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Abstract: Timely monitoring and precise estimation of the leaf chlorophyll contents of maize are
crucial for agricultural practices. The scale effects are very important as the calculated vegetation index
(VI) were crucial for the quantitative remote sensing. In this study, the scale effects were investigated
by analyzing the linear relationships between VI calculated from red–green–blue (RGB) images from
unmanned aerial vehicles (UAV) and ground leaf chlorophyll contents of maize measured using
SPAD-502. The scale impacts were assessed by applying different flight altitudes and the highest
coefficient of determination (R2) can reach 0.85. We found that the VI from images acquired from flight
altitude of 50 m was better to estimate the leaf chlorophyll contents using the DJI UAV platform with
this specific camera (5472 × 3648 pixels). Moreover, three machine-learning (ML) methods including
backpropagation neural network (BP), support vector machine (SVM), and random forest (RF) were
applied for the grid-based chlorophyll content estimation based on the common VI. The average
values of the root mean square error (RMSE) of chlorophyll content estimations using ML methods
were 3.85, 3.11, and 2.90 for BP, SVM, and RF, respectively. Similarly, the mean absolute error (MAE)
were 2.947, 2.460, and 2.389, for BP, SVM, and RF, respectively. Thus, the ML methods had relative
high precision in chlorophyll content estimations using VI; in particular, the RF performed better
than BP and SVM. Our findings suggest that the integrated ML methods with RGB images of this
camera acquired at a flight altitude of 50 m (spatial resolution 0.018 m) can be perfectly applied for
estimations of leaf chlorophyll content in agriculture.
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1. Introduction

Maize (Zea mays L.) is a global stable crop that accounts for more than 34% of global cereal
production, and the demand of it is constantly increasing with the growth of the global population and
the impending economic pressures in the coming decades [1–3]. China has contributed 17% of global
maize production with less than 9% of arable cropland considering the environmental and ecological
protection [4–7]. Climate change, such as increasing temperature and abnormal precipitation, has both
directly and indirectly influenced the growth and development of maize, which will inevitably result
in the reduction or the stagnation of yields [8–11]. Thus, timely monitoring of the growth condition of
maize and making adaptive measures are essential for guaranteeing the agricultural production and
ensuring national food security. Chlorophyll is the most important pigment in plant photosynthesis
that can reflect the strength of crop photosynthesis, the quality of nutrition, and physiology [12–14].
Therefore, chlorophyll content can be used for assessing, monitoring, and evaluating the growth status
of crops. The precise measurement of chlorophyll content using SPAD-502 is very high, which is almost
the same as the result using chemical tests, thus the chlorophyll contents measured by SPAD-502 can be
perfectly used for replacing the chlorophyll in vegetation [15,16]. Thus, calculating and estimating the
chlorophyll contents at the field scale are prerequisites for monitoring crop growth and strengthening
decision-support systems for specific agronomic practices (e.g., fertilization, irrigation, weeding,
ploughing, and harvest) [17–19].

Commonly, there are three approaches for measuring the chlorophyll contents of vegetation at
field scale: destructive sampling (DS), simulation models (SM), and remote sensing (RS). The DS
method is a direct method that is quite precise in measuring the chlorophyll contents of crops using
experiments, but it is also very labor-intensive, time-consuming, and inefficient. Thus, it can hardly
be applied for a relatively large area and the sampling points are also limited. Moreover, it is very
destructive and time-consuming to acquire the data for a large area. The SM method is a natural
laboratory that simulates the whole growing process of crops covering the status of all variables of crops
such as chlorophyll content, but this method relies on the high resolution of input data such as weather,
soil, management practice that are difficult to obtain [20–22]. Alternatively, RS has been successfully
applied in many related fields such as image classification and change detection. In addition, the
advanced RS techniques such as unmanned aerial vehicle remote sensing (UAV-RS) can be applied
to acquire filed observation data at a fine spatial resolution (centimeter-level). Unlike the traditional
satellite remote sensing (SRS) that is commonly limited by the spatial and spectral resolutions, and long
revisit cycle, the UAV-RS can provide images at adequate spatial and temporal resolutions without
the limitations from the weather condition [23–25]. It is also important for agricultural and ecological
applications as they can be easily deployed and possessed the ability to dynamically monitor the crops
in detail during important phenology events such as flowering, heading, and mature that are the
critical growth stages of crops. The remote sensed sensors mounted on the UAV could fill the gap
between high resolution in spatial and the quick revisit circle [26]. Thus, UAV-RS combined field data
collection is the best choice that can acquire the database of complete growth of crops at high spatial
and temporal resolution with less time.

In the red–green–blue (RGB) color space system, each pixel is defined using the combined R, G,
and B band [27]. The vegetation index (VI) calculated from RGB images have been used to monitor
the leaf chlorophyll content of crops for several decades [28–31]. Thus, cost-effective RGB cameras
onboard UAVs have great abilities in monitoring the growth conditions using visual vegetation index
for agricultural and ecological applications [32,33]. Rocio Ballesteros et al. monitored the biomass of
onion using RGB images acquired from UAV platform [34]. Alessandro Matese et al. assessed the
intra-vineyard variability in terms of characterization of the state of vines vigor using high spatial
resolution RGB images [35]. Dong-Wook Kim et al. modeled and tested the growth status of Chinese
Cabbage with UAV-Based RGB images [36]. The RGB and multispectral images from UAV were
used together for the detection of the Gramineae weed in rice fields [37]. Jnaneshwar et al. clearly
described the workflow of monitoring the plant health, crop stress and the guidance of management
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using multispectral 3D imaging system mounted on a UAV [38]. Zarco-Tejada et al. combined the
helicopter-based UAV with the multispectral imaging sensors six-band multispectral camera (MCA-6,
Tetracam, Inc., Chatsworth, CA, USA), and the images acquired with this system were first calibrated
using linear regression method and further applied for the extraction of a series of vegetation index for
agricultural parameter estimations [39]. Jacopo et al. performed the flight mission at a site-specific
vineyard with Tetracam ADC-lite camera (Tetracam, Inc., Gainesville, FL, USA), and the ground
measurement using FieldSpec Pro spectroradiometer (ASD Inc., Boulder, CO, USA) was applied for
radiometric calibration [40]. Miao et al. assessed the potential ability of hyperspectral remote sensing
images acquired with an AISA-Eagle VNIR hyperspectral imaging sensor (SPECIM, Spectral Imaging,
Ltd., Oulu, Finland) through building multiple regression analyses between the bands from images
and measured values using SPAD-502, and the results showed that bands from images explained
68–93% and 84–95% at the fields in the corn-soybean and corn-corn rotation fields, respectively [41].
Wang et al. estimated the leaf biochemical parameters in mangrove forest using hyperspectral data [42].
The multispectral images from multispectral and hyperspectral cameras had advantages in agricultural
applications; however the cameras were relatively expensive compared with RGB cameras [43]. To date,
only a few studies assessed and evaluated the chlorophyll contents using RGB images acquired from
the UAV platform, and thus the ability and performance of RGB in predicting chlorophyll contents are
still unexplored. The information extracted from high resolution images is enough for information
mining, and there is no guarantee that the extracted information from all pixels is reasonable and true.
The images acquired from different altitudes representing the different image resolutions. Thus, the
resolution should match the ground samples and the flight altitude influencing the resolution of images
from should be optimized to better achieve the data fitting [44]. The scale impacts using RGB images
acquired from different imaging environment such as imaging at different flight altitudes were little
evaluated. Meanwhile, the RGB cameras were relatively cheaper and more easily to be deployed than
the multispectral cameras. Also, the previous adopted statistics approaches were traditional linear
regression models, where there is a lack of learning underlying data distribution [15]. The statistical
regression models using traditional linear regression models are mostly localized, and this issue
can be overcome using more advanced machine-learning (ML) techniques such as backpropagation
neural network model (BP), support vector machine (SVM), and random forest (RF). ML has been
successfully applied in many domains including image pre-processing, image classification, pattern
recognition, yield prediction, and simulation regression. The BP, SVM, and RF have been applied for
many applications as they perform better for regression problems, especially the SVM method have
been reported to have achieved the highest precision in previous studies [45,46].

In this study, we are trying to address the following: (1) investigating the scale effects using UAV
RGB images acquired from different flight altitudes at the early growth stage of maize; (2) evaluating
the performance of hue–saturation–value (HSV) color system compared with RGB color system in
applications such as information extraction using vegetation index; (3) estimating the chlorophyll
contents using ML methods with RGB images from different growth stages of maize.

2. Materials and Methods

2.1. Study Area

The experiment of different treatments of fertilizers to maize was conducted in Nanpi
Eco-Agricultural Experimental Station (NEES) (38.00◦N, 116.40◦E), which was managed by the
Chinese Academy of Sciences (CAS) (Figure 1). The NEES was in Hebei Province belonging to the
North China Plain (NCP), which was the national main grain product areas of summer maize and
winter wheat. The general growth duration of maize was from middle June to early October in a single
year. There was a total of 20 plots in this area, and each plot was treated using different amount of
fertilizers containing the common usage of nitrogenous fertilizer, phosphate fertilizer, and potassium
fertilizer, respectively (Table A1). The study area was in the semi-humid monsoon climate zone, and
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the annual average temperature and average annual precipitation is 12.3 ◦C and 480 mm, respectively.
The soil type of this region belonged to the cinnamon soil subgroup. The parent material of this soil
species was deep and uniform, of which the profile is A-AB-BK. The A layer (0–20 cm) was desalinated
Chao soil, with some saline soil. The AB layer (20–48 cm) was sandy coarse loam with a granular
structure and the BK layer (48–100) was clay loam with weak adhesion. The soil in NEES represented
the typical type of water-salt salinization in this region.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 23 

 

soil, with some saline soil. The AB layer (20–48 cm) was sandy coarse loam with a granular structure 
and the BK layer (48–100) was clay loam with weak adhesion. The soil in NEES represented the 
typical type of water-salt salinization in this region.  

 
Figure 1. Nanpi Eco-Agricultural Experimental Station (NEES) and overview of the long-term 
experimental fields. 

2.2. Data Collection and Pre-Processing 

2.2.1. UAV Data Collection and Pre-Processing 

The UAV flights covering all 20 plots in NEES were carried out between 11:00 and 11:30 AM on 
8 July, 18 August, 1 September, 16 September 2019, respectively. The flight on July 8 contained five 
different altitudes: 25 m, 50 m, 75 m, 100 m and 125 m. The flight altitudes on 18 August, 1 September, 
16 September were all set as 50 m. The DJI Phantom 4 Pro V2.0 was used as the UAV platform for 
data collection, of which the max ascent speed and max decent speed were 6 and 4 m per second, 
respectively. The horizontal and vertical accuracy ranges were ±0.1 m and ±0.3 m (with vision 
positioning) with the electronic shutter speed as 1/8000 s. The platform had an endurance of up to 30 
min, and the camera data storage capacity was approximately six hours. The RGB camera had a focal 
lens of 8.8 mm and a 20.7megapixel (5472 × 3648 pixels) CMOS sensor arranged through the same 
lens. Before the flight missions, four ground control point (GCP) were made as prominent positions 
on the ground using white paints, and the precise locations were measured using Real-time kinematic 
(RTK) S86T system. To acquire the RGB images from different flight altitudes, the commercial 
software Altizure (V4.7.0.196) was applied for flight control with 85% forward lap and 75% side lap 
for all flight mission. Each flight mission had covered the whole experimental field, with the four 
GCPs included. Since the light conditions were very crucial for image capture and image processing 
in remote sensing domains for quantitative remote sensing. The sunny days were selected for data 
collection, and thus the impacts of solar and other disturbance of cloud was minimized. To assess the 
scale impacts, the data was collected in one single day within one hour to exclude the impacts of 
different solar radiation and angles. In addition, to better assess the scale impacts ascribed from 
different flight altitudes, an implement experiment was added on July 16 2020 and the same approach 
of different flight altitudes were conducted the same as on July 8 2019. The experiments with the 
acquisition of UAV images were also conducted on 18 August, September 1, September 16 2019 with 
the same method, and the only difference was that the flight altitude was set as 50 m. The RGB images 
acquired from different flight altitudes and on different dates were copied and transferred from the 
storage card mounted on the UAV. The standard procedure was conducted within Pix4d mapper 
using GCPs, which was a unique photogrammetry software suite for drone mapping [47–49]. 

2.2.2. Chlorophyll Field Measurements Data 

Figure 1. Nanpi Eco-Agricultural Experimental Station (NEES) and overview of the long-term
experimental fields.

2.2. Data Collection and Pre-Processing

2.2.1. UAV Data Collection and Pre-Processing

The UAV flights covering all 20 plots in NEES were carried out between 11:00 and 11:30 AM
on 8 July, 18 August, 1 September, 16 September 2019, respectively. The flight on July 8 contained
five different altitudes: 25 m, 50 m, 75 m, 100 m and 125 m. The flight altitudes on 18 August,
1 September, 16 September were all set as 50 m. The DJI Phantom 4 Pro V2.0 was used as the UAV
platform for data collection, of which the max ascent speed and max decent speed were 6 and 4 m per
second, respectively. The horizontal and vertical accuracy ranges were ±0.1 m and ±0.3 m (with vision
positioning) with the electronic shutter speed as 1/8000 s. The platform had an endurance of up to
30 min, and the camera data storage capacity was approximately six hours. The RGB camera had a
focal lens of 8.8 mm and a 20.7 megapixel (5472 × 3648 pixels) CMOS sensor arranged through the same
lens. Before the flight missions, four ground control point (GCP) were made as prominent positions on
the ground using white paints, and the precise locations were measured using Real-time kinematic
(RTK) S86T system. To acquire the RGB images from different flight altitudes, the commercial software
Altizure (V4.7.0.196) was applied for flight control with 85% forward lap and 75% side lap for all flight
mission. Each flight mission had covered the whole experimental field, with the four GCPs included.
Since the light conditions were very crucial for image capture and image processing in remote sensing
domains for quantitative remote sensing. The sunny days were selected for data collection, and thus
the impacts of solar and other disturbance of cloud was minimized. To assess the scale impacts, the
data was collected in one single day within one hour to exclude the impacts of different solar radiation
and angles. In addition, to better assess the scale impacts ascribed from different flight altitudes, an
implement experiment was added on 16 July 2020 and the same approach of different flight altitudes
were conducted the same as on 8 July 2019. The experiments with the acquisition of UAV images were
also conducted on 18 August, 1 September, 16 September 2019 with the same method, and the only
difference was that the flight altitude was set as 50 m. The RGB images acquired from different flight
altitudes and on different dates were copied and transferred from the storage card mounted on the
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UAV. The standard procedure was conducted within Pix4d mapper using GCPs, which was a unique
photogrammetry software suite for drone mapping [47–49].

2.2.2. Chlorophyll Field Measurements Data

The ground collection of chlorophyll contents in each plot was conducted using SPAD-502 under
a standard procedure. The relative amount of leaf chlorophyll content was determined by measuring
the light transmittance coefficient of the leaf at two wavelengths: 650 nm and 940 nm. The values
measured using SPAD-502 was closely correlated with the chlorophyll content in leaf of plants, and the
trend of chlorophyll content can be known by measured values. To eliminate the errors and make
the measures more reliable, five points measuring method containing four corners and the center
of each plot were measured for three repetitions. The average of chlorophyll contents of each plot
can be precisely acquired by averaging the 15 (5 × 3 = 15) samples of data. Since there was a total
of 20 plots, there were 20 values of chlorophyll contents after the average calculation of each flight.
The chlorophyll contents measured by SPAD-502 were carried out on 8 July, 18 August, 1 September,
16 September shortly after the flight missions.

2.3. Methods

2.3.1. Scale Effects Using Vegetation Index Methods

The mosaic image acquired at different altitudes on July 82019 were shown in ENVI 5.3 and the
spatial resolution were calculated. The spatial resolutions for flight altitudes of 25, 50, 75, 100 and 125 m
were 0.006, 0.018, 0.021, 0.028, 0.034 m, respectively. The mosaic image of 50 m was shown in ENVI 5.3
and the region of interests (ROI) covering the center and four corners within each plot was made
and exported, respectively (Figure 1). The same ROI of each plot were used to extract the subsample
images within each plot of mosaic images including the long time series (8 July, 18 August, 1 September,
16 September) and different flight altitudes (25, 50, 75, 100, 125 m), respectively. Thus, there are
20 subsample images for each flight altitude and each date. A total of 18 indices had been applied and
conducted in previous studies (Table 1). Before calculating the indices, the R, G and B bands were
normalized using,

R = r/(r + g + b), G = g/(r + g + b), B = b/(r + g + b) (1)

where r, g, and b represented the original digital number (DN) of the RGB images. Thus, the R, G and
B represented the normalized DN that can be used for calculating vegetation index and quantitative
remote sensing analyses.

Table 1. The VI evaluated in this study. R, G, B indicated normalized red, green, and blue bands,
respectively. Note: α was a constant as 0.667.

Index Name Equation Reference

E1 EXG 2×G−R− B [50,51]
E2 EXR 1.4×R−G [52]
E3 VDVI (2×G−R− B)/(2×G + R + B) [53–56]
E4 EXGR 2×G−R− B− 1.4×R−G [57]
E5 NGRDI (G−R)/(G + R) [55,58]
E6 NGBDI (G− B)/(G + B) [54,59]
E7 CIVE 0.441×R− 0.8818G + 0.385× B + 18.787 [60,61]
E8 CRRI G/R [62–64]
E9 VEG G/RαB1−α [65,66]
E10 COM 0.25EXG + 0.3EXGR + 0.33CIVE + 0.12VEG [67,68]
E11 RGRI G/B [69,70]
E12 VARI (G−R)/(G + R− B) [71,72]
E13 EXB 1.4× B−G [67,73]
E14 MGRVI (G×G−R×R)/(G×G + R×R) [74,75]
E15 WI (G− B)/(R−G) [72,76]
E16 IKAW (R− B)/(R + B) [58,77]
E17 GBDI G − B [52,78]
E18 RGBVI (G × G − B × R)/(G × G + B × R) [79–81]
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The HSV color system converted the red, green, and blue of RGB images into HSV, of which
the hue represents the value from 0 to 1 that corresponds to the color’s position on a color wheel.
As hue increased from 0 to 1, the color transitions from red to orange, yellow, green, cyan, blue,
magenta, and finally back to red. Saturation represented the amount of hue or departure from neutral.
In addition, 0 indicated a neutral shade, whereas 1 indicated the maximum of saturation. The HSV
value represented the maximum value among the RGB components of a specific color.

The scale impacts were mainly due to the different resolution of images, and in this study, we only
focused on the scale impacts of different resolution ascribed from different flight altitudes. To assess
the scale impacts, vegetation index in Table 1 were calculated using the RGB images acquired from
different flight altitudes. Three approaches were conducted and compared, with the consideration of
elimination of the background effects such as disturbance from soil and the color space system. For the
first approach, the 20 plots of subsample images were used directly to build linear regression models
with the measured chlorophyll contents using SPAD-502 at each plot, and images from different flight
altitudes and different dates were separately assessed using the regression function in Matlab 2019b.
The R2 was obtained for each vegetation index and compared with the results from different flight
altitudes. The results using the first approach showed much irregularity that was mainly due to the
impacts of background such as soil and other occlusions. For the second approach, the EXG-EXR
method was applied to extract only green pixels and to reduce the effects of background disturbance
such as soil [52,82]. In this way, the subsample images were classified into green pixels and non-green
pixels. The subsample images were then transformed into binary images where the DN of green
were assigned as 1 and the DN of background were assigned as 0. Thus, the pixel values equal
1 corresponding to green were used to build linear regression models with the measured chlorophyll
contents in each plot. For the third approach, the subsample images were first classified into green
and non-green pixels using the second approach, and the classified images (only green pixels) in
RGB color space system were transformed into HSV color space system, which was an alternative
representation of the RGB color space [83,84]. The HSV model was invented to align with the way
human vision perceives color-making attributes, and the colors of each hue were arranged in a radial
slice, around a central axis of neutral colors which ranged from black at the bottom to white at the
top [85,86]. The subsample images in RGB color space were converted into HSV color space, and the
binary images were used for extraction of VI using the green pixels. Thus, the images in HSV color
space without the effects of background were used to build linear regression models with the measured
chlorophyll contents at each plot using images from five flight altitudes. These three approaches were
used to systematically evaluate and investigate the effects of background such as soil and to assess the
performance of RGB and HSV color space.

2.3.2. Estimating the Chlorophyll Contents Using Machine-Learning Techniques

To precisely predict the chlorophyll contents, the advanced ML methods: BP, SVM and RF were
used to build non-linear relationships. The independent variables were the 18 vegetation indices
and the dependent variable was the chlorophyll content in each plot. For all ML models, 70% of
samples were selected for building models and the remaining 30% of samples were used for validations.
Moreover, the ten-fold cross-validation was adopted to assess model validity. The results using
different ML models were obtained and compared with each other. Furthermore, all samples were
adopted to build non-linear relationships to predict the chlorophyll contents of each pixel using all
subsample images, and the chlorophyll contents at the site scale can be precisely acquired through
this way. To assess the model performance and evaluate the prediction accuracy, the coefficient of
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determination (R2), root mean square error (RMSE), and mean absolute error (MAE) between observed
and simulated yield of maize was applied. The equations are defined as follows:

R2 =

∑n
i=1

(
Mi −M

)
∗

(
Pi − P

)
√∑n

1

(
Mi −M

)2
∗
∑n

1

(
Pi − P

)2
(2)

RMSE =

√
1
n

∑n

1
(Pi −Mi)

2 (3)

MAE =

∑n
i=1|Pi −Mi|

n
(4)

In the equations, R2 is the coefficient of determination, n represents the total number of samples,
Mi represents the true values, and Pi represents the predicted values. M and P represent the average of
M and P, respectively.

3. Results

3.1. The Results of Scale Impacts Using Images from Different Flight Altitudes

The 18 VI were used to build linear relationships with chlorophyll contents in each plot for
different flight altitudes (Tables A2–A4). For the data acquired on 8 July in 2019, the crop binary map
at flight altitude 50 m using EXR-EXG method is shown in Figure A1. The results of R2 between
VI and SPAD values using images acquired from different flight altitudes on 8 July 2019 were each
obtained and compared (Figure 2). It can be concluded that the R2 calculated using E6 and E13
performed better (Figure 2a). The percentage of VI with corresponding of the R2 increased from flight
altitude of 25 to 50 m and gradually decreased from flight altitude of 50 to 125 m were 44% and 50%,
respectively (Figure 2a,b). Thus, the proposed second approach was better than the first approach, and
the significantly increased R2 had indicated that the elimination of effects of background had improved
the accuracy to some extent. The results in Figure 2b had removed the disturbance of background
such as soil. When the HSV color space was applied, the percentage of VI of R2 increased from 25 to
50 m has increased to 100%, which implied that the images in HSV color space system were better
for information extraction than the traditional RGB color space system, especially for estimating the
chlorophyll contents.Sensors 2020, 20, x FOR PEER REVIEW 8 of 23 
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E1–18 (Table 1) using, (a) RGB color space with background; (b) RGB color space with only green pixels;
(c) HSV color space with only green pixels.
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The results shown in polyline forms of five flight altitudes also indicated that the proposed second
approach was better than the first approach (Figure A2). Even though some of the R2 using the first
approach were larger than that of the second approach, the background such as soil had covered the
real phenomenon as the images were acquired at the early growth of maize. The increased percentage
of R2 using the second approach was quite evident. Also, the results in Figure 3c clearly demonstrated
that the HSV was much better than the RGB. The percentage of R2 increased significantly from 20
to 50 m and then decreased when the HSV color space was applied for regression. Thus, the spatial
resolution of images acquired at flight altitude 50 m was better matched with the ground collection
resolution which were least affected by the scale impacts. The HSV color space system may have greater
potential in the analysis of quantitative remote sensing than the common RGB color space system.
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Figure 3. Chlorophyll contents predictions using ML methods. The red, blue, and yellow points are
the predicted values of the chlorophyll contents using BP, SVM, and RF, respectively. (a–d) represents
the results using images acquired on 8 July, 18 August, 1 September, 16 September 2019.

For the experiment conducted on 16 July 2020. The VI were all used to build linear regression
relationships with the values measured by SPAD-502. Again, the results showed that the images
acquired from flight altitude of 50 m were the least influenced by the scale impacts, where the R2

from 50 m were the highest compared with the R2 from other flight altitudes, respectively (Figure A3).
The average values of R2 were 0.040, 0.043, 0.038, 0.031, 0.033 for 25, 50, 75, 100, 125 m, respectively.
Thus, the images acquired from 50 m were least influenced by the scale impacts from different
flight altitudes.

3.2. Performance of Machine-Learning Methods and Chlorophyll Contents Prediction

Since the images acquired from flight altitude of 50 m were least impacted by the scale impacts,
thus the following section was performed using the images acquired at flight altitude of 50 m. The R2
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between chlorophyll contents and VI calculated using RGB images acquired on 8 July, 18 August,
1 September, 16 September 2019 were obtained (Table 2). The dates of 8 July, 18 August, 1 September,
16 September 2019 represented different growth stages of maize, and the R2 between the VI and
chlorophyll contents increased significantly with the growth of maize. The highest value of R2 was
the linear relationship between chlorophyll contents and E5, which had reached 0.845. Thus, the VI
extracted from RGB images had great potential for chlorophyll content estimations.

Table 2. The calculated R2 between VI and chlorophyll contents using images acquired from different
dates. Note: the data represents the time when the used images were acquired and E1–E18 are in
corresponding with the VI in Table 1.

Date E1 E2 E3 E4 E5 E6 E7 E8 E9

8 July 0.182 0.139 0.181 0.169 0.185 0.177 0.178 0.181 0.178
18 August 0.240 0.499 0.210 0.091 0.514 0.362 0.040 0.506 0.530

1 September 0.273 0.648 0.228 0.487 0.629 0.291 0.001 0.581 0.606
16 September 0.471 0.832 0.462 0.722 0.845 0.342 0.047 0.825 0.842

Date E10 E11 E12 E13 E14 E15 E16 E17 E18

8 July 0.179 0.181 0.186 0.170 0.185 0.170 0.202 0.182 0.182
18 August 0.010 0.506 0.733 0.365 0.493 0.729 0.804 0.001 0.211

1 September 0.003 0.581 0.671 0.400 0.622 0.591 0.674 0.263 0.314
16 September 0.103 0.825 0.751 0.450 0.849 0.855 0.838 0.481 0.534

The RGB images acquired on 8 July, 18 August, 1 September, 16 September 2019 were used for
extraction of subsample images using the ROIs of each plot. Then the VI were obtained for each plot,
and the ML methods were applied between the VI and chlorophyll contents from ground measurement.
The models were all trained using 70% of samples and validated using the remaining 30% samples.
The predicted values and actual values of chlorophyll contents were obtained with the ±15% error
lines, and most of the points were within the error lines indicated the predictions using ML methods
were relatively high (Figure 3). The scatter points those were out of the error lines were all predicted
values using BP, which indicated the SVM and RF performed better than the BP.

The detailed assessments of results between actual and predicted chlorophyll contents including
R2, RMSE and MAE for each model and each date are shown in Table 3. The average of R2, RMSE,
and MAE were 0.001, 2.996 and 2.316 for 8 July, 0.337, 3.216 and 2.553 for 18 August, 0.549, 3.357 and
2.642 for 1 September, 0.668, 3.579 and 2.882 for 16 September, respectively. The R2 increased with the
increase of days, and the highest values can be obtained on 16 September. The calculated RMSE and
MAE of all models and all dates were less than 5, thus the ML models were efficient for chlorophyll
contents predictions.

Table 3. The detailed results of R2, RMSE, and MAE for different dates using ML methods.

R2 8 July 18 August 1 September 16 September

BP 0.001 0.454 0.595 0.703
SVM 0.001 0.332 0.587 0.702
RF 0.001 0.227 0.465 0.599

RMSE 8 July 18 August 1 September 16 September

BP 3.868 3.533 3.411 4.600
SVM 2.500 3.575 3.328 3.043
RF 2.622 2.541 3.333 3.095

MAE 8 July 18 August 1 September 16 September

BP 2.973 2.765 2.347 3.701
SVM 1.802 2.757 2.844 2.438
RF 2.174 2.138 2.736 2.509



Sensors 2020, 20, 5130 10 of 22

Since the ML models can be perfectly applied and evaluated, thus the models were rebuilt using
all samples for BP, SVM, and RF, respectively. All samples were used to build models and to predict
the chlorophyll contents using all the VI calculated from RGB images acquired on 16 September 2019
(Figure 4). The results of predicted chlorophyll contents using BP, SVM, and RF for 8 July, 18 August,
1 September are shown in Figures A4–A6, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 10 of 23 

 

increase of days, and the highest values can be obtained on 16 September. The calculated RMSE and 
MAE of all models and all dates were less than 5, thus the ML models were efficient for chlorophyll 
contents predictions. 

Table 3. The detailed results of R2, RMSE, and MAE for different dates using ML methods. 

R2 8 July 18 August 1 September 16 September 
BP 0.001 0.454 0.595 0.703 

SVM 0.001 0.332 0.587 0.702 
RF 0.001 0.227 0.465 0.599 

RMSE 8 July 18 August 1 September 16 September 
BP 3.868 3.533 3.411 4.600 

SVM 2.500 3.575 3.328 3.043 
RF 2.622 2.541 3.333 3.095 

MAE 8 July 18 August 1 September 16 September 
BP 2.973 2.765 2.347 3.701 

SVM 1.802 2.757 2.844 2.438 
RF 2.174 2.138 2.736 2.509 

Since the ML models can be perfectly applied and evaluated, thus the models were rebuilt using 
all samples for BP, SVM, and RF, respectively. All samples were used to build models and to predict 
the chlorophyll contents using all the VI calculated from RGB images acquired on 16 September 2019 
(Figure 4). The results of predicted chlorophyll contents using BP, SVM, and RF for 8 July, 18 August, 
1 September are shown in Figures A4–A6, respectively. 

 
Sensors 2020, 20, x FOR PEER REVIEW 11 of 23 

 

  

 
Figure 4. The predicted chlorophyll contents values by BP, SVM, and RF models using images 
acquired on 16 September 2019. Note: (a–c) represented the predicted chlorophyll contents using BP, 
SVM and RF, respectively. 

4. Discussion 

4.1. Limitations in Assessing the Sscale Impacts 

In this study, three approaches were applied to assess the scale effects from different flight 
altitudes with consideration of the disturbance of background (soil and grass) and color space system. 
The result was in accordance with previous studies that the second approach showed more 
regularity, and the precision had improved significantly as the applied method has been successfully 
conducted for classifying and extracting the green pixels [52,82]. However, the introduced approach 
can hardly completely exclude the interference of background, in other words, the extracted green 
pixels were not pure enough to have only including the green vegetation. Thus, the uncertainty from 
the background of soil remained and may have influenced the reliability of results to some extent. 
Meanwhile, the disturbance of grass can hardly be excluded as they were green pixels in pictures. 
The bidirectional reflectance distribution function (BRDF) has also been used for modeling light 
trapping in solar cells and it is commonly used for corrections of different angles of solar radiation. 
BRDF effect was commonly assessed in quantitative remote sensing. Since all images acquired in this 
study were almost strictly vertical to the ground and the imaging conditions were the same for image 
acquisitions. Thus, the BRDF was not investigated or assessed in this study and the impacts from 
BRDF can be ignored. We have focused on the assessments and evaluations of scale impacts of 

Figure 4. The predicted chlorophyll contents values by BP, SVM, and RF models using images acquired
on 16 September 2019. Note: (a–c) represented the predicted chlorophyll contents using BP, SVM and
RF, respectively.



Sensors 2020, 20, 5130 11 of 22

4. Discussion

4.1. Limitations in Assessing the Sscale Impacts

In this study, three approaches were applied to assess the scale effects from different flight altitudes
with consideration of the disturbance of background (soil and grass) and color space system. The result
was in accordance with previous studies that the second approach showed more regularity, and the
precision had improved significantly as the applied method has been successfully conducted for
classifying and extracting the green pixels [52,82]. However, the introduced approach can hardly
completely exclude the interference of background, in other words, the extracted green pixels were not
pure enough to have only including the green vegetation. Thus, the uncertainty from the background
of soil remained and may have influenced the reliability of results to some extent. Meanwhile, the
disturbance of grass can hardly be excluded as they were green pixels in pictures. The bidirectional
reflectance distribution function (BRDF) has also been used for modeling light trapping in solar
cells and it is commonly used for corrections of different angles of solar radiation. BRDF effect was
commonly assessed in quantitative remote sensing. Since all images acquired in this study were
almost strictly vertical to the ground and the imaging conditions were the same for image acquisitions.
Thus, the BRDF was not investigated or assessed in this study and the impacts from BRDF can be
ignored. We have focused on the assessments and evaluations of scale impacts of different resolutions
ascribed from different flight altitudes [87,88]. Without considering the BRDF, the RGB images from
flight altitude of 50 m will better fit the ground samplings.

The lighting conditions were crucial factors influencing the quantitative remote sensing. In this
study, the impacts from lighting conditions were limited as we have conducted two main processes
before the assessment of scale impacts. First, the weather condition for acquiring images from the
different flight altitudes were the same, thus, the lighting conditions during image acquisition was
the same as we controlled the total flight time within 30 min. Thus, the only difference was the
flight altitude, which was what we want to assess and evaluate. Secondly, we have converted the
original DN values into normalized RGB values to eliminate the impacts of different lighting conditions.
The scale impacts from different flight altitudes were of geometry, and the influence from different
lighting conditions were limited. Therefore, we have enough reason to believe that the disturbance of
lighting conditions for image acquisition can be eliminated to the least. However, the slight impacts
of the lighting conditions will remain even though we have strictly controlled the total time of flight
duration and the RGB values were normalized. However, the situations were different for assessing the
estimations of chlorophyll contents using combined multi-vegetation index (VI) and ML. The lighting
conditions for data acquisition were crucial for acquiring images of different days. The weather should
be sunny, which is the basic requirement for both satellite and UAV quantitative remote sensing. If the
weather conditions were different for different days of data acquisition, the impacts will be obvious.
Thus, we suggest that the weather is better for assessing scale impacts and it should be sunny for
acquiring the data for assessing the growth condition of maize.

The detailed parameters of the DJI UAV platform were introduced in Section 2.2.1. The spatial
resolutions were 0.006, 0.018, 0.021, 0.028, 0.034 m for 25, 50, 75, 100 and 125 m, respectively. Since the
flight altitudes of 50 m of this specific DJI platform were least influenced by the scale impacts, which
meant that the spatial resolution of 0.018 m can precisely match the ground sampling of chlorophyll
contents measured using SPAD-502. Thus, it is highly recommended that the spatial resolution should
be optimized as 0.018 m to reveal the chlorophyll contents with the combined ground measurement
using SPAD-502. Since the resolution of this camera mounted on DJI platform were 5472 × 3648 pixels,
the flight altitudes should be higher than 50 m for camera with higher resolutions and the flight
altitudes should be lower for camera with lower resolutions. The findings of this study may be helpful
in future related agricultural and ecological studies such as monitoring the growth and predicting the
yield of maize.
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4.2. Machine-Learning-Based Chlorophyll Content Estimation

ML methods were widely used for regression and classification in RS domains as it can precisely
catch the dynamic changes of the relationships between variables and input-output mapping. In this
study, the BP, SVM, and RF were used for chlorophyll contents predictions using the VI calculated
from RGB images acquired from flight altitude of 50 m that were least influenced by scale impacts.
With 70% of ground samples for modeling and the remaining 30% of the sample for validating, the ML
performed perfectly well and most of the predicted chlorophyll contents were within the expected
±15 error lines. However, the errors of some predicted values were relatively large using BP and the
results had reached out of the error lines, which indicated that the errors of predicted values were
relatively large. The SVM and RF models were better than the BP model, and this was due to the BP
algorithm had disadvantages in balancing the prediction ability as it used a gradient steepest descent
method, which may converge to local minimum [89,90]. Also, the BP may have the over-learning issue
that may result in the “overfitting” problem [91,92]. The advanced SVM and RF models can balance
the errors, obtaining robust and reliable results [93,94]. Thus, the SVM and RF models are suggested in
application of agricultural yield predictions.

With the development of more advanced ML techniques such as deep learning (DL), the solutions
of regression and classification can be efficiently solved. The DL method can build more layers of
complex fully connected deep models in predicting regressions. Among various DL methods, the
convolutional neural network (CNN) is among the most common used in image processing. Thus, DL
variants should be considered for agricultural and ecological applications (regression and predictions).

5. Conclusions

In this study, the scale impacts were first assessed using UAV RGB images acquired from five
different flight altitudes and chlorophyll contents measured by SPAD-502. Three approaches were
proposed by considering the effects of background and impacts of color space system, then the linear
regression between the VI and chlorophyll contents of each plot were conducted. We found that the
scale impacts of images acquired at the flight altitude of 50 m (spatial resolution 0.018 m) using DJI UAV
platform with this specific camera (5472 × 3648 pixels) were least. Also, the HSV performed better than
the traditional RGB and it can be used for information extraction. Three commonly used ML methods
were adopted to conduct the pixel-based chlorophyll contents prediction at different growth stages of
maize, and the SVM and RF performed better than the BP. We had provided a complete solution for
predicting chlorophyll contents using combined UAV-RS and ML, and it is highly recommended that
the integration of ML technology (SVM and RF) and UAV-based RGB images (acquired from 50 m for
this DJI platform) should be adopted and applied for chlorophyll contents predictions in agricultural
and ecological applications.
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Appendix A

Table A1. The spatial distribution of fertilizer at 20 plots during the growth of maize. The NPK
meant different combinations of fertilizers, and N represented the nitrogenous fertilizer, P represented
the phosphate fertilizer, K represented the potassium fertilizer, respectively. The number after NPK
represents the actual multiple of fertilizer fertilizers, and the numbers in brackets were the number of
plots in corresponding with the plots shown in Figure A1.

Column 1 Column 2 Column 3 Column 4

Row 1 N2+straw (4) N3P3K1 (3) N3P1K1 (2) N1P1K2 (1)
Row 2 N2+Organic fertilizer (8) N3P2K1 (7) N3P3K2 (6) N1P1K1 (5)
Row 3 N3+straw (12) N4P3K1 (11) N2P2K2 (10) N1P2K1 (9)
Row 4 N3+Organic fertilizer (16) N4P2K1 (15) N2P1K1 (14) N1P3K1 (13)
Row 5 N4P2K2 (20) N4P1K1 (19) N2P2K1 (18) N2P3K1 (17)

Table A2. The R2 between vegetation indices calculated from RGB and chlorophyll contents using the
images with background.

RGB Index with Background 25 m 50 m 75 m 100 m 125 m

index1 0.146 0.154 0.133 0.114 0.096
index2 0.100 0.119 0.121 0.096 0.092
index3 0.148 0.171 0.156 0.144 0.117
index4 0.115 0.130 0.125 0.102 0.094
index5 0.109 0.129 0.133 0.109 0.093
index6 0.203 0.173 0.159 0.166 0.126
index7 0.143 0.152 0.132 0.113 0.096
index8 0.105 0.141 0.134 0.130 0.104
index9 0.102 0.130 0.143 0.122 0.115

index10 0.124 0.137 0.127 0.106 0.095
index11 0.105 0.141 0.134 0.130 0.104
index12 0.105 0.126 0.131 0.106 0.091
index13 0.214 0.199 0.149 0.137 0.098
index14 0.102 0.127 0.137 0.121 0.096
index15 0.057 0.057 0.002 0.024 0.079
index16 0.007 0.002 0.081 0.067 0.048
index17 0.148 0.171 0.156 0.144 0.117
index18 0.147 0.153 0.132 0.114 0.096

Table A3. The R2 between vegetation indices calculated from RGB and chlorophyll contents using the
images without background.

RGB Index without Background 25 m 50 m 75 m 100 m 125 m

index1 0.172 0.181 0.160 0.142 0.119
index2 0.008 0.058 0.046 0.059 0.042
index3 0.180 0.189 0.162 0.144 0.118
index4 0.188 0.206 0.162 0.141 0.116
index5 0.187 0.181 0.153 0.142 0.118
index6 0.153 0.176 0.166 0.141 0.119
index7 0.157 0.156 0.129 0.122 0.099
index8 0.166 0.163 0.136 0.127 0.104
index9 0.165 0.162 0.134 0.124 0.102

index10 0.157 0.157 0.130 0.122 0.099
index11 0.166 0.163 0.136 0.127 0.104
index12 0.192 0.181 0.150 0.142 0.117
index13 0.123 0.131 0.062 0.084 0.075
index14 0.187 0.181 0.153 0.142 0.118
index15 0.120 0.157 0.153 0.129 0.115
index16 0.151 0.179 0.087 0.127 0.107
index17 0.172 0.180 0.159 0.142 0.119
index18 0.181 0.189 0.162 0.144 0.118
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Table A4. The R2 between vegetation indices calculated from HSV and chlorophyll contents using the
images without background.

HSV Index without Background 25 m 50 m 75 m 100 m 125 m

index1 0.149 0.179 0.166 0.155 0.159
index2 0.151 0.179 0.167 0.154 0.163
index3 0.151 0.179 0.167 0.154 0.163
index4 0.151 0.179 0.167 0.154 0.163
index5 0.117 0.174 0.157 0.146 0.166
index6 0.109 0.170 0.153 0.140 0.163
index7 0.145 0.175 0.164 0.150 0.158
index8 0.145 0.175 0.164 0.150 0.158
index9 0.150 0.177 0.166 0.151 0.162
index10 0.150 0.177 0.166 0.151 0.162
index11 0.150 0.177 0.166 0.151 0.162
index12 0.150 0.177 0.166 0.151 0.162
index13 0.150 0.177 0.166 0.151 0.162
index14 0.150 0.177 0.166 0.151 0.162
index15 0.149 0.174 0.165 0.148 0.162
index16 0.109 0.170 0.153 0.140 0.163
index17 0.064 0.164 0.137 0.126 0.163
index18 0.149 0.174 0.165 0.148 0.162

Sensors 2020, 20, x FOR PEER REVIEW 15 of 23 

 

Table A4. The R2 between vegetation indices calculated from HSV and chlorophyll contents using the 
images without background. 

HSV Index without Background 25 m 50 m 75 m 100 m 125 m 
index1 0.149 0.179 0.166 0.155 0.159 
index2 0.151 0.179 0.167 0.154 0.163 
index3 0.151 0.179 0.167 0.154 0.163 
index4 0.151 0.179 0.167 0.154 0.163 
index5 0.117 0.174 0.157 0.146 0.166 
index6 0.109 0.170 0.153 0.140 0.163 
index7 0.145 0.175 0.164 0.150 0.158 
index8 0.145 0.175 0.164 0.150 0.158 
index9 0.150 0.177 0.166 0.151 0.162 

index10 0.150 0.177 0.166 0.151 0.162 
index11 0.150 0.177 0.166 0.151 0.162 
index12 0.150 0.177 0.166 0.151 0.162 
index13 0.150 0.177 0.166 0.151 0.162 
index14 0.150 0.177 0.166 0.151 0.162 
index15 0.149 0.174 0.165 0.148 0.162 
index16 0.109 0.170 0.153 0.140 0.163 
index17 0.064 0.164 0.137 0.126 0.163 
index18 0.149 0.174 0.165 0.148 0.162 

 
Figure A1. Crop binary map at flight altitude at 50 m using EXR-EXG method. 

 
Figure A2. Polyline of R2 between index and chlorophyll contents using E1-E18. (a) RGB color space 
system with background; (b) RGB color space system without background; (c) HSV color space 
system without background. 

Figure A1. Crop binary map at flight altitude at 50 m using EXR-EXG method.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 23 

 

Table A4. The R2 between vegetation indices calculated from HSV and chlorophyll contents using the 
images without background. 

HSV Index without Background 25 m 50 m 75 m 100 m 125 m 
index1 0.149 0.179 0.166 0.155 0.159 
index2 0.151 0.179 0.167 0.154 0.163 
index3 0.151 0.179 0.167 0.154 0.163 
index4 0.151 0.179 0.167 0.154 0.163 
index5 0.117 0.174 0.157 0.146 0.166 
index6 0.109 0.170 0.153 0.140 0.163 
index7 0.145 0.175 0.164 0.150 0.158 
index8 0.145 0.175 0.164 0.150 0.158 
index9 0.150 0.177 0.166 0.151 0.162 

index10 0.150 0.177 0.166 0.151 0.162 
index11 0.150 0.177 0.166 0.151 0.162 
index12 0.150 0.177 0.166 0.151 0.162 
index13 0.150 0.177 0.166 0.151 0.162 
index14 0.150 0.177 0.166 0.151 0.162 
index15 0.149 0.174 0.165 0.148 0.162 
index16 0.109 0.170 0.153 0.140 0.163 
index17 0.064 0.164 0.137 0.126 0.163 
index18 0.149 0.174 0.165 0.148 0.162 

 
Figure A1. Crop binary map at flight altitude at 50 m using EXR-EXG method. 

 
Figure A2. Polyline of R2 between index and chlorophyll contents using E1-E18. (a) RGB color space 
system with background; (b) RGB color space system without background; (c) HSV color space 
system without background. 

Figure A2. Polyline of R2 between index and chlorophyll contents using E1-E18. (a) RGB color space
system with background; (b) RGB color space system without background; (c) HSV color space system
without background.



Sensors 2020, 20, 5130 15 of 22

Sensors 2020, 20, x FOR PEER REVIEW 16 of 23 

 

 
Figure A3. The linear regression results between vegetation index and measured values using SPAD-502. 

 

 

Figure A3. The linear regression results between vegetation index and measured values using SPAD-502.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 23 

 

 
Figure A3. The linear regression results between vegetation index and measured values using SPAD-502. 

 

 
Sensors 2020, 20, x FOR PEER REVIEW 17 of 23 

 

 
Figure A4. The predicted chlorophyll contents values using BP, SVM, and RF models using images 
acquired on 8 July 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM, and RF, 
respectively. 

 

 

Figure A4. The predicted chlorophyll contents values using BP, SVM, and RF models using images
acquired on 8 July 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM, and
RF, respectively.



Sensors 2020, 20, 5130 16 of 22

Sensors 2020, 20, x FOR PEER REVIEW 17 of 23 

 

 
Figure A4. The predicted chlorophyll contents values using BP, SVM, and RF models using images 
acquired on 8 July 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM, and RF, 
respectively. 

 

 
Sensors 2020, 20, x FOR PEER REVIEW 18 of 23 

 

 
Figure A5. The predicted chlorophyll contents values using BP, SVM, and RF models using images 
acquired on 18 August 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM, and 
RF, respectively. 

 

 

Figure A5. The predicted chlorophyll contents values using BP, SVM, and RF models using images
acquired on 18 August 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM, and
RF, respectively.



Sensors 2020, 20, 5130 17 of 22

Sensors 2020, 20, x FOR PEER REVIEW 18 of 23 

 

 
Figure A5. The predicted chlorophyll contents values using BP, SVM, and RF models using images 
acquired on 18 August 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM, and 
RF, respectively. 

 

 
Sensors 2020, 20, x FOR PEER REVIEW 19 of 23 

 

 
Figure A6. The predicted chlorophyll contents values using BP, SVM, and RF models using images 
acquired on 1 September 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM, 
and RF, respectively. 

Reference 

1. FAO; IFAD; UNICEF; WFP; WHO. The state of food security and nutrition in the world 2017. In Building 
Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2019. 

2. Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. 
Environ. Res. Lett. 2007, 2, 014002. 

3. Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The science of food security. NPJ Sci. Food 2018, 
2, 1–8. 

4. Wei, X.; Declan, C.; Erda, L.; Yinlong, X.; Hui, J.; Jinhe, J.; Ian, H.; Yan, L. Future cereal production in China: 
The interaction of climate change, water availability and socio-economic scenarios. Glob. Environ. Chang. 
2009, 19, 34–44. 

5. Lv, S.; Yang, X.; Lin, X.; Liu, Z.; Zhao, J.; Li, K.; Mu, C.; Chen, X.; Chen, F.; Mi, G. Yield gap simulations 
using ten maize cultivars commonly planted in Northeast China during the past five decades. Agric. For. 
Meteorol. 2015, 205, 1–10. 

6. Liu, Z.; Yang, X.; Hubbard, K.G.; Lin, X. Maize potential yields and yield gaps in the changing climate of 
northeast China. Glob. Chang. Biol. 2012, 18, 3441–3454. 

7. Huang, M.; Wang, J.; Wang, B.; Liu, D.L.; Yu, Q.; He, D.; Wang, N.; Pan, X. Optimizing sowing window 
and cultivar choice can boost China’s maize yield under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 
2020, 15, 024015. 

8. Kar, G.; Verma, H.N. Phenology based irrigation scheduling and determination of crop coefficient of winter 
maize in rice fallow of eastern India. Agric. Water Manag. 2005, 75, 169–183. 

9. Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. Temporal and spatial changes of maize yield potentials and yield 
gaps in the past three decades in China. Agric. Ecosyst. Environ. 2015, 208, 12–20. 

10. Liu, Z.; Yang, X.; Lin, X.; Hubbard, K.G.; Lv, S.; Wang, J. Maize yield gaps caused by non-controllable, 
agronomic, and socioeconomic factors in a changing climate of Northeast China. Sci. Total Environ. 2016, 
541, 756–764. 

11. Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. Maize growing duration was prolonged across China in the past 
three decades under the combined effects of temperature, agronomic management, and cultivar shift. Glob. 
Chang. Biol. 2014, 20, 3686–3699. 

12. Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production 
strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. 

13. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band 
vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote 
Sens. Environ. 2002, 81, 416–426. 

Figure A6. The predicted chlorophyll contents values using BP, SVM, and RF models using images
acquired on 1 September 2019. (a–c) represented the predicted chlorophyll contents using BP, SVM,
and RF, respectively.



Sensors 2020, 20, 5130 18 of 22

References

1. FAO; IFAD; UNICEF; WFP; WHO. The state of food security and nutrition in the world 2017. In Building
Climate Resilience for Food Security and Nutrition; FAO: Rome, Italy, 2019.

2. Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming.
Environ. Res. Lett. 2007, 2, 014002. [CrossRef]

3. Cole, M.B.; Augustin, M.A.; Robertson, M.J.; Manners, J.M. The science of food security. NPJ Sci. Food 2018,
2, 1–8. [CrossRef] [PubMed]

4. Wei, X.; Declan, C.; Erda, L.; Yinlong, X.; Hui, J.; Jinhe, J.; Ian, H.; Yan, L. Future cereal production in China:
The interaction of climate change, water availability and socio-economic scenarios. Glob. Environ. Chang.
2009, 19, 34–44. [CrossRef]

5. Lv, S.; Yang, X.; Lin, X.; Liu, Z.; Zhao, J.; Li, K.; Mu, C.; Chen, X.; Chen, F.; Mi, G. Yield gap simulations using
ten maize cultivars commonly planted in Northeast China during the past five decades. Agric. For. Meteorol.
2015, 205, 1–10. [CrossRef]

6. Liu, Z.; Yang, X.; Hubbard, K.G.; Lin, X. Maize potential yields and yield gaps in the changing climate of
northeast China. Glob. Chang. Biol. 2012, 18, 3441–3454. [CrossRef]

7. Huang, M.; Wang, J.; Wang, B.; Liu, D.L.; Yu, Q.; He, D.; Wang, N.; Pan, X. Optimizing sowing window and
cultivar choice can boost China’s maize yield under 1.5 ◦C and 2 ◦C global warming. Environ. Res. Lett.
2020, 15, 024015. [CrossRef]

8. Kar, G.; Verma, H.N. Phenology based irrigation scheduling and determination of crop coefficient of winter
maize in rice fallow of eastern India. Agric. Water Manag. 2005, 75, 169–183. [CrossRef]

9. Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. Temporal and spatial changes of maize yield potentials and yield
gaps in the past three decades in China. Agric. Ecosyst. Environ. 2015, 208, 12–20. [CrossRef]

10. Liu, Z.; Yang, X.; Lin, X.; Hubbard, K.G.; Lv, S.; Wang, J. Maize yield gaps caused by non-controllable,
agronomic, and socioeconomic factors in a changing climate of Northeast China. Sci. Total Environ. 2016, 541,
756–764. [CrossRef]

11. Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. Maize growing duration was prolonged across China in the past three
decades under the combined effects of temperature, agronomic management, and cultivar shift. Glob. Chang.
Biol. 2014, 20, 3686–3699. [CrossRef]

12. Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies:
An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [CrossRef]

13. Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation
indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens.
Environ. 2002, 81, 416–426. [CrossRef]

14. Wood, C.; Reeves, D.; Himelrick, D. Relationships between Chlorophyll Meter Readings and Leaf Chlorophyll
Concentration, N Status, and Crop Yield: A Review. Available online: https://www.agronomysociety.org.nz/

uploads/94803/files/1993_1._Chlorophyll_relationships_-_a_review.pdf (accessed on 8 September 2020).
15. Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll

concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [CrossRef]
16. Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter.

Photosynth. Res. 1995, 46, 467–472. [CrossRef] [PubMed]
17. Villa, F.; Bronzi, D.; Bellisai, S.; Boso, G.; Shehata, A.B.; Scarcella, C.; Tosi, A.; Zappa, F.; Tisa, S.; Durini, D.

SPAD imagers for remote sensing at the single-photon level. In Electro-Optical Remote Sensing, Photonic
Technologies, and Applications VI; International Society for Optics and Photonics: Bellingham, WA, USA,
2012; p. 85420G.

18. Zhengjun, Q.; Haiyan, S.; Yong, H.; Hui, F. Variation rules of the nitrogen content of the oilseed rape at
growth stage using SPAD and visible-NIR. Trans. Chin. Soc. Agric. Eng. 2007, 23, 150–154.

19. Wang, Y.-W.; Dunn, B.L.; Arnall, D.B.; Mao, P.-S. Use of an active canopy sensor and SPAD chlorophyll meter
to quantify geranium nitrogen status. HortScience 2012, 47, 45–50. [CrossRef]

20. Hawkins, T.S.; Gardiner, E.S.; Comer, G.S. Modeling the relationship between extractable chlorophyll and
SPAD-502 readings for endangered plant species research. J. Nat. Conserv. 2009, 17, 123–127. [CrossRef]

http://dx.doi.org/10.1088/1748-9326/2/1/014002
http://dx.doi.org/10.1038/s41538-018-0021-9
http://www.ncbi.nlm.nih.gov/pubmed/31304264
http://dx.doi.org/10.1016/j.gloenvcha.2008.10.006
http://dx.doi.org/10.1016/j.agrformet.2015.02.008
http://dx.doi.org/10.1111/j.1365-2486.2012.02774.x
http://dx.doi.org/10.1088/1748-9326/ab66ca
http://dx.doi.org/10.1016/j.agwat.2005.01.002
http://dx.doi.org/10.1016/j.agee.2015.04.020
http://dx.doi.org/10.1016/j.scitotenv.2015.08.145
http://dx.doi.org/10.1111/gcb.12684
http://dx.doi.org/10.1093/jxb/erh196
http://dx.doi.org/10.1016/S0034-4257(02)00018-4
https://www.agronomysociety.org.nz/uploads/94803/files/1993_1._Chlorophyll_relationships_-_a_review.pdf
https://www.agronomysociety.org.nz/uploads/94803/files/1993_1._Chlorophyll_relationships_-_a_review.pdf
http://dx.doi.org/10.1007/s11120-006-9077-5
http://dx.doi.org/10.1007/BF00032301
http://www.ncbi.nlm.nih.gov/pubmed/24301641
http://dx.doi.org/10.21273/HORTSCI.47.1.45
http://dx.doi.org/10.1016/j.jnc.2008.12.007


Sensors 2020, 20, 5130 19 of 22

21. Giustolisi, G.; Mita, R.; Palumbo, G. Verilog-A modeling of SPAD statistical phenomena. In Proceedings of the
2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15−18 May 2011;
pp. 773–776.

22. Aragon, B.; Johansen, K.; Parkes, S.; Malbeteau, Y.; Al-Mashharawi, S.; Al-Amoudi, T.; Andrade, C.F.;
Turner, D.; Lucieer, A.; McCabe, M.F. A Calibration Procedure for Field and UAV-Based Uncooled Thermal
Infrared Instruments. Sensors 2020, 20, 3316. [CrossRef]

23. Guo, Y.; Senthilnath, J.; Wu, W.; Zhang, X.; Zeng, Z.; Huang, H. Radiometric calibration for multispectral
camera of different imaging conditions mounted on a UAV platform. Sustainability 2019, 11, 978. [CrossRef]

24. Bilal, D.K.; Unel, M.; Yildiz, M.; Koc, B. Realtime Localization and Estimation of Loads on Aircraft Wings
from Depth Images. Sensors 2020, 20, 3405. [CrossRef]

25. Guo, Y.; Guo, J.; Liu, C.; Xiong, H.; Chai, L.; He, D. Precision Landing Test and Simulation of the Agricultural
UAV on Apron. Sensors 2020, 20, 3369. [CrossRef] [PubMed]

26. Senthilnath, J.; Dokania, A.; Kandukuri, M.; Ramesh, K.N.; Anand, G.; Omkar, S.N. Detection of tomatoes
using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosyst. Eng. 2016, 146,
16–32. [CrossRef]

27. Riccardi, M.; Mele, G.; Pulvento, C.; Lavini, A.; d’Andria, R.; Jacobsen, S.-E. Non-destructive evaluation
of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB
image components. Photosynth. Res. 2014, 120, 263–272. [CrossRef] [PubMed]

28. Lee, H.-C. Introduction to Color Imaging Science; Cambridge University Press: Cambridge, UK, 2005.
29. Niu, Y.; Zhang, L.; Zhang, H.; Han, W.; Peng, X. Estimating above-ground biomass of maize using features

derived from UAV-based RGB imagery. Remote Sens. 2019, 11, 1261. [CrossRef]
30. Kefauver, S.C.; Vicente, R.; Vergara-Díaz, O.; Fernandez-Gallego, J.A.; Kerfal, S.; Lopez, A.; Melichar, J.P.;

Serret Molins, M.D.; Araus, J.L. Comparative UAV and field phenotyping to assess yield and nitrogen use
efficiency in hybrid and conventional barley. Front. Plant Sci. 2017, 8, 1733. [CrossRef]

31. Senthilnath, J.; Kandukuri, M.; Dokania, A.; Ramesh, K. Application of UAV imaging platform for vegetation
analysis based on spectral-spatial methods. Comput. Electron. Agric. 2017, 140, 8–24. [CrossRef]

32. Ashapure, A.; Jung, J.; Chang, A.; Oh, S.; Maeda, M.; Landivar, J. A Comparative Study of RGB and
Multispectral Sensor-Based Cotton Canopy Cover Modelling Using Multi-Temporal UAS Data. Remote Sens.
2019, 11, 2757. [CrossRef]

33. Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M.; Gay, P. UAV and Machine Learning Based Refinement of a
Satellite-Driven Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [CrossRef]

34. Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Onion biomass monitoring using UAV-based RGB
imaging. Precis. Agric. 2018, 19, 840–857. [CrossRef]

35. Matese, A.; Gennaro, S.D. Practical Applications of a Multisensor UAV Platform Based on Multispectral,
Thermal and RGB High Resolution Images in Precision Viticulture. Agriculture 2018, 8, 116. [CrossRef]

36. Dong-Wook, K.; Yun, H.; Sang-Jin, J.; Young-Seok, K.; Suk-Gu, K.; Won, L.; Hak-Jin, K. Modeling and Testing
of Growth Status for Chinese Cabbage and White Radish with UAV-Based RGB Imagery. Remote Sens. 2018,
10, 563.

37. Barrero, O.; Perdomo, S.A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice
fields. Precis. Agric. 2018, 19, 809–822. [CrossRef]

38. Das, J.; Cross, G.; Qu, C.; Makineni, A.; Tokekar, P.; Mulgaonkar, Y.; Kumar, V. Devices, systems, and methods
for automated monitoring enabling precision agriculture. In Proceedings of the 2015 IEEE International
Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015;
pp. 462–469.

39. Berni, J.A.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing
for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47,
722–738. [CrossRef]

40. Primicerio, J.; Gennaro, S.F.D.; Fiorillo, E.; Genesio, L.; Vaccari, F.P. A flexible unmanned aerial vehicle for
precision agriculture. Precis. Agric. 2012, 13, 517–523. [CrossRef]

41. Miao, Y.; Mulla, D.J.; Randall, G.W.; Vetsch, J.A.; Vintila, R. Predicting chlorophyll meter readings with aerial
hyperspectral remote sensing for in-season site-specific nitrogen management of corn. Precis. Agric. 2007, 7,
635–641.

http://dx.doi.org/10.3390/s20113316
http://dx.doi.org/10.3390/su11040978
http://dx.doi.org/10.3390/s20123405
http://dx.doi.org/10.3390/s20123369
http://www.ncbi.nlm.nih.gov/pubmed/32545886
http://dx.doi.org/10.1016/j.biosystemseng.2015.12.003
http://dx.doi.org/10.1007/s11120-014-9970-2
http://www.ncbi.nlm.nih.gov/pubmed/24442792
http://dx.doi.org/10.3390/rs11111261
http://dx.doi.org/10.3389/fpls.2017.01733
http://dx.doi.org/10.1016/j.compag.2017.05.027
http://dx.doi.org/10.3390/rs11232757
http://dx.doi.org/10.3390/s20092530
http://dx.doi.org/10.1007/s11119-018-9560-y
http://dx.doi.org/10.3390/agriculture8070116
http://dx.doi.org/10.1007/s11119-017-9558-x
http://dx.doi.org/10.1109/TGRS.2008.2010457
http://dx.doi.org/10.1007/s11119-012-9257-6


Sensors 2020, 20, 5130 20 of 22

42. Wang, J.; Xu, Y.; Wu, G. The integration of species information and soil properties for hyperspectral estimation
of leaf biochemical parameters in mangrove forest. Ecol. Indic. 2020, 115, 106467. [CrossRef]

43. Jin, X.; Zarco-Tejada, P.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.;
Li, Z.; Ming, B. High-throughput estimation of crop traits: A review of ground and aerial phenotyping
platforms. IEEE Geosci. Remote Sens. Mag. 2020, 20, 1–32. [CrossRef]

44. Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing
and crop models. Eur. J. Agron. 2018, 92, 141–152. [CrossRef]

45. Lillicrap, T.P.; Santoro, A.; Marris, L.; Akerman, C.J.; Hinton, G. Backpropagation and the brain. Nat. Rev.
Neuroence 2020, 21, 335–346. [CrossRef]

46. Kosson, A.; Chiley, V.; Venigalla, A.; Hestness, J.; Köster, U. Pipelined Backpropagation at Scale: Training
Large Models without Batches. arXiv 2020, arXiv:2003.11666.

47. Pix4D SA. Pix4Dmapper 4.1 User Manual; Pix4d SA: Lausanne, Switzerland, 2017.
48. Da Silva, D.C.; Toonstra, G.W.A.; Souza, H.L.S.; Pereira, T.Á.J. Qualidade de ortomosaicos de imagens de

VANT processados com os softwares APS, PIX4D e PHOTOSCAN. V Simpósio Brasileiro de Ciências Geodésicas
e Tecnologias da Geoinformação Recife-PE 2014, 1, 12–14.

49. Barbasiewicz, A.; Widerski, T.; Daliga, K. The Analysis of the Accuracy of Spatial Models Using
Photogrammetric Software: Agisoft Photoscan and Pix4D. In E3S Web of Conferences; EDP Sciences: Les Ulis,
France, 2018; p. 12.

50. Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D. Color indices for weed identification under
various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [CrossRef]

51. Zhang, W.; Wang, Z.; Wu, H.; Song, X.; Liao, J. Study on the Monitoring of Karst Plateau Vegetation with
UAV Aerial Photographs and Remote Sensing Images. IOP Conf. Ser. Earth Environ. Sci. 2019, 384, 012188.
[CrossRef]

52. Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications.
Comput. Electron. Agric. 2008, 63, 282–293. [CrossRef]

53. Hakala, T.; Suomalainen, J.; Peltoniemi, J.I. Acquisition of bidirectional reflectance factor dataset using a
micro unmanned aerial vehicle and a consumer camera. Remote Sens. 2010, 2, 819–832. [CrossRef]

54. Xiaoqin, W.; Miaomiao, W.; Shaoqiang, W.; Yundong, W. Extraction of vegetation information from visible
unmanned aerial vehicle images. Trans. Chin. Soc. Agric. Eng. 2015, 31, 5.

55. Wan, L.; Li, Y.; Cen, H.; Zhu, J.; Yin, W.; Wu, W.; Zhu, H.; Sun, D.; Zhou, W.; He, Y. Combining UAV-based
vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sens. 2018,
10, 1484. [CrossRef]

56. Neto, J.C. A Combined Statistical-Soft Computing Approach for Classification and Mapping Weed Species
in Minimum-Tillage Systems. Ph.D. Thesis, The University of Nebraska-Lincoln, Lincoln, NE, USA, 2004.

57. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation
fraction. Remote Sens. Environ. 2002, 80, 76–87. [CrossRef]

58. Zhang, X.; Zhang, F.; Qi, Y.; Deng, L.; Wang, X.; Yang, S. New research methods for vegetation information
extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV). Int. J. Appl.
Earth Obs. Geoinf. 2019, 78, 215–226. [CrossRef]

59. Beniaich, A.; Naves Silva, M.L.; Avalos, F.A.P.; Menezes, M.D.; Candido, B.M. Determination of vegetation
cover index under different soil management systems of cover plants by using an unmanned aerial vehicle
with an onboard digital photographic camera. Semin. Cienc. Agrar. 2019, 40, 49–66. [CrossRef]

60. Ponti; Moacir, P. Segmentation of Low-Cost Remote Sensing Images Combining Vegetation Indices and
Mean Shift. IEEE Geoence Remote Sens. Lett. 2013, 10, 67–70. [CrossRef]

61. Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666.
[CrossRef]

62. Joao, T.; Joao, G.; Bruno, M.; Joao, H. Indicator-based assessment of post-fire recovery dynamics using
satellite NDVI time-series. Ecol. Indic. 2018, 89, 199–212. [CrossRef]

63. Jayaraman, V.; Srivastava, S.K.; Kumaran Raju, D.; Rao, U.R. Total solution approach using IRS-1C and
IRS-P3 data. IEEE Trans. Geoence Remote Sens. 2000, 38, 587–604. [CrossRef]

64. Hague, T.; Tillett, N.; Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric.
2006, 7, 21–32. [CrossRef]

http://dx.doi.org/10.1016/j.ecolind.2020.106467
http://dx.doi.org/10.1109/MGRS.2020.2998816
http://dx.doi.org/10.1016/j.eja.2017.11.002
http://dx.doi.org/10.1038/s41583-020-0277-3
http://dx.doi.org/10.13031/2013.27838
http://dx.doi.org/10.1088/1755-1315/384/1/012188
http://dx.doi.org/10.1016/j.compag.2008.03.009
http://dx.doi.org/10.3390/rs2030819
http://dx.doi.org/10.3390/rs10091484
http://dx.doi.org/10.1016/S0034-4257(01)00289-9
http://dx.doi.org/10.1016/j.jag.2019.01.001
http://dx.doi.org/10.5433/1679-0359.2019v40n1p49
http://dx.doi.org/10.1109/LGRS.2012.2193113
http://dx.doi.org/10.2307/1936256
http://dx.doi.org/10.1016/j.ecolind.2018.02.008
http://dx.doi.org/10.1109/36.823953
http://dx.doi.org/10.1007/s11119-005-6787-1


Sensors 2020, 20, 5130 21 of 22

65. Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ.
1996, 55, 95–107. [CrossRef]

66. Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.; Burgos-Artizzu, X.; Ribeiro, A. Automatic segmentation of
relevant textures in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [CrossRef]

67. Huete, A.R. A modified soil adjusted vegetation index. Remote Sens. Envrion. 2015, 48, 119–126.
68. Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing

in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [CrossRef]
69. Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices

derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [CrossRef]
70. Hashimoto, N.; Saito, Y.; Maki, M.; Homma, K. Simulation of Reflectance and Vegetation Indices for

Unmanned Aerial Vehicle (UAV) Monitoring of Paddy Fields. Remote Sens. 2019, 11, 2119. [CrossRef]
71. Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf

area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [CrossRef]
72. Saberioon, M.M.; Gholizadeh, A. Novel approach for estimating nitrogen content in paddy fields using low

altitude remote sensing system. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1011–1015.
[CrossRef]

73. Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining
UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass
monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [CrossRef]

74. Yeom, J.; Jung, J.; Chang, A.; Ashapure, A.; Landivar, J. Comparison of Vegetation Indices Derived from UAV
Data for Differentiation of Tillage Effects in Agriculture. Remote Sens. 2019, 11, 1548. [CrossRef]

75. Suzuki, R.; Tanaka, S.; Yasunari, T. Relationships between meridional profiles of satellite-derived vegetation
index (NDVI) and climate over Siberia. Int. J. Climatol. 2015, 20, 955–967. [CrossRef]

76. Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Del Campo, A.; Moreno, M.A. Combined use of agro-climatic and
very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018,
72, 66–75. [CrossRef]

77. Henry, C.; Martina, E.; Juan, M.; José-Fernán, M. Efficient Forest Fire Detection Index for Application in
Unmanned Aerial Systems (UASs). Sensors 2016, 16, 893.

78. Lussem, U.; Bolten, A.; Gnyp, M.; Jasper, J.; Bareth, G. Evaluation of RGB-based vegetation indices from
UAV imagery to estimate forage yield in grassland. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
2018, 42, 1215–1219. [CrossRef]

79. Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Bareth, G. Multi-Temporal Crop Surface Models Combined
With The Rgb Vegetation Index From Uav-Based Images For Forage Monitoring In Grassland. ISPRS Int.
Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 991–998. [CrossRef]

80. Bareth, G.; Bolten, A.; Gnyp, M.L.; Reusch, S.; Jasper, J. Comparison Of Uncalibrated Rgbvi With
Spectrometer-Based Ndvi Derived From Uav Sensing Systems On Field Scale. ISPRS Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2016, 41, 837–843. [CrossRef]

81. Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from
very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [CrossRef]

82. Cantrell, K.; Erenas, M.; de Orbe-Payá, I.; Capitán-Vallvey, L. Use of the hue parameter of the hue, saturation,
value color space as a quantitative analytical parameter for bitonal optical sensors. Anal. Chem. 2010, 82,
531–542. [CrossRef] [PubMed]

83. Tu, T.-M.; Huang, P.S.; Hung, C.-L.; Chang, C.-P. A fast intensity-hue-saturation fusion technique with
spectral adjustment for IKONOS imagery. IEEE Geosci. Remote Sens. Lett. 2004, 1, 309–312. [CrossRef]

84. Choi, M. A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 1672–1682. [CrossRef]

85. Kandi, S.G. Automatic defect detection and grading of single-color fruits using HSV (hue, saturation, value)
color space. J. Life Sci. 2010, 4, 39–45.

86. Grenzdörffer, G.; Niemeyer, F. UAV based BRDF-measurements of agricultural surfaces with pfiffikus.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 229–234. [CrossRef]

87. Cui, L.; Jiao, Z.; Dong, Y.; Sun, M.; Zhang, X.; Yin, S.; Ding, A.; Chang, Y.; Guo, J.; Xie, R. Estimating Forest
Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances. Remote Sens. 2019,
11, 2239. [CrossRef]

http://dx.doi.org/10.1016/0034-4257(95)00186-7
http://dx.doi.org/10.1016/j.compag.2010.09.013
http://dx.doi.org/10.1080/01431161.2017.1297548
http://dx.doi.org/10.1016/j.rse.2007.11.001
http://dx.doi.org/10.3390/rs11182119
http://dx.doi.org/10.1029/2002GL016450
http://dx.doi.org/10.5194/isprsarchives-XLI-B1-1011-2016
http://dx.doi.org/10.1016/j.jag.2015.02.012
http://dx.doi.org/10.3390/rs11131548
http://dx.doi.org/10.1002/1097-0088(200007)20:9&lt;955::AID-JOC512&gt;3.0.CO;2-1
http://dx.doi.org/10.1016/j.jag.2018.05.019
http://dx.doi.org/10.5194/isprs-archives-XLII-3-1215-2018
http://dx.doi.org/10.5194/isprsarchives-XLI-B1-991-2016
http://dx.doi.org/10.5194/isprsarchives-XLI-B8-837-2016
http://dx.doi.org/10.1016/j.rse.2017.06.007
http://dx.doi.org/10.1021/ac901753c
http://www.ncbi.nlm.nih.gov/pubmed/20000770
http://dx.doi.org/10.1109/LGRS.2004.834804
http://dx.doi.org/10.1109/TGRS.2006.869923
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-229-2011
http://dx.doi.org/10.3390/rs11192239


Sensors 2020, 20, 5130 22 of 22

88. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for
predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]

89. Kruschke, J.K.; Movellan, J.R. Benefits of gain: Speeded learning and minimal hidden layers in
back-propagation networks. IEEE Trans. Syst. Man Cybern. 1991, 21, 273–280. [CrossRef]

90. Lawrence, S.; Giles, C.L. Overfitting and neural networks: Conjugate gradient and backpropagation.
In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000),
Como, Italy, 27 July 2000; pp. 114–119.

91. Karystinos, G.N.; Pados, D.A. On overfitting, generalization, and randomly expanded training sets. IEEE Trans.
Neural Netw. 2000, 11, 1050–1057. [CrossRef] [PubMed]

92. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. Tist
2011, 2, 1–27. [CrossRef]

93. Maulik, U.; Chakraborty, D. Learning with transductive SVM for semisupervised pixel classification of
remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2013, 77, 66–78. [CrossRef]
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