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What proportion of coding sequence nucleotides have roles in splicing, and how strong is the selection that maintains

them? Despite a large body of research into exonic splice regulatory signals, these questions have not been answered.

This is because, to our knowledge, previous investigations have not explicitly disentangled the frequency of splice regula-

tory elements from the strength of the evolutionary constraint under which they evolve. Current data are consistent both

with a scenario of weak and diffuse constraint, enveloping large swaths of sequence, as well as with well-defined pockets of

strong purifying selection. In the former case, natural selection on exonic splice enhancers (ESEs) might primarily act as a

slight modifier of codon usage bias. In the latter, mutations that disrupt ESEs are likely to have large fitness and, potentially,

clinical effects. To distinguish between these scenarios, we used several different methods to determine the distribution of

selection coefficients for newmutations within ESEs. The analyses converged to suggest that ∼15%–20% of fourfold degen-

erate sites are part of functional ESEs. Most of these sites are under strong evolutionary constraint. Therefore, exonic splice

regulation does not simply impose a weak bias that gently nudges coding sequence evolution in a particular direction.

Rather, the selection to preserve these motifs is a strong force that severely constrains the evolution of a substantial propor-

tion of coding nucleotides. Thus synonymous mutations that disrupt ESEs should be considered as a potentially common

cause of single-locus genetic disorders.

[Supplemental material is available for this article.]

Coding sequences (CDSs) have functions beyond coding. For ex-
ample, they can harbor binding sites to transcription factors
(Stergachis et al. 2013; Birnbaum et al. 2014; Blumberg et al.
2014; Reyna-Llorens et al. 2018; although see Xing and He 2015;
Agoglia and Fraser 2016) or microRNAs (Lewis et al. 2005; Hurst
2006; Forman et al. 2008; Fang and Rajewski 2011; Hausser et al.
2013; Akhtar et al. 2015; Liu et al. 2015). Inmammals, a prominent
regulatory layerwithin theCDS consists of exonic splice regulatory
(ESR) signals, such as exonic splice enhancers (ESEs) (Blencowe
2000; Cáceres and Hurst 2013; Lee and Rio 2015) and silencers
(ESSs) (Wang et al. 2004; Lee and Rio 2015). The existence of ESR
has been known for decades (Somasekhar and Mertz 1985; Reed
andManiatis 1986;Watakabe et al. 1993), and awealth of research
has accumulated showing that these elements are under purifying
selection (Fairbrother et al. 2004a; Carlini and Genut 2006;
Parmley et al. 2006, 2007; Ke et al. 2008; Sterne-Weiler et al.
2011; Cáceres and Hurst 2013; Ramalho et al. 2013) and that, at
least in some instances, their disruption can cause disease (Lim
et al. 2011; Sterne-Weiler et al. 2011; Sterne-Weiler and Sanford
2014; Supek et al. 2014; Xiong et al. 2015; Scotti and Swanson
2016; Takata et al. 2016; Wu and Hurst 2016). The conventional
wisdom according to which all mammalian synonymous sites
are nonfunctional andneutrally evolving has thus been put to rest.

However, despite numerous studies that have demonstrated
that exonic splice regulatory elements are under purifying selec-
tion (Fairbrother et al. 2004a; Carlini and Genut 2006; Parmley
et al. 2006, 2007; Ke et al. 2008; Sterne-Weiler et al. 2011;
Cáceres and Hurst 2013; Ramalho et al. 2013), to our knowledge,
none have attempted to determine the strength of this selection.

Typically, studies measure the decrease in divergence/polymor-
phism rates within ESRs when compared to a putatively neutral
baseline. This decrease depends both on the strength of selection
and on the frequency of functional elements, without disentangl-
ing these two factors. As a result, current work is consistent both
with a scenario of weak and diffuse selection, enveloping a large
proportion of sequence but imposing only slight evolutionary
constraint, as well as with well-localized pockets of strong selec-
tion. In the former case, selection to conserve ESRs would primar-
ily have the effect of imposing a slight bias on codon usage. In the
latter case, ESR-disrupting mutations would have large fitness ef-
fects that might frequently be clinically relevant. In determining
whether, for example, a synonymous mutation within an ESE is
a likely cause of a single-locus disease, it is thus important to be
able to distinguish between these two possibilities.

Althoughwe are not aware of attempts to distinguish between
these two scenarios at ESRs, such studies do exist for selective con-
straints at synonymous sites more generally. These studies could
provide an upper bound: the frequency of synonymous sites that
function in splicing cannot exceed the frequency of functional
synonymous sites in general. Similarly, strong selection to preserve
ESRs is unlikely if none is detected at synonymous sites more
broadly. Several earlier papers concluded that selection at synony-
mous sites was weak at best—a mere bias on the largely neutral
turnover of silent sites (Lu and Wu 2005; Williamson et al. 2005;
Comeron 2006; Kondrashov et al. 2006; Racimo and Schraiber
2014). Other investigators, however, have uncovered evidence
for strong negative selection at 22% and 11% of synonymous sites
in Drosophila and in human, respectively (Keightley and Halligan
2011; Lawrie et al. 2013), and have claimed that certain earlier
studies were methodologically biased toward discovering weak
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selection alone (Lawrie et al. 2013; Machado et al. 2017). It is un-
known whether or not selection on splice regulatory elements
is a major contributor to this strong selection in human. In
Drosophila, Machado et al. (2017) found that alternatively spliced
genes contributed more to the signal of strong selection at synon-
ymous sites than did constitutively spliced genes. However, this ef-
fect was dwarfed by a much greater effect of codon optimality. It is
unclear what the expected pattern is in human, given that evi-
dence for selection for codon optimality is much weaker than in
Drosophila (Akashi 1995; Moriyama and Powell 1997; Urrutia
and Hurst 2001; dos Reis et al. 2004; Lavner and Kotlar 2005;
Kotlar and Lavner 2006; Waldman et al. 2010; Shabalina et al.
2013; Gingold et al. 2014).

In this paper, we determined both the frequency of function-
al ESEs in human CDSs as well as the strength of the selection that
maintains them. We only considered fourfold degenerate sites.
This removed the confound of selection on protein structure and
also made our work relevant to the broader problem of selection
at synonymous sites. In order to disentangle site frequency from
strength of selection, wehad to elucidate the distribution of fitness
effects (DFE) at these positions (Eyre-Walker and Keightley 2007).
The DFE specifies the distribution of selective coefficients for
incomingmutations at a set of sites. Manymethods exist for deter-
mining this distribution (Nielsen and Yang 2003; Piganeau and
Eyre-Walker 2003; Yampolsky et al. 2005; Eyre-Walker et al. 2006;
Loewe et al. 2006; Boyko et al. 2008; Keightley and Halligan
2011; Schneider et al. 2011; Wilson et al. 2011; Gronau et al.
2013; Lawrie et al. 2013; Racimo and Schraiber 2014; Keightley
et al. 2016; Kim et al. 2017; Tataru et al. 2017; Barton and Zeng
2018). All of these methods come with particular caveats and can
produce misleading results in certain circumstances (for instance,
in the presence of positive selection or very weak negative selec-
tion). We therefore used several complementary approaches to
obtain information about the DFE, so that the conclusions we
drew would be supported by several different types of analysis.

Results

Analysis of nucleotide divergence suggests that at least 20%–

30% of INT3 ESE sites are under selection

A first approach to determining the frequency of functional ele-
ments is to compare rates of synonymous substitution between
ESE and control sites (Parmley et al. 2006; Cáceres and Hurst
2013; Savisaar and Hurst 2017a). The excess conservation at ESE
sites is taken to reflect the proportion of motif hits that are selec-
tively maintained and hence functional. The remainder would
simply represent the chance occurrence of k-mers. Based on the
frequency of the motifs, it is then possible to calculate the propor-
tion of all coding nucleotides that are splice regulatory.

We determined the rate of synonymous evolution (dS; align-
ment to macaque) for either ESE sites or roughly nucleotide-
matched control sites. Predicted ancestral CpG/GpC sites were
discarded to eliminate CpG hypermutability effects (Sved and
Bird 1990). To quantify constraint, we used a measure that we
term normalized dS (normalized dS = [(ESE dS − control dS)/control
dS]), which is expected to be roughly zero under neutral evolution
and below zero under purifying selection. We obtained a normal-
ized dS of ≈ −0.300 (ESE dS≈0.038; control dS≈0.054; one-tailed
empirical P∼0.001) (Supplemental Fig. S1; Supplemental Table
S3). This initial analysis suggests that ∼30% of ESE motif occur-
rences are functional. Importantly, this methodmay overestimate

conservation levels by about a third because it does not control
for context-dependent mutational biases (Supplemental Text S2).
A more conservative estimate would therefore put the proportion
of functional ESE sites at ∼20%.

An important caveat is that we ignored ESE degeneracy. For
instance, an A-to-T mutation at the last position in the ESE
GAAGAA should be neutral with regards to ESE function because
GAAGAT is also an ESE. Such sites might be functional, yet never-
theless accumulate substitutions, and lead us to underestimate lev-
els of purifying selection. We thus repeated the analysis ignoring
those human–macaque divergences that merely converted one
ESE to another (Supplemental Text S3; Supplemental Figs. S2, S3;
Supplemental Table S20). This procedure removed about a quarter
of the substitutions (ESE dS decreased from ≈0.038 to ≈0.029).
However, after controlling for the number and nucleotide compo-
sition of the discarded sites (Supplemental Text S3), we found that
effects on conservation were slight (control dS≈0.044, normalized
dS∼−0.336). We tested for an effect of degeneracy also when con-
ducting the other analyses reported in this paper (Supplemental
Text S3). In all cases, there was only a slight effect on the results.
Therefore, it appears that most of the time, an ESE is not inter-
changeable with another ESE at the same position.

Finally, because ESEs are enriched at exon ends (Fairbrother
et al. 2004a; Cáceres andHurst 2013), it is possible that we sampled
motif sites primarily from the exon end and control sites more
from the exon core. If exon ends are more conserved than cores
for ESE-independent reasons (Cáceres and Hurst 2013), this could
artifactually lead to a signal of purifying selection on the motifs.
We therefore repeated the normalized dS analysis on sequence
from the 5′ ends of exons only (first 69 base pairs [bp]). The results
were similar to those obtained for full CDSs (ESE dS∼0.035; control
dS∼0.051; normalized dS∼−0.312), suggesting that the purifying
selection we detect is not an artifact of sampling control sites
from exon cores.

In conclusion, the nucleotide divergence analysis suggests
that ∼20%–30% of ESE sites are functional. However, for rea-
sons outlined in the next section, this estimate is potentially
problematic.

INSIGHT finds no evidence for positive selection and reports

strong negative selection at about a quarter of ESE sites

The analysis reported in the previous section does not disentangle
the frequencyof selected sites from the strength andmode of selec-
tion. As a result, the estimate for site frequency could be incorrect.
Specifically, if there are functional sites where the negative selec-
tion is so weak that substitutions are still observed, then this anal-
ysis may underestimate the proportion of selected sites. In
addition, if the data includes fast-evolving positively selected sites
(as detected for ESEs in Ke et al. 2008 and for synonymous sites
more generally in Resch et al. 2007), their faster evolution might
cancel out some of the signal for purifying selection. We therefore
turned to more complex approaches, which allowed us to address
both of these issues.

The first method used was INSIGHT (Gronau et al. 2013),
which can distinguish between weak negative, strong negative,
and positive selection. INSIGHT is based on the assumption that
distinct selective modes affect patterns of polymorphism and
divergence differently. For instance, it assumes that sites under
strong negative selection display neither divergence nor polymor-
phisms, whereas sites under weak negative selection can harbor
polymorphisms. It compares such patterns between elements of
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interest and control sites: in our cases, fourfold degenerate ESE
positions and roughly nucleotide-matched controls. INSIGHT
uses a maximum likelihood–based approach to fit three parame-
ters: ρ (the fraction of sites under any kind of selection), η (scaling
factor on the divergence rate at selected sites; expected to be zero if
no positive selection is present), and γ (scaling factor on the site
frequency spectrum at selected sites). Based on η and γ, INSIGHT
also computes α (the fraction of divergences driven to fixation
by positive selection) and τ (the fraction of polymorphisms under
weak negative selection). The method cannot determine the rela-
tive proportions of sites under strong or weak negative selection,
but it can indicate whether there is any evidence at all for weak
negative selection.

Because INSIGHTalso relies on polymorphismdata, the CpG-
filtering method used above may not be appropriate anymore.
Earlier, we filtered out only those positions where we predicted
that the human–macaque MRCA had CpG (ancestral filtering).
However, CpGs that have arisen since the human–macaque split
might also be enriched in polymorphisms. An alternative strategy
is to discard positions where the human reference sequence has
CpG (human filtering). Ancestral filtering should be better suited
for primarily divergence-based INSIGHT estimates (η and α), while
human filtering should be better for primarily polymorphism-
based estimates (γ and τ; this is a rough heuristic—all estimates
are expected to be sensitive to both divergence and polymorphism
to some extent). The best approach for ρ is unclear.

To test these assumptions, we performed a negative control.
Over 100 simulations, we shuffled ESE and control sites within
each gene and ran INSIGHT on the shuffled data (Fig. 1;
Supplemental Table S4). As predicted, human filtering gave the
lower false-positive rate for τ (Dunn-Bonferroni test P<2×10−16

for comparison with ancestral filtering and 0.3 for comparison
with no filtering), whereas ancestral filtering performed better
for α (Dunn-Bonferroni test P∼1.9 ×10−7 for comparison with
human filtering and ∼0.231 for comparison with no filtering).
In addition, human filtering had the lower false-positive rate for
ρ (Dunn-Bonferroni test P<2×10−16 for comparison with ances-
tral filtering and ∼7.4 ×10−8 for comparison with no filtering).
Additionally, we carried out a positive control using nonsynony-
mous sites. As expected, INSIGHT detected a mixture of strong

and weak selection to preserve protein structure (Fig. 2A;
Supplemental Text S4).

We next ran the analysis on fourfold degenerate ESE posi-
tions (Fig. 2B; Supplemental Table S5). Both CpG-filtering meth-
ods agreed that there was no evidence for positive selection.
Ancestral filtering predicted a higher percentage of sites under se-
lection than human filtering (∼51.6% vs. ∼25.1%; empirical P-val-
ues ∼0.010 for both). This might be due to it detecting greater
levels of weak negative selection (percentage of polymorphisms
under weak negative selection ∼34.5% vs. ∼11.8%; empirical one-
tailed P-values for decreased allele frequencies at selected sites
∼0.010 vs. ∼0.079, respectively). Indeed, when INSIGHT was run
with the assumption of no weak negative selection (γ fixed at
zero), ancestral filtering returned an estimate for the percentage
of selected sites that was nearly identical to that obtained with hu-
man filtering (∼25.9%). Given that in our negative control, ances-
tral filtering had a tendency to overestimate levels of weak negative
selection (Fig. 1), we consider that the human filtering results are
more likely to be accurate. We also considered the possibility
that the differences between ancestral and human filtering results
could be due to the use of different sets of genes; however, further
analysis revealed this to be unlikely (Supplemental Text S4).

In conclusion, INSIGHT found no evidence for positive selec-
tion at ESE sites. This suggests that the normalized dS statistic deter-
mined in the previous section reflects the effects of negative
selection alone. In addition, about a quarter of ESE siteswere found
to be under selection. This is fairly close to the results obtained
above using divergence data alone. Most, if not all, of these sites
appear to be under strong negative selection, suggesting that mu-
tations within functional ESEs are likely to have large fitness, and
potentially clinical, effects. However, such inferences regard-
ing the shape of the negative DFE must be treated with caution.
This is because the INSIGHT model also assumes that even weak
negative selection must be strong enough to effectively preclude
substitutions, which, as discussed above, is not necessarily the
case. We might therefore still be underestimating the proportion
of functional sites. We therefore next turned to methods based
on polymorphism data alone, so as not to make assumptions as
to the effects of very weak negative selection on nucleotide
divergence.

B CA

Figure 1. Distribution of INSIGHT statistics from 100 negative control runs using differentmethods of CpG-filtering. (N) No filtering; (H) human filtering;
(A) ancestral filtering. Human filtering has the lowest false-positive rate for ρ (the fraction of sites under selection; A) and for τ (the fraction of polymorphisms
under weak negative selection; C). Ancestral filtering performs best for α (the fraction of divergences driven to fixation by positive selection; B).
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Polymorphism data suggest that the primary mode of selection

is strong and constrains about a third of ESE sites

Polymorphism data contain two primary kinds of information on
negative selection. First, mutations that are strongly selected
against rarely spread beyond very low frequencies in the popula-
tion and are frequently lost. They are thus less likely to be sampled.
Lower than expected numbers of segregating sites are therefore a
signal of strong negative selection. With weak negative selection,
mutations can spread further in the population, but MAFs are de-
creased compared to expectation. We devised two tests based
on this reasoning. The first was to compare the proportion of
polymorphic sites at ESE sites and at control sites using a χ2 test.
The second was to compare MAFs of segregating sites between
ESE and control sites using a one-tailed Mann-Whitney U test.
Because these methods are based on polymorphism data alone,
the preferredmethod for removing CpG sites should be human fil-
tering (although, as can be seen in Table 1, ancestral filtering gives
qualitatively similar results).

As a positive control, we performed
both tests on nonsynonymous ESE sites
(with fourfold degenerate ESE sites as
controls), as in the previous section.
This analysis should provide strong evi-
dence for both strong and weak negative
selection. Indeed, both the proportion of
polymorphic sites as well as minor allele
frequencies (MAFs) were significantly de-
creased (Table 1).We then performed the
analysis on fourfold degenerate ESE sites.
We found a significant decrease in both
the fraction of polymorphic sites as well
as inMAFs when comparing ESEs to con-
trol sites (Table 1). However, the effect
was much more significant for the frac-
tion of polymorphic sites, suggesting
that the primary mode of selection is
strong. These results are consistent with
the INSIGHT results reported above,
which also suggest that although a mi-
nority of sites may be under weak nega-
tive selection, the primary mode of
selection is strong. The fact that the com-

parison of MAFs and INSIGHT lead to such similar results suggests
that the weak negative selection that is reported is unlikely to be
sufficiently weak to allow for substitutions, as selection this weak
should only be detected by the former.

In order to turn these qualitative statements into population-
scaled selective coefficient (Nes) estimates, we used the multiDFE
method developed by Kousathanas and Keightley (2013) (an ex-
pansion of the older DFEalpha program [Keightley and Eyre-
Walker 2007]). multiDFE uses Fisher-Wright transition matrix
methods to generate the expected allele frequencies in a popula-
tion under the assumption that incoming mutations are sampled
from a particular distribution of selective coefficients. Amaximum
likelihood–based procedure then fits the parameters of the distri-
bution so as to minimize the discrepancy between this allele fre-
quency vector and the true site frequency spectrum observed in
the population.

Many different computationalmethods exist for determining
the DFE (Nielsen and Yang 2003; Piganeau and Eyre-Walker 2003;
Yampolsky et al. 2005; Eyre-Walker et al. 2006; Loewe et al. 2006;

BA

Figure 2. INSIGHT estimates for nonsynonymous (A) and for fourfold degenerate (B) ESE sites.
(ρ) Fraction of sites under selection; (α) fraction of divergences driven to fixation by positive selection;
(η) scaling factor on the divergence rate at selected sites; (τ) fraction of polymorphisms under weak neg-
ative selection; (γ) scaling factor on the site frequency spectrum at selected sites. Human CpG-filtering is
expected to bemore reliable for ρ, τ, and γ; ancestral CpG-filtering is expected to perform better for α and
η. For the positive control (A), INSIGHT detects significant evidence for negative selection, includingweak
negative selection. At fourfold degenerate ESE sites, INSIGHT reports negative selection, which is likely
mostly strong, as there is little to no significant evidence for weak negative selection with the more reli-
able human CpG-filtering method.

Table 1. Numbers of polymorphic sites and minor allele frequencies (MAFs) at ESE and control sites

CpG-filtering
method Set of sites

Polymorphic sites/total
sites (hits)

Polymorphic sites/total
sites (controls) χ2 (P)

P from Mann-
Whitney U test
comparing MAFs

Human
filtering

Nonsynonymous ESE
sites (positive control)

16,126/973,657 (∼0.017) 26,622/973,079 (∼0.027) ∼4264.852 (∼0.000) ∼3.880×10−160

Fourfold degenerate ESE
sites

2364/104,679 (∼0.023) 2762/104,532 (∼0.026) ∼59.979 (∼9.589×10−15) ∼0.039

Ancestral
filtering

Nonsynonymous ESE
sites (positive control)

11,694/698,981 (∼0.017) 21,003/698,549 (∼0.030) ∼4263.099 (∼0.000) ∼2.523×10−80

Fourfold degenerate ESE
sites

1721/75,289 (∼0.023) 2216/75,208 (∼0.029) ∼114.905 (∼8.255×10–27) ∼3.440×10−4

Polymorphic sites are significantly less frequent within ESEs than at control sites. Minor allele frequencies (MAFs) are also significantly lower within ESEs,
although this effect is weaker (notably with human CpG-filtering, the preferred method for polymorphism-based analysis). At nonsynonymous sites
(positive control), both effects are very strong. This suggests that functional ESE sites are primarily under strong negative selection, with weak negative
selection less common.
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Boyko et al. 2008; Keightley and Halligan 2011; Schneider et al.
2011; Wilson et al. 2011; Lawrie et al. 2013; Racimo and Schraiber
2014; Keightley et al. 2016; Kim et al. 2017; Tataru et al. 2017; Bar-
ton and Zeng 2018).Wehave chosen to usemultiDFE in particular
for three reasons. First, unlike methods that assume a particular
kind of distribution beforehand (e.g., Piganeau and Eyre-Walker
2003; Keightley and Eyre-Walker 2007; Tataru et al. 2017), one
can pick the best fit frommany different types of distributions, in-
cluding nonparametric ones. This is important because if the true
distribution is substantially different than the distribution that is
being assumed, this can lead to erroneous conclusions regarding
the properties of the DFE (Kousathanas and Keightley 2013). Sec-
ond, the method explicitly accounts for population change in
the past. Although accounting for demography has become com-
monplace (Eyre-Walker et al. 2006; Boyko et al. 2008; Lawrie et al.
2013; Kim et al. 2017; Tataru et al. 2017), multiDFE (and earlier it-
erations of the method [Keightley and Eyre-Walker 2007]) has the
particularity of estimating demographic and selection parameters
simultaneously. Third, multiDFE (like its predecessor [Keightley
and Eyre-Walker 2007]) considers not only the frequency spec-
trum of segregating sites but also the proportion of monomorphic
sites, enabling it to more readily detect strong negative selection
(similarly to Lawrie et al. 2013). To our knowledge, no other meth-
od has all three of these properties (with the potential exception of
that of Kim et al. 2017).

When interpreting the multiDFE output, we followed Yam-
polsky et al. (2005). We assumed that mutations were effectively
neutral if the associated population-scaled selective coefficient
(Nes) was below∼0.25.We also assumed that the probability of fix-
ation becomes negligible above ∼2Nes (weak negative selection),
while contribution to polymorphism becomes negligible above
∼10Nes (strong negative selection).Mutations that are under negative
selection that is too weak to prevent fixation should therefore be
associated to a Nes value between ∼0.25 and ∼2 (very weak negative
selection). Note that because positive selection was not considered,
we only used positive Nes values, with increasing Nes signifying
increasingly strong negative selection. Importantly, multiDFE re-
turns the distribution of selective coefficients for incoming muta-
tions, not for sites. However, given that ESE degeneracy seems to be
rare, we ignored this distinction and considered the proportion of
incomingmutations that are under selection as a proxy for the fre-
quency of functional sites. We limited the polymorphism data
used to the Yoruban subsample of the 1000 Genomes data set, as
methods such as multiDFE are susceptible to become unreliable
with large samples (Kim et al. 2017).

Regarding the handling of CpGs, human filteringwas expect-
ed to be themost appropriate becausemultiDFE is purely polymor-
phism based. We nevertheless performed 100 negative control

runs to determine the false-positive rate for the two methods
(Supplemental Text S5; Supplemental Table S7). Ancestral CpG-fil-
tering achieved a substantially lower false-positive rate than hu-
man filtering. With human filtering, only 15% of runs exhibited
>80% of the density below Nes=0.1, whereas this percentage was
71% for the ancestral filtering (Fig. 3, leftmost plot).

Because of these results, we largely relied on the ancestral
filtering method when drawing conclusions from the multiDFE
analysis. The negative control also demonstrated the drastic im-
portance of accounting for demographic history, as ignoring it
led to a large increase in the false-positive rate (for details, see Sup-
plemental Text S5 and Supplemental Fig. S4). As with INSIGHT, we
also performed a positive control by analyzing non-fourfold
degenerate ESE sites (Fig. 4; Supplemental Text S5). Our protocol
for running multiDFE appears capable of detecting both strong
and weak negative selection.

We then ran multiDFE on fourfold degenerate ESE sites
with nucleotide-matched fourfold degenerate non-ESE sites as
control. The best-fit modelwith ancestral filteringwas a two-spikes
model with population size change in the past. multiDFE indicat-
ed that ∼63% of the density lay within effective neutrality and
that ∼37% of mutations were under strong negative selection
(with Nes∼100) (Fig. 5, top left plot; Supplemental Table S8; Sup-
plemental Text S5 for other CpG-filtering methods). multiDFE
thus provided no evidence for substantial levels of very weak neg-
ative selection at fourfold degenerate ESE positions: Mutations
are either effectively neutral (about two-thirds) or sufficiently del-
eterious that their fixation is extremely unlikely (about one-third).
We also detected no density betweenNes 2 and 10. This would sug-
gest that deleterious mutations are under such strong selection
that polymorphisms can only occur at very low frequencies and
are thus unlikely to be sampled. This is inconsistent with the
INSIGHT results, as well as the comparison of MAFs performed
above, which provided (near-)significant evidence for weak nega-
tive selection. This could be explained by the use of a smaller sam-
ple for the polymorphism data, which can lead to overestimation
of the prevalence of strong negative selection (Kim et al. 2017) at
the detriment of weaker selection.

To conclude, the various analyses converge to suggest that
about a quarter to a third of fourfold degenerate INT3 ESE positions
are functional, while the remainder are primarily noise—nothing
more than hexamers occurring by chance, or perhaps sites within
functional hexamers that are themselves not under selection.
Given the decrease in MAFs within ESEs, it is possible that some
very weakly negatively selected sites are present, which would in-
crease the proportion of functional sites. However, any such in-
crease is unlikely to be substantial because of the weakness of the
evidence for weak negative selection and because of the similarity

Figure 3. Negative control. Proportion of Nes below 0.1 over 100 control simulations, for the different motif sets and for human (H) and ancestral (A)
CpG-filtering. Ancestral filtering consistently delivers a lower false-positive rate (less density at the bottom).
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between the results obtained using INSIGHT and in theMAF com-
parison test. If our failure to control for contextualmutation biases
indeed leads to an overestimation of about a third (as suggested in
the first section of the Results), the functional fraction decreases to
about a fifth to a quarter of the sites. Given that ∼18% of coding
nucleotides are part of an ESE, this would mean that overall,
∼4%–6% of fourfold degenerate sites are constrained because of
the need to preserve INT3 motifs. However, the selection acting
atmost of these sites would be strong, andmutations are thus like-
ly to have phenotypic and clinical relevance.

Expanding the motif set

The above analysis comes with amajor caveat. INT3, the set of ESE
motifs used, was crafted to be particularly conservative (Cáceres
and Hurst 2013) and is thus probably enriched for a core set of par-
ticularly constrained ESEmotifs. Do our results apply to ESEsmore
generally? INT3 is composed of motifs that appeared in at least
three out of four previously published sets of ESEs (Cáceres and
Hurst 2013). We expanded our set by combining motifs from all
four sets. These motif sets will be referred to as ESR (Goren et al.

Figure 4. Positive control. Distribution of fitness effects (DFE) for non-fourfold degenerate ESE sites, using fourfold degenerate non-ESE sites as control.
(Blue zone) Effective neutrality; (light yellow zone) very weak negative selection; (dark yellow zone) weak to strong negative selection. “No filtering,” “hu-
man filtering,” and “ancestral filtering” refer to different methods for filtering out CpG dinucleotides (for more details, see main text).

Figure 5. DFE for incomingmutations at ESE sites, using different motif sets. Ancestral CpG-filtering was used in all cases. (Blue zone) Effective neutrality;
(light yellow zone) very weak negative selection; (dark yellow zone) weak to strong negative selection. Note that although the distribution obtained for
RESCUE looks different from that obtained for INT3 or ESR, all three convey very similar information (the majority of mutations within effective neutrality
and aminority within strong negative selection). The visual difference is due to the fact that for RESCUE, the best fit was a beta distribution, whereas for the
other two it was a two-spikes distribution.
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2006), PESE (Zhang and Chasin 2004), RESCUE (Fairbrother et al.
2002; Fairbrother et al. 2004b), and Ke (Ke et al. 2011) (for Ke,
only the 400 motifs with the strongest evidence for being an ESE
were considered). We refer the reader to Cáceres and Hurst (2013)
for more information on the origin and properties of each set.

Before taking the union of the sets, it was important to verify
that none showed signs of positive selection, as this could mislead
the majority of the analyses we perform (Tataru et al. 2017). We
therefore ran INSIGHT on each of the motif sets. The only data
set to show evidence for positive selection was Ke (Fig. 6;
Supplemental Table S15). This is consistent with the results from
Cáceres and Hurst (2013), where this set also exhibited unusual
properties: It was fast- rather than slow-evolving, and it was en-
riched in exon cores over exon flanks. To prevent the positive se-
lection from misleading any further analyses, we constructed the
combined set of motifs by merging all sets except for Ke. This re-
sulted in a final combined set of 2528 unique motifs (468 hexam-
ers and 2060 octamers).

The three sets other than Ke, including the combined set,
behaved fairly similarly to INT3 (Fig. 6). None showed evidence
for positive selection. This contradicts the results of Ke et al.
(2008), who reported positive selection on PESE and RESCUE
motifs. However, Ke et al. (2008) studied constitutively and alter-
natively spliced exons separately and only found positive selec-
tion for the former. As we are not making this distinction, any
signs of positive selection present in constitutively spliced exons
alone might be undetectable in the overall signal. The percentage
of sites under selection was estimated to be between ∼15% and
∼25% for all sets, with the combined set at ∼18.6%. Only ESR
and PESE showed significant evidence for weak negative selec-
tion. None was observed for the combined set, suggesting that
although some ESEs might indeed be under weak negative selec-
tion, this is a minority. Contrary to our expectations, the INT3 set
is therefore not exceptional in its evolutionary properties. The ef-

fect of merging the sets appears to be one of simply including
more sites rather than of qualitatively altering the DFE. Note
that just like above for INT3 alone, we are basing our conclusions
on human CpG-filtering for ρ, γ, and τ and on ancestral filtering
for η and α. This is because this approach is expected to lead to
the lowest false-positive rate for all sets (Supplemental Tables
S10–S14).

How does considering a larger set of ESEs affect our estimate
for normalized dS? We calculated normalized dS for each of the
sets. The results were again consistent between sets, with normal-
ized dS values between−0.3 and−0.2 (Table 2; for negative control,
see Supplemental Table S9). Ke was once again an outlier, as it ex-
hibited a positive normalized dS of ∼0.148, consistent with wide-
spread positive selection. We considered the possibility that this
signal of fast evolution could be due to sampling ESE and control
sites from different parts of the exon. Alternatively, it could be
driven by unusual Ke motifs that have a stronger splice enhancer
effect when placed in the exon core. However, we found support
for neither of these hypotheses (Supplemental Text S6).

With the combined set, we obtained a motif density of
∼0.692 and a normalized dS of ∼−0.304. If we consider that our es-
timate is potentially inflated because of context-dependent muta-
tional biases (Supplemental Text S2), we can conclude that ESE
preservation causes a decrease of ∼15%–20% in overall human
dS. Thus, one in five fourfold degenerate bases overlap with a func-
tional ESE. This conclusion is not qualitatively altered by the ex-
clusion of the ESR set, which was defined partially based on
motif conservation (Supplemental Text S6). Therefore, our initial
conclusion of functional ESEs being rare was greatly biased by
our use of a set of motifs with a low false-positive rate but a high
false-negative rate.

We next performed the polymorphism-based analyses to
check for very weak negative selection. All sets displayed signifi-
cantly decreased polymorphism frequencies. All of the individual

A B C

D E F

Figure 6. INSIGHT estimates for different sets of ESE motifs. (A) INT3; (B) ESR; (C) RESCUE; (D) PESE; (E) Ke; and (F ) all sets combined (except for Ke).
(ρ) Fraction of sites under selection; (α) fraction of divergences driven to fixation by positive selection; (η) scaling factor on the divergence rate at selected
sites; (τ) fraction of polymorphisms under weak negative selection; (γ) scaling factor on the site frequency spectrum at selected sites. Human CpG-filtering is
expected to bemore reliable for ρ, τ, and γ; ancestral CpG-filtering is expected to perform better for α and η. An asterisk (∗) indicates an empirical one-tailed
P-value of <0.05. There are no P-values for α and τ. NB: For visualization purposes, the η and γ values for Ke (ancestral CpG-filtering) have been capped at
one. The true values are η≈10.625 and γ≈28.543.
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sets, except for ESR and Ke, also showed a significant decrease in
MAF. However, this was not the case for the combined set, and
for all sets, the evidence for decreased MAF was considerably
weaker than the evidence for decreased polymorphism rates
(Table 3). This supports the earlier conclusion that the primary
mode of selection at ESE sites is strong negative selection. We
note that the Ke set also displayed decreased polymorphism fre-
quencies. However, given the normalized dS and INSIGHT results,
it is likely that this reflects reduced variation caused by recent
fixation of positively selected variants more so than purifying
selection.

Finally, we performed the multiDFE analysis (Fig. 5; Supple-
mental Table S18). We only used ancestral CpG-filtering, as the
negative control demonstrated this method to have the lower
false-positive rate for all sets (Fig. 3; Supplemental Tables S16,
S17). ESR and RESCUE behaved similarly to INT3: multiDFE pre-
dicted a two-spike distribution of selective coefficients with a
smaller peak (∼20%–30% of the density) within the zone of strong
negative selection and a larger peak within effective neutrality. No
purifying selection was detected for the Ke data set. The results for
PESE were more surprising: multiDFE located all of the density
within a single peak just below Nes= 1.5. This would suggest that
all PESEmotif hits are under veryweak negative selection. This sce-
nario is clearly unrealistic. It is also inconsistent with the results
from the other analyses: Both INSIGHT and polymorphism fre-
quencies indicated the presence of strong negative selection. We
noticed during the preparation of this paper that when presented
with a large set of motifs that is likely to be heterogeneous in terms
of the selective modes involved (the RBP motifs data set from
Savisaar and Hurst 2017a), multiDFE was unable to tease apart
the different selective modes and predicted a single peak within
the region of very weak negative selection (Supplemental Table

S19). It is possible that a similar situation is occurring with PESE.
Note that PESE is the only set that is composed of octamers rather
than hexamers. This peculiarity, however, does not explain the
multiDFE results: When we compiled a new motif set out of all
those hexamers that appeared at least seven times in the PESE set
(akin to the procedure used in Cáceres and Hurst 2013) and ran
multiDFE on the resulting hit sites, the best-fit DFEs were qualita-
tively similar to those obtained with the octamers (Supplemental
Table S18).

The best-fit model for the combined set was also a two-spikes
distribution with ∼16.8% of the density at a high Nes value of
∼122.474 and the remainder at ∼0.275—just above our fairly arbi-
trary cut-off between effective neutrality and very weak negative
selection at 0.25. Taken at face value, this result would indicate
that there are no neutrally evolving ESE sites. Given the rest of
the results presented in this paper, this seems unlikely. In the neg-
ative control, our setup of multiDFE mistook effective neutrality
for very weak negative selection on about a third of the runs
(Supplemental Tables S7, S16). This could also be happening
here. Alternatively, the first peak could be an amalgam of effective
neutrality and very weak negative selection. However, the three-
spikes model did not tease this single peak apart either—it placed
a first spike with ∼57.5% of the density atNes∼0.250 and a second
spike with ∼16.6% of the density at Nes∼0.360. In addition, this
signal for very weak negative selection appears to be due entirely
to the inclusion of the PESE set. When this set was excluded, the
combined set displayed a large peak (∼68.7%)within effective neu-
trality (Nes∼3.124×10−12) and the remainder of the density with-
in strong negative selection (Nes∼58.572). Given that multiDFE
does not seem to be able to tease apart the different selectivemodes
acting on the PESE motifs, the inclusion of this set might also be
introducing noise into the analysis of the full set.

Table 2. Motif density and (normalized) dS for different ESE sets in human CDSs

Motif set Density Hit dS Control dS
Normalized dS

(empirical one-tailed P)
Overall decrease

(density × normalized dS)

INT3 ∼0.183 ∼0.038 ∼0.054 ∼−0.300 (∼0.001) ∼−0.055
ESR ∼0.526 ∼0.041 ∼0.058 ∼−0.287 (∼0.001) ∼−0.151
RESCUE ∼0.321 ∼0.041 ∼0.051 ∼−0.200 (∼0.001) ∼−0.064
PESE ∼0.307 ∼0.043 ∼0.055 ∼−0.221 (∼0.001) ∼−0.068
Ke ∼0.333 ∼0.057 ∼0.050 ∼0.148 (1.000) ∼0.049
Merged (no Ke) ∼0.692 ∼0.043 ∼0.062 ∼−0.304 (∼0.001) ∼−0.210

For all the different sets of ESEs (except for the Ke set), motif hit sites are ∼20%–30% slower-evolving than control sites. When all the sets except for Ke
are combined, the selection to preserve the motifs leads to a drop in human dS of ∼21%.

Table 3. Polymorphism frequencies and minor allele frequencies (MAFs) for different sets of ESEs

Motif set
Polymorphic sites/total

sites (hits)
Polymorphic sites/total

sites (controls) χ2 (P)

P from Mann-
Whitney U test
comparing MAFs

INT3 2364/104,679 (∼0.023) 2762/104532 (∼0.026) ∼59.979 (∼9.589×10−15) ∼0.039
ESR 9760/397,873 (∼0.025) 10,651/397,271 (∼0.027) ∼79.269 (∼5.421×10−19) ∼0.342
RESCUE 4229/184,820 (∼0.023) 4783/184,519 (∼0.026) ∼67.634 (∼1.968×10−16) ∼0.002
PESE 5755/237714 (∼0.024) 6133/237,338 (∼0.026) ∼25.121 (∼5.384×10−7) ∼0.021
Ke 5056/216,356 (∼0.023) 5709/215,998 (∼0.026) ∼78.827 (∼6.779×10−19) ∼0.298
Merged (no Ke) 12,911/524,448 (∼0.025) 14,146/523,090 (∼0.027) ∼117.201 (∼2.593×10−27) ∼0.436

All ESE sets display decreased polymorphism frequencies but not all have decreased MAFs. Decreased polymorphism frequencies are a sign of strong
negative selection, whereas decreased MAFs are evidence for weak negative selection.
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Discussion

Strong selection on ESEs

It has been known for over a decade that humanESEs are under pu-
rifying selection (Fairbrother et al. 2004a). In this work, we have,
for the first time, determined the strength of this selection. We
have found that most functional ESE sites are under strong purify-
ing selection (50<Nes< 150). There were also indications in our
data that certain sites might be under weak negative selection.
We are not able to estimate how frequent such sites may be.
However, considering the results as a whole, it seems likely that
this is a minority. Moreover, the strong selection that we detect
concerns a considerable proportion of CDS: ∼15%–20% of four-
fold degenerate bases are part of a functional ESE (this percentage
might be slightly higher if some of the weak negative selection
is weak enough to allow for substitutions). Therefore, ESE-related
selection should not be conceptualized as merely a weak bias, a
gentle nudging of codon usage. Rather, it severely constrains
CDS evolution. This helps explain why ESEs seem to leave such
strong footprints on sequence evolution. For instance, many spe-
cies show clear ESE-associated biases in nucleotide and amino
acid composition toward exon ends (Parmley and Hurst 2007;
Parmley et al. 2007; Warnecke et al. 2008), and the proportion of
CDS close to exon ends (within 70 bp) is a strong predictor of pro-
tein evolution rates, of the same magnitude as expression level
(Parmley et al. 2007).

Importantly, our results imply that mutations that disrupt
ESEs usually have large fitness consequences and might therefore
often be pathogenic. This conclusion is coherent with a large
body of work showing a link between disruption of splice regulato-
ry elements and disease (Sterne-Weiler and Sanford 2014; Supek
et al. 2014; Xiong et al. 2015; Scotti and Swanson 2016; Takata
et al. 2016; Livingstone et al. 2017; Soemedi et al. 2017). Indeed,
known pathogenic SNPS are strongly enriched at exon ends where
ESEs are enriched (Wu and Hurst 2016).

Bridging experimental and evolutionary estimates for the

prevalence of exonic splice information

This workwasmotivated by a discrepancy between results from ge-
nome-wide studies of ESE conservation andmutagenesis studies of
model exons. The former have found only a few percent of CDS to
be functional ESE, whereas the latter have returned estimates for
the frequency of splice information ranging from about a fifth to
nearly the entirety of the sequence. We discussed this problem at
length in the work of Savisaar and Hurst (2017b). Among many
other factors, we noted that the conservation-based estimates
could not be used to reliably determine the frequency of function-
al sites without knowing the DFE for incoming mutations. In this
publication,wehave elucidated the ESEDFE and thereby produced
an estimate for the frequency of functional ESE sites (15%–20% of
all fourfold degenerate sites) that is in line with the lower experi-
mentally derived figures. However, it was not the elucidation of
the DFE that allowed for the gap to be bridged, asmost of the selec-
tion acting at ESE sites is strong and would largely preclude substi-
tutions. Rather, the determining factor was that we expanded the
set of motifs analyzed. Therefore, an important reason why previ-
ous conservation-based estimates were so low is that small and
conservative sets of motifs were considered. The gap between ex-
perimental and conservation-based estimates decreases even fur-
ther if one also accounts for the fact that the experimental
studies used short exons and thus enriched for exon end nucleo-

tides, which are particularly dense in splice information (Savisaar
and Hurst 2017b).

Nonetheless, it is likely that even the union set does not in-
clude all functional ESE motifs. Moreover, not all of the ESR infor-
mation in the exon can be captured simply via k-mer searching
with no regard to factors like the pre-mRNA secondary structure
(Li et al. 2010) or interactions between splicing, chromatin, and
the process of transcription (Gomez Acuna et al. 2013; de
Almeida and Carmo-Fonseca 2014). However, the frequency of se-
lected ESE sites cannot exceed the frequency of selected synony-
mous sites overall, and by most estimates, this is about a quarter
of sites at most (Eory et al. 2010; Pollard et al. 2010; Keightley
and Halligan 2011; though see Racimo and Schraiber 2014 and
Price and Graur 2016). It is therefore likely that we are indeed cap-
turingmost exonic splice information. Note, however, that the se-
lection acting on ESEs also includes selection for the splicing-
independent roles of these motifs (Pozzoli et al. 2004; Sanford
et al. 2004; Taniguchi et al. 2007; Maslon et al. 2014; Bradley
et al. 2015; Savisaar and Hurst 2016). It is unclear what proportion
of the functional ESE sites that we observe is maintained for splic-
ing-independent reasons, but our earlier work suggests that it
might be substantial (Savisaar and Hurst 2016).

Selection on ESEs in the broader context of selection

at synonymous sites

The DFE that we have obtained for ESEs resembles the DFE ob-
tained for synonymous sites more generally. Both in human
(Keightley and Halligan 2011) and in Drosophila (Lawrie et al.
2013), previous studies have reported synonymous sites to be
made up of a large class of neutrally evolving sites and a smaller
class of strongly selected sites. The strongly selected proportion
was reported as ∼11% in human by Keightley and Halligan
(2011) and as ∼22% inDrosophila by Lawrie et al. (2013), although
in Drosophila, a subsequent higher-powered study also found evi-
dence for a third class of sites that are under weak negative selec-
tion (Machado et al. 2017). Our estimate for the frequency of
strongly selected ESE sites is close to the ∼11% estimate for the fre-
quency of strongly selected synonymous sites overall (more pre-
cisely, our estimate is higher, likely because of methodological
differences between the studies) (Keightley and Halligan 2011).
This may suggest that the majority of synonymous constraint in
humans can be accounted for by accounting for selection on ESEs.

A very unusual subset of ESEs appears to be under

positive selection

A striking finding from the present work is that a particular subset
of ESEs (Ke et al. 2011) appears to be under vastly different evolu-
tionary pressures compared to the others. This data set was among
those analyzed by Cáceres and Hurst (2013) and found to differ
from the other motif sets. It was fast- rather than slow-evolving
and enriched in exon cores rather than flanks.Here,wehave found
further evidence that this ESE set, unlike the others considered, is
under positive selection. It is not surprising that there might be a
distinct class of ESEs that differs from others in its distribution
along exons and in nucleotide composition. It is unclear, however,
why these properties should correlate with positive selection. Note
that the original Ke et al. (2011) paper did report both higher spe-
cies conservation and lower polymorphism frequencies within
their set of splice enhancers. Of these findings, we could only rep-
licate the latter. However, given that the rest of our results, as well
as those obtained byCáceres andHurst (2013), aremore consistent
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with positive than with negative selection, we interpret the poly-
morphism depletion in the set as reflecting recent fixation events
due to positive selection.

An interesting problem is whether this positive selection is
primarily to gain newmotifs where there were none before or sim-
ply to swap one motif for another. We have performed a prelimi-
nary analysis where we repeated the normalized dS analysis with
these motifs but only considered substitutions that turned a motif
into a nonmotif (using the samemethodology as in Supplemental
Text S3). If the selection is to gainmotifs, normalized dS should in-
crease. If it is to change one motif for another, it should decrease.
The answer is the former: Normalized dS sharply increased from
∼0.148 to ∼0.296. It therefore appears that our CDSs are under se-
lection to gain new ESE motifs from the set defined by Ke et al.
(2011). The reasons for this selective pressure remain to be
elucidated.

Methods

General

Almost all analysis was conducted with the help of custom Python
3.4.2. scripts (code available at https://github.com/rosinaSav/
DFE_paper_repo; last accessed June 5, 2018) using standard librar-
ies, NumPy 1.9.1., (van der Walt et al. 2011) and Biopython 1.64
(Cock et al. 2009). Perl v5.22.2 scripts were used for interacting
with the Ensembl API. R version 3.2.1. (R Core Team 2013) was
used for plotting and for certain statistical tests. BEDTools 2.19.1
(Quinlan and Hall 2010) was used for operations on sequence
coordinates.

Sequences and motif searching

The analysis was performed on a high-quality filtered subset of
all GRCh38 CDSs (Ensembl release 85) (Cunningham et al.
2015). The filtering procedure, as well as the subsequent clustering
into paralogous families, was identical to that used by Savisaar and
Hurst (2016). Our final set contained 10879 genes, which clustered
into 6101 families, 1229 of which nonsingleton. The macaque
sequences used for calculating normalized dS (for more details,
see main text) were derived from assembly MMUL_1, with the an-
notations from Ensembl release 85. The orthology relations
were also obtained from the Ensembl database (for further details
on the alignment procedure, see Savisaar and Hurst 2016). Supple-
mental Text S1 contains details on the extraction of 5′ flank and
core exonic regions. The ESE set used was the INT3 intersection
set described by Cáceres and Hurst (2013). The other motif sets
used were obtained similarly to Cáceres and Hurst (2013). For
Ke motifs (set of ESE motifs obtained in Ke et al. 2011), only
the 400 showing the strongest evidence for splice enhancer activ-
itywere retained. In order to determinewhichKemotifs weremore
active in the exon core than the flank, we retrieved Supplemental
Table S1 from Ke et al. (2011) and compared the LEIsc score ob-
tained in context HA to that obtained in context HM. Only motifs
where the former was at least 0.5 units greater than the latter were
retained.

Controlling for nucleotide composition

Full details can be found in Supplemental Text S1. Briefly, within
each gene, we picked a set of fourfold degenerate control sites
that matched the nucleotide composition of fourfold degenerate
ESE sites. For simple comparisons of nucleotide divergence (nor-
malized dS), and for comparisons of polymorphism frequencies

and MAFs, we obtained an exact match by sampling with replace-
ment to match each ESE site with a control site of the same nucle-
otide composition. For the other analyses, the match was
approximate, as for these methods, it was preferable to obtain
more control sites than ESE sites. We therefore used an optimiza-
tion method to obtain both a close match in terms of nucleotide
composition and to maximize the number of control sites (for de-
tails on the control sites, see Supplemental Tables S1, S2).

Filtering out CpG sites

We used one of three strategies for handling CpG-dinucleotides.
The first strategy (no filtering) was to do no CpG-based filtering
at all. The second strategy (human filtering) was to remove those
sites that overlapped with a CpG/GpC dinucleotide in the human
reference sequence. The third strategy (ancestral filtering) was to
remove those sites that overlapped with a probable CpG/GpC
dinucleotide in the human–macaque most recent common ances-
tor (MRCA; note that when filtering CpGs for the INSIGHT analy-
sis, the human–chimpanzee MRCA was used instead).

Concretely, for the third strategy, we used a customPerl script
to fetch the eight-primate EPO multiple sequence alignment for
our CDSs from a local installation of release 85 of the Ensembl
Compara (Herrero et al. 2016) database and API. Only CDSs where
a full alignment for the whole CDS and for all eight species could
be obtained were kept. We then used the phyloFit program (Siepel
and Haussler 2004; Hubisz et al. 2011) to calculate the posterior
probabilities for the dinucleotides present at the sites in our se-
quences in the human–macaque MRCA (with the flag ‐‐scale-
only turned on, with subst-mod set to U2S and init-model down-
loaded from ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/
phastCons100way/hg38.phastCons100way.mod; last accessed
February 14, 2017). Sites where the posterior probability of over-
lapping with CpG/GpC exceeded 0.5 were removed.

Polymorphism data

Tabix version 0.2.5 (r1005) (Li 2011) was used to obtain 1000
Genomes Phase 3 data for genomic regions overlapping our
CDSs (files for the different chromosomes obtained from ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chrN.
phase3_shapeit2_mvncall_integrated_v3plus_nounphased.rsID.
genotypes.GRCh38_dbSNP_no_SVs.vcf.gz; last accessed April 19,
2017). VCFtools 0.1.15 (Danecek et al. 2011) was used to subset
so as to only keep data on Yoruban individuals for the multiDFE
analysis (panel file from ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.
panel; last accessed April 20, 2017). Positions with polymorphisms
other than biallelic SNPs or where the reported ancestral allele dif-
fered from the base in the reference genome at that position were
filtered out and not used in any fully or partially polymorphism-
based analyses.

Normalized dS
Normalized dS was calculated similarly to Savisaar and Hurst
(2016). Control sites were processed similarly. In order to obtain
a P-value, we performed 1000 simulations where each time we
shuffled the motif hit and control positions within each gene
(preserving the number of motif and control positions), repeated
the analysis with the shuffled positions, and used the resulting dis-
tribution of normalized dS values to calculate an empirical P-value
(p = [(n+1)/(m+1)], where n is the number of simulants present-
ing a normalized dS as low as or lower than the true value and m
is the number of simulants). This simulation is expected to elimi-
nate systematic differences in selective constraint between hits
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and controls. Indeed, the simulated normalized dS values clustered
symmetrically around zero (Supplemental Fig. S1; Supplemental
Table S3).

INSIGHT analysis

We used the same set of CDSs for the INSIGHT analysis as for
the normalized dS analysis but excluded sequences on the sex chro-
mosomes. We defined each chromosome as one block, the ESE
sites on the chromosome as element sites, and the control sites
as flanking sites (for numbers of hit and control positions, see
Supplemental Table S1). The analysis was then run roughly in ac-
cordance with the procedure used in Gronau et al. (2013) (for full
details, see Supplemental Text S1 and Supplemental Table S6).

multiDFE

The multiDFE program was downloaded from https://bitbucket.
org/a_kousathanas/multidfe (last accessed June 14, 2017). SNP
data were obtained and filtered as described above and used to cal-
culate site frequency spectra for fourfold degenerate sites overlap-
ping either hit or control positions.multiDFEest was run assuming
a series of different distributions (lognormal, gamma, beta, spike,
and step models with two to five spikes/steps and the fixed six-
spikes model). All models were run assuming either a constant
population size or a change in population size (parameter conpop
set to zero or one). For the step and spike models, 10 repetitions
were performed. fold_SFS was always set to True. Following the
method of Kousathanas and Keightley (2013), the log-likelihood
returned by MultiDFE was converted into Akaike’s an information
criterion value (AIC = 2k − 2logl, where k is the parameter number
and logl is the log likelihood), with a difference of two units in AIC
considered as significant. If the best-fit model was a two-steps
model and the second best fit within two AIC units was a two-
spikes model, the two-spikes model was considered instead, as it
is easier to visualize. In order to calculate Nes values, the selective
coefficients returned by the program were multiplied by the
weighted population size Nw.

Software availability

Custom code used for analysis can be found in the Supplemental
Material (Supplemental_Code.zip) or downloaded from https://
github.com/rosinaSav/DFE_paper_repo.
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