 30 �C; mobile phase: methanol (A) and 0.1% phos-
phoric acid (B); flow rate: 1mL/min; elution gradient: 0e15min, 5%
A; 15e35min, 5%e37%A; 35e39min, 37%e47%A; 39e60min, 47%e
60%A; injection volume: 5 mL; detection wavelength: 273 nm.

For the determination of vitamin C, each sample of 0.100 g was
exactly weighed and then ultrasonically extracted in 10 mL of 0.5%
oxalic acid for 30 min. Other HPLC-UV conditions are as follows:
column temperature: 30 �C; mobile phase: 0.1% phosphoric acid;
flow rate: 1 mL/min; isocratic elution: 15 min; injection volume:
10 mL; detection wavelength: 254 nm. All test solutions were
filtered using a 0.45 mm membrane before HPLC-UV analysis.
Fig. 4. Comparison of twelve feature selection models based on the KAP coeffic
Two spectroscopic sensors of FT-NIR and FT-MIR spectrometers
(PerkinElmer, USA) were used to directly record the spectral signals
of sample powder without an extraction pretreatment. Their scan
ranges were set as 10000e4000 and 4000e500 cm-1, respectively.
The accumulated scans and resolution of two sensors were defined
as 64 and 4 cm-1, respectively. Before the sample introduction, a
blank control was scanned in order to remove any air interference.

For each sample, approximately 0.5 g powder was weighed
using an electronic balance (Sartorius, Germany) and put into a
sample cell of FT-NIR and FT-MIR instruments. For FT-MIR, an
additional attenuated total reflection accessory was connected to
enable sample powder to be directly detected without complicated
preparation. Each spectrum was scanned in triplicate, and the
average spectrum was used for final analysis.
3. Geographical traceability strategy

3.1. Spectral pretreatments

The spectral quality is susceptible to environmental factors.
Many interference factors, including baseline drift and light scat-
tering, decrease the analytic accuracy. Several pretreatments were
conducted to optimize spectral data. Baseline correction was
applied to produce a stable spectral baseline, and a smoothing al-
gorithm (15 points) was used to remove the tiny signals whichwere
useless for the next analysis. Multiplicative scatter correction
ient displaying the different efficiency of various feature selection models.



Fig. 5. The first 100 important variables of FT-NIR and FT-MIR spectra, respectively, based on different models.
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eliminated the effect of light scattering caused by the particle size
of powder [22].
3.2. Outlier diagnosis

Anomaly samples can negatively impact model accuracy of
geographical traceability. Therefore, two outlier detection tools
were jointly used to ensure that the analyzed samples were free
from abnormal points.

The first such tool can be regarded as a conventional clustering
method based on Hotelling’s T2 distribution [23]. Based on the
principal component analysis, Hotelling’s T2 displays a confidence
ellipse 95% confidence limit. Samples outside of this ellipse were
generally regarded as outliers in our study.

The second method used to accomplish this goal was also an
unsupervised algorithm called isolation forests (iForest), which is a
state-of-the-art technique for handling high-dimensional data [24].
It is an ensemble method utilized to combine many isolation trees.
In brief, this method randomly selected j points as sub-sampling
size. For each tree, these partition points were recursively parti-
tioned by randomly chosen attributes. The process was complete
when all the samples were divided into single isolated subspaces.
The average path length over selected trees was then recorded as
iForest score for each sample. A samplewith a low iForest scorewas
classified as an outlier. In this study, two parameters of sub-
sampling size j and tree number were set as 256 and 100,
respectively.
3.3. Feature selection

Different types of feature selection techniques always perform
various levels of efficiency for simplifying spectral data of natural
medicines. Three feature selection theories (filter, wrapper, and
embedded models) were utilized in our study to pick out the
informative spectral variables according to their importance
comparatively.
Filter models evaluate each variable according to their criteria

instead of a specific machine learning classifier. Two unsupervised
feature selection techniques of Laplacian Score (LS) [25] and Un-
supervisedMulti-Cluster Feature Selection (U-MCFS) [26] were first
applied. The other two were supervised feature selection tech-
niques which were called Supervised Multi-Cluster Feature Selec-
tion (S-MCFS) [26] and Infinite Latent Feature Selection (ILFS) [27].

Wrapper models select the feature variables depending on a
mathematical model. A predefined RF algorithm (500 trees) was
used to wrap these feature selection techniques. Recursive Feature
Elimination (RFE) [28], Boruta [29], Simulated Annealing (SA) [30]
and Genetic Algorithm (GA) [31] were applied to handle the spec-
tral data, respectively. The last two algorithms were random search
methods for global optimization, which were extensively applied
for optimizing sizeable datasets.

Embedded models combine the superiorities of filter and
wrapper models. This type of model always performs a high effi-
ciency for feature selection. Least Absolute Shrinkage and Selection
Operator (LASSO) [32] and Variable Importance in Projection (VIP)
[33] were used as two linear embedded models because they were
embedded into linear classifies. Additionally, Permutation impor-
tance (PIMP) [34] and Gini coefficient (Gini) [35] based on decision
tree theory were also used to propose the best one.
3.4. Evaluation of feature selection model

The evaluation of feature selection models was an essential step
in selecting the most useful spectral information to reflect the
regional variation of emblic medicines. A repeated 10 fold cross-
validation procedure [36] (three times) was used to evaluate the
performance of each feature selection model. Because superabun-
dant variables always enlarge the size of search space and lead to an
overfitting model, we only used the first 400 variables according to
their score ranking. These variables were circularly evaluated with



Fig. 6. mtry optimization process for an RF model according to the lowest OOB estimate.

Table 2
The performance of the geographical traceability model of emblic fruits.

Dataset SEN% SPE% ACC%

Calibration set 97.65 99.85 97.63
Validation set 100.00 100.00 100.00

Note: SEN: sensitivity; SPE: specificity; ACC: accuracy.
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an interval of 10. The best feature selection models were confirmed
according to the accuracy of cross-validation regarding FT-NIR and
FT-MIR datasets, respectively.
3.5. Data fusion and RF model

Data fusion was conducted on the feature level, because the
feature selection models have been performed to select the infor-
mative variables from two spectral datasets, respectively. Based on
data fusion theory, a combined data matrix related to regional
variation of emblic medicines was generated.

RF algorithm is an ensemble learning algorithm combined by a
certain number of tree classifiers (ntree), which are mutually inde-
pendent of each other. It also has excellent performance against
overfitting and noise resistance because the training process is
random. First, the bootstrap sampling method is used to select a
random number of samples for each tree classifier. Besides, a
random subspace of variables (mtry) of each sample is applied for
each tree classifier. The results of all tree classifiers are exported,
and a majority vote is performed for a final decision. ntree and mtry

are determined according to the out-of-bag (OOB) estimate ntree in
advance [37].

Four parameters of kappa (KAP), accuracy (ACC), sensitivity
(SEN) and specificity (SPE) were together used for a balanced
evaluation of our geographical traceability model. Overall, the
model has several primary advantages over previous studies: (1)
interferential and redundant signals were removed as much as
possible; (2) multi-source descriptive data were well-utilized; (3)
our proposed strategy is complete and can be effectively general-
ized. A simple data flow diagram for feature selection, data fusion,
and the RF model is shown in Fig. 1.

4. Results and discussion

4.1. Quality variation of emblic materials

Primary and secondary metabolites are the basis of natural
medicines exerting their healthcare and medicinal functions. Some
phenolics in emblic fruits are mainly responsible for their antioxi-
dant activities and natural vitamin C source displays an important
function on the prevention of cancers [38,39].

Nowadays, chromatographic analysis is the most fundamental
technique for the quality assessment of medicinal plants because it
can quantify multiple bioactive components simultaneously
[40,41]. We first determined the six main metabolites (gallic acid,
corilagin, chebulagic acid, ellagic acid, quercetin, and vitamin C) to
investigate the quality variation of emblic materials originating
from seventeen geographical origins. Chromatographic plots are
exhibited in Fig. S2. Each calibration curve was established by
plotting its peak area against the standard concentration (Table S2).
Methodological examination, including precision, stability,
repeatability and recovery, was conducted (Table S3). These results
demonstrated that the HPLC-UV method could be applied to
determine the quality variation of emblic medicines.

The levels of determined active compositions are shown in
Table 1. The concentrations of gallic acid, corilagin, chebulagic acid,
ellagic acid, quercetin and vitamin C of emblic materials originated
from different geographical origins are 4.48e61.00 mg/g,
0.77e9.82 mg/g, 4.82e32.31 mg/g, 0.90e13.00 mg/g,
0.34e3.60 mg/g and 0.47e14.56 mg/g, respectively. Gallic acid in
this product from CX origin is almost 14 times that from ST origin,
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and the vitamin C concentration from MY origin is 30 times more
than that from HZ origin. This result shows an obvious quality
variation of these fruits from different growing environments.

A PLS-DA model was developed to visualize their quality vari-
ation. The regional variation of these products is apparent because
they are divided into several groups obviously (Fig. 2). According to
the loading plot, these six compounds play an essential role in this
classification model (Fig. S3). The conclusion can be determined
that geographical origins have a significant influence on the quality
of emblic products. Because these species are extensively distrib-
uted in the world, an effective geographical traceability strategy is
very essential for their quality assessment. Chromatographic
techniques are always time-consuming, pollution producing and
inaccurate to deal with this problem. Hence, two spectroscopic
techniques were applied for a better solution for a geographical
traceability model of emblic medicines.

4.2. Spectral pretreatment and outlier diagnosis

The raw FT-NIR and FT-MIR spectra of emblic products are
visualized in Fig. S4. These original spectral signals are sensitive to
the operating environment. The optimized spectra based on base-
line correction, smoothing and multiplicative scatter correction are
displayed in Fig. 3. Comparatively, these approaches are effective in
improving the spectral quality not only for the visualization of
metabolic characterization but also for the subsequent data anal-
ysis. Many typical absorption peaks were raised, indicating that
their metabolic characterizations are similar. Hence, the metabolic
variation of emblic medicines from different geographical origins
mainly reflects on the level of metabolic products, which can be
partly explained by chromatographic results.

Two methods were together used for the outlier diagnostic. The
result of Hotelling’s T2 distribution is shown in Fig. S5. Six obser-
vations of FT-NIR spectra and three observations of FT-MIR spectra
are out of the 95% confidence limit. The result of iForest indicates
that the scores of six FT-NIR observations are lower than 2.86 and
three FT-MIR observations are smaller than 2.65, respectively
(Table S4). Using 2.86 and 2.65 as the threshold scores regarding FT-
NIR and FT-MIR spectra, four outliers were additionally detected by
this algorithm. Summary, a total of ten samples were identified as
abnormal individuals and thus they were not used for the subse-
quent analysis.

4.3. The results of feature selection

After spectral pretreatment and outlier diagnosis, two pre-
liminary data matrixes concerning FT-NIR (245� 1556) and FT-MIR
(245 � 1789) have been produced. They were too sizable to analyze
directly. Twelve feature selection models (filter, wrapper and
embedded) were comparatively used to simplify these data
structures.

Fig. S6 shows the performance of four filter models. U-MCFS
model performs the highest accuracy for FT-NIR with the ACC and
KAP of 92.68% and 92.19%, respectively, using the first 200 features.
Regarding FT-MIR spectra, 95.03% and 94.68% of ACC and KAP are
calculated using the S-MCFS model with the first 100 features.

For wrapper models (Fig. S7), the first 120 FT-NIR features
perform the best accuracy using the Boruta model, with ACC and
KAP of 96.10% and 95.82%, respectively. For FT-MIR spectra, the
intelligence optimization algorithm of GA shows the best accuracy
based on the first 40 features. The ACC and KAP are 94.82% and
94.46%, respectively.

The results of embedded feature selections are presented in
Fig. S8. Compared with two linear models of LASSO and VIP,
nonlinear models of PIMP and Gini perform better results. The
former performs 92.86% ACC and 92.36% KAP for FT-MIR spectra
using the first 120 features. The latter technique performs 95.84%
ACC and 95.55% KAP regarding FT-NIR spectra using the first 150
features.

4.4. The comparison of feature selection

We applied twelve different feature models, including filter,
wrapper, and embedded models. A 3 times cross-validation pro-
cedure was performed to propose the best one for the optimization
of sizable spectral datasets. They were well evaluated because a
total of 30 random samplings were performed. The comparison of
their KAP accuracy is displayed in Fig. 4.

Feature selection models exhibit different performance for
different datasets. Filter models have a weaker performance than
other methods with a significant variation (P<0.05) for the FT-NIR
dataset. The variation between the wrapper and embedded
models was not significant. Considering feature number, validation
accuracy and cost time together, we chose Boruta as the best
method to simplify the FT-NIR dataset.

For the FT-MIR dataset, the variation among different types of
feature selections is not significant. LS is the worst algorithmwith a
significant variation to others (P<0.05). Comparatively, the S-MCFS
model was selected as the optimized method to simplify this
dataset.

The first 100 important variables of FT-NIR and FT-MIR spectra
are visualized, respectively, in order to further compare the per-
formance of feather selection models. As seen in Fig. 5, LS and ILFS
mostly focus on the local region of spectral data. This can explain
why they performed a bad result. A local search strategy may be
powerless regarding sizable spectral data. Conversely, SA and GA
are the randomly global optimization algorithms. Their perfor-
mances were acceptable, but too much time is needed to achieve
these algorithms. For several excellent feature selections such as
Boruta and S-MCFS, the features selected by them are mainly
distributed on the informative spectral region of 7000-4000 cm-1

for the FT-NIR dataset and 2000-500 cm-1 for FT-MIR dataset.
Different feature selection models had different efficiencies

when they were used to simplify spectral data. Multiple models
need to be together applied to propose the best one for the spectral
data optimization of natural medicines. Eventually, 120 FT-NIR
features and 100 FT-MIR features were selected using Boruta and
S-MCFS models, respectively. This is the first time that filter,
wrapper, and embedded feature selections were together used for
spectral datasets of natural medicines.

4.5. Development of the geographical traceability model

An optimized data matrix was successfully generated via spec-
tral pretreatment, outlier diagnosis, feature selection, and data
fusion in turn. It contained 245 rows and 220 columns, which was
simple, representative and informative. Such a data matrix could
contribute to constructing an accurate and robust geographical
traceability model of emblic medicines.

The OOB estimate is based on a bootstrap sampling procedure,
which is an unbiased measurement. This parameter was closely
related to a model fitting degree, and it can effectively enhance the
generalization ability of the model. So it was used to adjust the
parameters of an RFmodel. 94 trees had the best performance, with
the lowest averaged error of 0.029 (Fig. S9). Then, a rough set from1
to 100 was designed to select the best mtry. As seen in Fig. 6,
mtry ¼ 65 has the best performance with an error of 0.023. Via the
parameter adjustment process, the calibrated geographical trace-
ability model was successfully developed with the OOB error
reduced from 0.036 to 0.023.
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A well-chosen external validation set based on Kennard-Stone
sampling was imported into the calibrated model to evaluate its
generalization performance [42]. The confusion matrixes were
produced in Table S5 and Table S6. Four samples from QXN, DL and
CX groups are misclassified in the calibrated model. The SEN, SPE,
and ACC are 97.65%, 99.85%, and 97.63%, respectively. All samples in
the external validation set are correctly classified, with 100% of SEN,
SPE, and ACC, respectively (Table 2).

5. Conclusion

Natural products are always the complex mixtures that consist
of diversified chemical constitutes. Their metabolize characteriza-
tions are difficult to illustrate completely. Spectroscopic techniques
have many advantages because they can contribute to a rapid and
green quality detection for natural medicines. The time for col-
lecting the FT-NIR and FT-MIR spectra of an emblic sample is less
than 1 min without sample loss.

However, spectral data need to be carefully optimized before
their application. When the feature subset is well prepared, spec-
troscopic techniques show a huge potential for the quality assess-
ment of natural medicines on both qualitative and quantitative
levels. These techniques should play a more important role in the
field of quality assessment for Chinese medicine.

In this study, we presented an integrated analysis process of two
spectral datasets to develop an effective geographical traceability
model for emblic medicines. This model performed a 100.00%
predicted accuracy for these medicines originating from seventeen
geographical origins. These optimization steps included spectral
pretreatment, outlier diagnosis, feature selection, data fusion, and
machine learning algorithm. This analysis strategy also can be used
in quantitative respect and is worth to generalize for the quality
assessment of other natural multi-source medicines.
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