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Abstract: Grateloupia turuturu Yamada, 1941, is a red seaweed widely used for food in Japan and Korea
which was recorded on the Atlantic Coast of Europe about twenty years ago. This seaweed presents
eicosapentaenoic acid (EPA) and other polyunsaturated fatty acids (PUFAs) in its lipid fraction,
a feature that sparked the interest on its potential applications. In seaweeds, PUFAs are mostly
esterified to polar lipids, emerging as healthy phytochemicals. However, to date, these biomolecules
are still unknown for G. turuturu. The present work aimed to identify the polar lipid profile of
G. turuturu, using modern lipidomics approaches based on high performance liquid chromatography
coupled to high resolution mass spectrometry (LC–MS) and gas chromatography coupled to mass
spectrometry (GC–MS). The health benefits of polar lipids were identified by health lipid indices and
the assessment of antioxidant and anti-inflammatory activities. The polar lipids profile identified
from G. turuturu included 205 lipid species distributed over glycolipids, phospholipids, betaine lipids
and phosphosphingolipids, which featured a high number of lipid species with EPA and PUFAs. The
nutritional value of G. turuturu has been shown by its protein content, fatty acyl composition and
health lipid indices, thus confirming G. turuturu as an alternative source of protein and lipids. Some
of the lipid species assigned were associated to biological activity, as polar lipid extracts showed
antioxidant activity evidenced by free radical scavenging potential for the 2,2′-azino-bis-3-ethyl
benzothiazoline-6-sulfonic acid (ABTS•+) radical (IC50 ca. 130.4 µg mL−1) and for the 2,2-diphenyl-1-
picrylhydrazyl (DPPH•) radical (IC25 ca. 129.1 µg mL−1) and anti-inflammatory activity by inhibition
of the COX-2 enzyme (IC50 ca. 33 µg mL−1). Both antioxidant and anti-inflammatory activities were
detected using a low concentration of extracts. This integrative approach contributes to increase the
knowledge of G. turuturu as a species capable of providing nutrients and bioactive molecules with
potential applications in the nutraceutical, pharmaceutical and cosmeceutical industries.

Keywords: ABTS; algae; betaine lipids; COX-2; DPPH; glycolipids; lipidomics; n-3 fatty acids;
phospholipids; red seaweeds

1. Introduction

Seaweeds play a central role in oceans food webs, as habitats for marine species that
support biodiversity and as bioremediators through nutrient assimilation from seawater,
all these features granted them a renewed attention in the blue bioeconomy [1–3]. Beyond
the context of natural systems, seaweeds have been traditionally used as food in Asian
countries and, in recent decades, the use of seaweeds as food has been increasing in the
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western world [4]. This trend is supported by the growing interest in their nutritional
and health benefits promoted by seaweeds in the human diets [4,5]. Moreover, seaweeds
are also a sustainable alternative raw material and, in particular, a potential source of
polyunsaturated fatty acids (PUFA) and healthy fats to be used in multiple high-end uses [2].
Red seaweeds (Rhodophyta) are a source of many commercially important compounds,
such as floridean starch and sulfated galactans, carrageenans and agar, minerals, vitamins,
phycobiliproteins and other pigments, mycosporine-like amino acids and unsaturated fatty
acids, with multiple applications [6,7]. Grateloupia turuturu Yamada, 1941 (also reported
in the literature as G. doryphora), is a red seaweed native to Japan and Korea where it is
traditionally used as food and a source of carrageenan-agar polymers [8]. In recent decades,
this seaweed was recorded on the Atlantic Coast of Europe [9], likely originating from
aquaculture activities related to oyster farming and/or global shipping [10]. Although
G. turuturu is non-native species to the Atlantic and may have been erroneously labelled
as an invasive species [11], it does not seem to have any negative impacts in coastal
environments. In fact, G. turuturu seems to contribute to the maintenance of autochthonous
seaweed species and to preserve natural biodiversity [12].

Grateloupia spp. are sea vegetables widely used as a source of proteins and lipids
in countries where they are traditionally consumed, being considered a healthy and nu-
tritious food [6]. Information on the composition of G. turuturu in the Atlantic Coast is
still scarce [6]. The few studies available have shown that it has a high protein content
(ca. 14.0%, up to 30.0% DW) [13,14], that it is a good source of essential amino acids [15]
and that it has a high carbohydrates content (ca. 41.6%, up to 63.0% DW) [13,14]. The
lipid content of G. turuturu is low, in line with what is known for other red seaweeds
(ca. 0.7%, up to 4.0% DW) [14,16,17]. Nonetheless, lipids of G. turuturu are characterized
by featuring a high PUFA content [15], as already reported for specimens originating
from Brittany [13,16,18] and Portugal (present study). The prevailing PUFA in the lipids
of G. turuturu is eicosapentaenoic acid (EPA, C20:5n-3), considered a fatty acid that is
typically supplied by fish, followed by arachidonic acid (AA, C20:4n-6) [18,19]. Eicosapen-
taenoic acid has well-known nutritional and health benefits, including contributing to
reduce the synthesis of inflammatory eicosanoids, reactive oxygen species and cytokines
and giving rise to anti- inflammatory mediators [20]. In addition, EPA has been associ-
ated with the prevention of cardiovascular infections and chronic diseases [21,22] and
diabetes [23], as well as exhibiting antimicrobial [23] and antioxidant activities [24]. In
seaweeds, FAs are mainly found in polar lipids, such as glycolipids (GL), phospholipids
(PL) and betaine lipids, important constituents of cell and plastid membranes [25]. So far,
classical chromatographic-based approaches followed by off-line gas chromatography–
mass spectrometry (GC–MS) analysis of FAs have been performed to tentatively identify
the glycolipids and phospholipids classes on G. turuturu [16,19,26], but its polar lipidome at
the molecular level has not yet been determined. This characterization is currently achieved
by using high-resolution mass spectrometry (MS)-based lipidomic approaches coupled to
liquid chromatography (LC), as already described for other red seaweeds [27–30]. The use
of this omics approach makes it possible to identify not only PUFA carriers but also certain
molecules with intrinsic bioactive properties.

In the search for bioactive compounds for sustainable use of Grateloupia spp., some
studies have reported the evaluation of bioactivities of organic solvent extracts of G. turu-
turu (also reported in the literature as G. doryphora) and species in the same genus, such
as G. filicina, G. elliptica, G. imbricata and G. lanceola [7,31–34]. Methanol, acetone, ethyl
acetate and chloroform extracts from G. filicina have shown good antioxidants properties
as scavengers of reactive oxygen species [35] and capacities of reducing lipid peroxidation
in oils and DNA damage in rat lymphocytes [36]. Remarkably, the fat content of some ex-
tracts has been found to correlate with antioxidant activity. Ethyl acetate extracts obtained
from G. elliptica revealed anti-inflammatory activity by showing the capacity to inhibit
the production of pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin
E2 (PGE2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) [37]. The biological
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potential of Grateloupia extracts has generated more interest due to their beneficial effects in
the prevention of chronic diseases and aging. A supplementation with 20% of G. turuturu
biomass increased the longevity of Drosophila melanogaster, while a formula containing
100% G. turuturu achieved the highest antigenotoxic potential against streptonigrin-induced
genotoxicity [33]. Grateloupia turuturu mixed diet is a promising complementary source of
lipids in abalone aquaculture [38], thus reinforcing the potential use of this seaweed as a
source of nutritious lipids in feed applications.

In order to increase our knowledge of this seaweed, in the present study, we evaluated
the nutritional value of G. turuturu by performing a thorough characterization of the polar
lipidome using LC–MS and fatty acid profiling using GC–MS, followed by calculation of
health lipid indices. The antioxidant activities of the lipid extracts were carried out by eval-
uating their potential for scavenging free radicals against the 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and 2,2′-azino-bis-3-ethyl benzothiazoline-6-sulfonic acid (ABTS) radicals and the
anti-inflammatory activity of the lipid extracts was evaluated based on the capacity to
inhibit the cyclooxygenase-2 (COX-2) enzyme.

2. Results
2.1. Lipids Content and Carbon/Nitrogen Ratio

The total lipid content of G. turuturu was 0.88% ± 0.25% of dry weight biomass
(DW). The total content of lipid, carbon, nitrogen and protein, along with the C/N ratio of
G. turuturu, are presented in Table 1. The tissue carbon-to-nitrogen ratio (C/N) accounted
for 8.30 ± 0.19. The protein content accounted for 26.26% ± 0.69% DW.

Table 1. Content of lipid, tissue carbon, tissue nitrogen and proteins expressed in g 100 g−1 of
dry weight biomass (DW) and carbon-to-nitrogen ratio (C/N) of the Grateloupia turuturu biomass
(means ± SD: a n = 5, b n = 3).

Compound Content

Lipid content (g 100 g−1 DW) a 0.88 ± 0.25
C (g 100 g−1 DW) b 34.88 ± 0.31
N (g 100 g−1 DW) b 4.20 ± 0.11

C/N 8.30 ± 0.19
Protein content (N × 6.25) (g 100 g−1 DW) 26.26 ± 0.69

2.2. Lipidome of Grateloupia turuturu

A total of 205 lipid species (m/z values) were identified, with these being distributed
over glycolipids (74 species), phospholipids (109 species) and betaine lipids (22 species)
(Figure 1).
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Figure 1. The number of lipid species identified by HILIC–MS, MS/MS in Grateloupia turuturu and
exact mass measurements with the assignment class of each polar lipids.
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2.2.1. Glycolipids Profile of Grateloupia turuturu

The glycolipids species (GLs) identified in G. turuturu included the galactolipid classes
MGDG (16 lipid species), DGDG (13 lipid species), MGMG (13 lipid species) and DGMG
(4 lipid species) and the classes of the anionic sulfolipid SQDG (20 lipid species) and
SQMG (8 lipid species). Galactolipids were identified by LC–MS as [M + NH4]+ ions and
sulfolipids as [M − H]− ions. The identification of the lipids species is provided in Table 2
(Supplementary Materials, Table S1, Figures S2 and S3). The relative percentage of each
lipid species within each specific class was calculated and the graphical representation is
shown in Figure 2.

Table 2. Grateloupia turuturu glycolipids species identified by HILIC–LC–MS and MS/MS: type of adduct, lipid identity,
calculated and observed mass, error, fatty acyl composition confirmed by MS/MS and formula. MGDG, MGMG, DGDG,
DGMG were identified as [M + NH4]+ ions, while SQDG and SQMG were identified as [M – H]− ions. The most abundant
species are indicated in italics and in bold. C represents total carbon atoms and N represents the double bonds of fatty
acid substituents. Fatty acyl chains were identified by MS/MS (a, assignments by mass accuracy, but without MS/MS; b,
assignments by mass accuracy, MS/MS with diagnostic ions confirming the lipid class, but without information on fatty
acyl chains). The representation C:N/C:N signifies the attribution of fatty acyl to the position sn-1/sn-2 according to the
nomenclature of LIPIDMAPS (www.lipidmaps.org, accessed on 25 April 2021).

Lipid Species (C:N) Calculated m/z Observed m/z Error (ppm) Fatty Acyl Chains (C:N) Formula

MGDG identified as [M + NH4]+

MGDG(30:4) 712.5000 712.5028 3.9169 a C39H70NO10
MGDG(34:7) 762.5156 762.5158 0.1854 18:3_16:4 C43H72NO10
MGDG(34:2) 772.5933 772.5896 −4.8099 a C43H82NO10
MGDG(34:1) 774.609 774.6103 1.6896 18:1_16:0 C43H84NO10
MGDG(36:9) 786.5156 786.5177 2.6952 a C45H72NO10
MGDG(36:8) 788.5313 788.5308 −0.5953 20:4_16:4 C45H74NO10
MGDG(36:6) 792.5625 792.5619 −0.7124 a C45H78NO10
MGDG(36:5) 794.5782 794.5780 −0.1981 20:5_16:0 C45H80NO10
MGDG(36:4) 796.5933 796.5926 −0.8679 20:4_16:0 C45H82NO10
MGDG(36:3) 798.6095 798.6074 −2.6311 20:3_16:0 C45H84NO10
MGDG(38:8) 816.5626 816.5621 −0.5736 a C47H78NO10
MGDG(38:7) 818.5782 818.5800 2.135 a C47H80NO10
MGDG(38:5) 822.6095 822.6100 0.5639 a C47H84NO10

MGDG(40:10) 840.5626 840.5633 0.8243 20:5/20:5 C49H78NO10
MGDG(40:2) 856.6878 856.6879 0.2035 a C49H94NO10

MGDG(44:10) 894.6095 894.6102 0.7878 a C53H84NO10

MGMG identified as [M + NH4]+

MGMG(14:0) 482.3329 482.333 0.2488 a C23H48NO9
MGMG(16:4) 502.3016 502.3015 −0.2407 a C25H44NO9
MGMG(16:3) 504.3173 504.319 3.3957 a C25H46NO9
MGMG(16:2) 506.3329 506.3321 −1.6151 a C25H48NO9
MGMG(16:1) 508.3486 508.349 0.9149 a C25H50NO9
MGMG(16:0) 510.3642 510.3637 −0.8972 16:0 C25H52NO9
MGMG(18:4) 530.3329 530.3342 2.3898 a C27H48NO9
MGMG(18:3) 532.3486 532.3497 2.1221 a C27H50NO9
MGMG 18:2) 534.3642 534.3639 −0.5996 a C27H52NO9
MGMG(18:1) 536.3799 536.3793 −1.1276 a C27H54NO9
MGMG(20:5) 556.3486 556.3488 0.3521 20:5 C29H50NO9
MGMG(20:4) 558.3642 558.3646 0.7432 a C29H52NO9
MGMG(20:3) 560.3799 560.3807 1.5291 a C29H54NO9

www.lipidmaps.org
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Table 2. Cont.

Lipid Species (C:N) Calculated m/z Observed m/z Error (ppm) Fatty Acyl Chains (C:N) Formula

DGDG identified as [M + NH4]+

DGDG(32:2) 906.6154 906.6158 0.4273 16:2_16:0 C47H88O15N
DGDG(32:1) 908.6310 908.6315 0.5304 18:1_14:0; 16:1_16:0 C47H90O15N
DGDG(32:0) 910.6467 910.6465 −0.2435 a C47H92O15N
DGDG(34:8) 922.5528 922.5488 −4.3802 a C49H80O15N
DGDG(34:7) 924.5684 924.5639 −4.8671 a C49H82O15N
DGDG(34:4) 930.6154 930.6146 −0.824 a C49H88O15N
DGDG(34:3) 932.6310 932.6304 −0.6395 18:3_16:0 C49H90O15N
DGDG(34:2) 934.6467 934.6468 0.0566 18:2_16:0 C49H92O15N
DGDG(34:1) 936.6623 936.6627 0.422 18:1_16:0 C49H94O15N
DGDG(36:5) 956.6310 956.6315 0.5293 20:5_16:0 C51H90O15N
DGDG(36:2) 962.6780 962.6777 −0.2759 18:1/18:1 C51H96O15N
DGDG(38:5) 984.6623 984.6647 2.4117 a C53H94O15N

DGDG(40:10) 1002.6154 1002.6164 0.9974 20:5/20:5 C55H88O15N

DGMG identified as [M + NH4]+

DGMG(16:1) 670.4014 670.4020 0.8999 a C31H60NO14
DGMG(16:0) 672.4170 672.4174 0.5239 16:0 C31H62NO14
DGMG(18:1) 698.4327 698.4332 0.7083 18:1 C33H64NO14
DGMG(20:5) 718.4014 718.4012 −0.3122 a C35H60NO14

SQDG identified as [M − H]−

SQDG(28:0) 737.4510 737.4518 1.0919 12:0_16:0 C37H69O12S
SQDG(30:2) 761.4510 761.4519 1.2214 a C39H69O12S
SQDG(30:1) 763.4666 763.4668 0.2246 14:0_16:1 C39H71O12S
SQDG(30:0) 765.4823 765.4828 0.7155 14:0_16:0 C39H73O12S
SQDG(32:4) 785.4510 785.453 2.5189 14:0_18:4 C41H69O12S
SQDG(32:3) 787.4666 787.4658 −1.0089 a C41H71O12S
SQDG(32:2) 789.4823 789.4833 1.2813 16:2_16:0 C41H73O12S
SQDG(32:1) 791.4979 791.4991 1.4932 16:1_16:0 C41H75O12S
SQDG(32:0) 793.5136 793.5147 1.3591 16:0/16:0 C41H77O12S
SQDG(34:5) 811.4666 811.4701 4.2331 14:0_20:5 C43H71O12S
SQDG(34:3) 815.4979 815.4986 0.8394 18:3_16:0 C43H75O12S
SQDG(34:2) 817.5136 817.5151 1.9049 a C43H77O12S
SQDG(34:1) 819.5292 819.5308 1.9621 18:1_16:0 C43H79O12S
SQDG(34:0) 821.5449 821.5459 1.2441 a C43H81O12S
SQDG(36:6) 837.4823 837.4844 2.5124 b C45H73O12S
SQDG(36:5) 839.4979 839.4989 1.1462 20:5_16:0 C45H75O12S

SQDG(36:5)OH 855.4939 855.4943 0.4953 20:5−OH_16:0 C45H75O12SO
SQDG(38:7) 863.4979 863.4996 1.9862 20:4_18:3 C47H75O12S
SQDG(38:5) 867.5292 867.5298 0.7138 20:5_18:0 C47H79O12S
SQDG(40:10) 885.4823 885.4837 1.5835 20:5/20:5 C49H73O12S

SQMG identified as [M − H]−

SQMG(14:0) 527.2526 527.2540 2.7046 a C23H43O11S
SQMG(16:1) 553.2683 553.2701 3.267 a C25H45O11S
SQMG(16:0) 555.2839 555.2849 1.7351 16:0 C25H47O11S
SQMG(18:1) 581.2996 581.3024 4.8607 a C27H49O11S
SQMG(18:0) 583.3152 583.3166 2.3402 18:0 C27H51O11S
SQMG(20:5) 601.2683 601.2696 2.2023 a C29H45O11S
SQMG(20:4) 603.2839 603.2851 2.0425 a C29H47O11S
SQMG(24:0) 667.4091 667.4117 3.9262 a C33H63O11S
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Figure 2. The relative percentage of the normalized peak area of glycolipid species of Grateloupia turuturu identified in each
class, MGDG (a), MGMG (b), DGDG (c), DGMG (d), SQDG (e) and SQMG (f), calculated as normalized peak area of each
lipid species / sum of normalized peak areas for all lipid species of the same class obtained after LC–MS analysis. MGDG
(a), MGMG (b), DGDG (c) and DGMG (d) were identified in positive mode as [M + NH4]+ ions and SQDG (e) and SQMG
(f) were identified in negative mode as [M – H]– ions. The number in parentheses (C:N) indicates the number of carbon
atoms (C) and the total number of double bounds (N) in the side chains of the fatty acids.

Glycolipids species were mainly esterified with C14:0, C16-, C18- and C20-fatty acyl
chains and the unsaturation degree of the lipids species (DoU) ranged between 0 and 5 for
lyso-GLs (MGMG, DGMG and SQMG), 1 and 10 for MGDG and 0 and 10 for the DGDG
and SQDG classes (Table 2). Our data showed that the more abundant lipid species had a
total number of 36- and 40-carbons in the case of MGDG, 34- and 40-carbons in DGDG, 30-,
32- and 36-carbons in SQDG, 16- and 20-carbons in MGMG and 16-carbon in DGMG and
SQMG (Figure 2). Lipid species bearing C14:0, C16:0, C16:1 and C20:5 were present at up
to 10% of relative abundance (RA) in each class. Among the most abundant galactolipids
species were MGDG (40:10), assigned as MGDG (20:5/20:5) at m/z 840.5633, DGDG (36:5)
assigned as DGDG (20:5_16:0) at m/z 956.6315, MGMG (20:5) at m/z 556.3488, MGMG
(16:0) at m/z 510.3637 and DGMG (16:0) at m/z 672.4174. In the sulfolipids class are SQDG
(36:5) corresponding to SQDG (20:5_16:0) at m/z 839.4989 and SQMG (16:0) at m/z 555.2849.
Hydroxy-lipid species SQDG (36:5)OH was identified in the SQDG lipid class.
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2.2.2. Betaine Lipids Profile of Grateloupia turuturu

The betaine lipids diacylglyceryl-N,N,N-trimethyl-homoserine (16 DGTS lipid species)
and monoacylglyceryl-N,N,N-trimethyl-homoserine (6 MGTS lipid species) were identified
in G. turuturu. Lipid species were identified using LC–MS spectra as [M + H]+ ions, as
described in Table 3. The RA of lipids species within each of the aforementioned classes
is shown in Figure 3 and Supplementary Materials, Figure S4. The fragmentation pattern
observed in the MS/MS spectra of these lipids is shown in the Supplementary Materials
(Table S1, Figure S4b,d). Betaine lipids were mainly esterified into C16- and C18-fatty acyl
chains and the unsaturation degree (DoU) of lipids species ranged between 0 and 4 in the
case of MGTS, while, in the case of DGTS, the DoU ranged between 0 and 9. The major
lipid species of the DGTS class were the 34-carbons DGTS and the most abundant lipid
species was DGTS (34:2), assigned to DGTS (16:1_18:1) at m/z 736.6101. The most abundant
MGTS species had 16- and 18-carbons, namely, MGTS (16:1) at m/z 472.3631, MGTS (16:0)
at m/z 474.3795 and MGTS (18:4) at m/z 494.3486.

Table 3. Grateloupia turuturu betaine lipids species identified by HILIC–LC–MS and MS/MS: type of adduct, lipid identity,
calculated and observed mass, error, fatty acyl composition confirmed by MS/MS and formula. DGTS and MGTS were
identified as [M + H]+ ions. The most abundant species are indicated in italics and in bold. C represents total carbon atoms
and N represents the number of double bonds of fatty acid substituents. Fatty acyl chains were identified by MS/MS
(a, assignments by mass accuracy and unequivocal molecular formula, but without MS/MS; b, assignments by mass
accuracy, MS/MS diagnostic ions information to confirm the lipid class, but without information on fatty acyl chains). The
representation C:N/C:N signifies the attribution of fatty acyls to the position sn-1/sn-2 according to the nomenclature of
LIPIDMAPS (www.lipidmaps.org, accessed on 25 April 2021).

Lipid Species (C:N) Calculated m/z Observed m/z Error (ppm) Fatty Acyl Chains (C:N) Formula

DGTS identified as [M+H]+

DGTS(32:2) 708.5778 708.5792 1.9979 a C42H78O7N
DGTS(32:1) 710.5935 710.5939 0.5111 a C42H80O7N
DGTS(32:0) 712.6091 712.6083 −1.1556 a C42H82O7N
DGTS(34:4) 732.5778 732.5784 0.7925 16:0_18:4 C44H78O7N
DGTS(34:3) 734.5935 734.5923 −1.6029 a C44H80O7N
DGTS(34:2) 736.6091 736.6101 1.3137 18:1_16:1 C44H82O7N
DGTS(34:1) 738.6248 738.6238 −1.4067 a C44H84O7N
DGTS(36:8) 752.5465 752.5482 2.2335 a C46H74O7N
DGTS(36:7) 754.5622 754.5614 −1.0468 a C46H76O7N
DGTS(36:5) 758.5935 758.5942 0.9613 a C46H80O7N
DGTS(36:4) 760.6091 760.6072 −2.4467 a C46H82O7N
DGTS(36:3) 762.6248 762.6238 −1.2584 a C46H84O7N
DGTS(36:2) 764.6404 764.6413 1.2089 18:1/18:1 C46H86O7N
DGTS(38:5) 786.6248 786.6239 −1.1346 a C48H84O7N
DGTS(40:9) 806.5935 806.5917 −2.2229 a C50H80O7N
DGTS(40:8) 808.6091 808.6098 0.8873 a C50H82O7N

MGTS identified as [M+H]+

MGTS(16:1) 472.3638 472.3631 −1.6157 16:1 C26H50O6N
MGTS(16:0) 474.3795 474.3795 −0.0942 16:0 C26H52O6N
MGTS(18:4) 494.3482 494.3486 0.9760 18:4 C28H48O6N
MGTS(18:3) 496.3638 496.364 0.2825 18:3 C28H50O6N
MGTS(18:2) 498.3795 498.3794 −0.1732 a C28H52O6N
MGTS(18:1) 500.3951 500.3961 1.9549 a C28H54O6N

www.lipidmaps.org
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Figure 3. The relative percentage of the normalized peak area of betaine lipid species of Grateloupia
turuturu identified in each DGTS (a) and MGTS (b) class, calculated after dividing the normalized
peak area of each lipid species/sum of normalized peak areas for all lipid species in the same class
obtained after LC–MS analysis. DGTS (a) and MGTS (b) were identified in positive mode as [M + H]+

ions. The number in parentheses (C:N) indicates the number of carbon atoms (C) and double bonds
(N) in the side chains of fatty acids.

2.2.3. Phospholipids Profile of Grateloupia turuturu

Ten lipid classes were identified in the phospholipids (PLs) of G. turuturu: phosphatidyl-
choline (PC, 28 lipid species) and lyso-PC (LPC, 13 lipid species), phosphatidylethanolamine
(PE, 14 lipid species) and lyso-PE (LPE, 9 lipid species), phosphatidylglycerol (PG, 15 lipid
species) and lyso-PG (LPG, 9 lipid species), phosphatidic acid (PA, 6 lipid species) and
lyso-PA (LPA, 1 lipid species) and phosphatidylinositol (PI, 5 lipid species) and lyso-PI
(1 LPI species), as summarized in the Table 4. LC–MS spectra of these phospholipid classes
and MS/MS data are shown in the Supplementary Materials (Table S1, Figures S5–S9). The
relative percentage of each lipid species within each specific class is shown in Figure 4. The
majority of PLs species included C14:0, C16-, C18- and C20-fatty acyl chains. The DoU of
lipid species varied between 0 and 11, in the case of PC, between 0 and 8 in PE, between 0
and 9 in PG, between 5 and 9 in PA (that included C16- and C20-fatty acyl chains), between
0 and 10 in PI (that included C16- and C18-fatty acyl chains), between 0 and 6 in LPC
and between 0 and 5 in LPE and LPG. Regarding the lyso-lipids LPI and LPA, the only
lipid species identified were LPI (16:0), at m/z 571.2897 and LPA (20:4), at m/z 457.2362,
respectively. The most abundant lipid species within each class included 36-, 38- and
40-carbons, in the case of PC, 32- and 34-carbons in PE, 36-carbons in PG, 40-carbons in
PA and 34- and 42-carbons in PI. In the case of lyso-PLs, the most abundant lipid species
included 16-,18-,20-carbons in LPC, 16- and 18-carbons in LPE and 16- and 20-carbons in LPG.

Classes PC and LPC were identified as [M + H]+ ions in the LC−MS spectra and
fatty acyl composition was assigned by the identification of the carboxylate ions (RCOO−)
in the LC−MS/MS of the [M + CH3OO]– ions. The most abundant lipid species were
PC (40:9), assigned as PC (20:4/20:5) at m/z 828.5542, and LPC (20:4) at m/z 544.3406, as
observed in the Figure 4a,b and Table 4. Classes PE and LPE were identified as [M − H]–

and [M + H]+ ions in the LC−MS and the fatty acyl composition was assigned by the
identification of the carboxylate ions (RCOO−) in the LC−MS/MS spectra. The most
abundant lipid species were PE (32:1), identified as PE (16:1/16:0) at m/z 688.4932, and LPE
(16:1) at m/z 452.2787, as observed in the Figure 4c,d and Table 4. The molecular species of
PG and LPG were identified as [M − H]– ions (Figure 4e–f). The most abundant were PG
(36:5) at m/z 767.4878, identified as PG (20:5/16:0) and PG (20:4/16:1), and LPG (20:5) at
m/z 529.2577. The hydroxy-lipids PG (36:5)OH and LPG(16-OH) were identified in these
classes. Classes PA and PI were assigned in LC−MS and MS/MS spectra as [M − H]−

ions. In these classes, the most abundant lipid species were PA (40:8) at m/z 743.4660,
identified as PA (20:4/20:4) (Table 4, Figure 4g), and PI (34:3) at m/z 831.5030, Table 4,
Figure 4h). Concerning phosphoinositol ceramides (PI-Cer), the species were identified
as [M − H]− ions in the LC−MS spectra (Table 4, Figure 4i). LC–MS spectra of this class
and MS/MS data are shown in Figure S10 in the Supplementary Materials. The eight lipid
species identified included saturated- and unsaturated-sphingosine-bases and saturated



Mar. Drugs 2021, 19, 414 9 of 24

and unsaturated hydroxylated acyl chains. The most abundant lipid species included 42-
carbons PI-Cer. The most abundant PI-Cer (t42:2h) at m/z 920.6240 contained the long-chain
base 18:1-phytosphingosine (trihydroxy sphingoid base) and the long monounsaturated
hydroxy-fatty acid having 24-carbons (PI-Cer (t18:1/h24:1).

Table 4. Grateloupia turuturu phospholipids species identified by HILIC–LC–MS and MS/MS: type of adduct, lipid identity,
calculated and observed mass, error, fatty acyl composition confirmed by MS/MS and formula. PC and LPC were identified
as [M + H]+ ions, while PE, LPE, PG, LPG, PA, LPA, PI and LPI, PI-Cer were identified as [M – H]− ions. The most abundant
species are indicated in italics and in bold. C represents total carbon atoms and N represents the double bonds of fatty
acid substituents. Fatty acyl chains were identified by MS/MS (a, assignments by mass accuracy, but without MS/MS; b,
assignments by mass accuracy, MS/MS with diagnostic ions confirming the lipid class, but without information on fatty
acyl chains). The representation C:N/C:N signifies the attribution of fatty acyl to the position sn-1/sn-2 according to the
nomenclature of LIPIDMAPS (www.lipidmaps.org, accessed on 25 April 2021).

Lipid Species (C:N) Calculated m/z Observed m/z Error (ppm) Fatty Acyl Chains (C:N) Formula

PC identified as [M+H]+

PC(30:3) 700.4917 700.4902 −2.1598 a C38H71NO8P
PC(30:0) 706.5387 706.5383 −0.506 b C38H77NO8P
PC(32:4) 726.5074 726.5092 2.4576 a C40H73NO8P
PC(32:3) 728.5230 728.524 1.3945 a C40H75NO8P
PC(32:1) 732.5543 732.5519 −3.3249 16:0/16:1; 14:0/18:1 C40H79NO8P
PC(32:0) 734.5700 734.5701 0.1221 a C40H81NO8P
PC(34:5) 752.5230 752.5205 −3.3016 14:0/20:5 C42H75NO8P
PC(34:4) 754.5387 754.5394 0.9047 14:0/20:4 C42H77NO8P
PC(34:3) 756.5543 756.5535 −1.0593 16:0/18:3 C42H79NO8P
PC(34:2) 758.5700 758.5674 −3.4063 16:0/18:2 C42H81NO8P
PC(34:1) 760.5856 760.5849 −0.9624 16:0/18:1 C42H83NO8P
PC(36:8) 774.5074 774.5039 −4.519 a C44H73NO8P
PC(36:7) 776.5230 776.5222 −1.038 b C44H75NO8P
PC(36:6) 778.5387 778.5372 −1.9005 20:5/16:1; 18:3/18:3 C44H77NO8P
PC(36:5) 780.5543 780.554 −0.4112 16:0/20:5; 18:3/18:2 C44H79NO8P
PC(36:4) 782.5700 782.5697 −0.342 16:0/20:4; 18:2/18:2 C44H81NO8P
PC(36:3) 784.5856 784.5854 −0.2952 b C44H83NO8P
PC(36:2) 786.6013 786.6008 −0.5978 18:1/18:1 C44H85NO8P
PC(38:9) 800.5230 800.5217 −1.674 b C46H75NO8P
PC(38:8) 802.5387 802.5376 −1.2955 18:3/20:5 C46H77NO8P
PC(38:7) 804.5543 804.5540 −0.4369 18:3/20:4 C46H79NO8P
PC(38:6) 806.5700 806.5695 −0.627 18:1/20:5 C46H81NO8P
PC(38:5) 808.5856 808.5850 −0.7921 18:1/20:4 C46H83NO8P

PC(40:10) 826.5387 826.5389 0.261 20:5/20:5 C48H77NO8P
PC(40:9) 828.5543 828.5542 −0.2106 20:4/20:5 C48H79NO8P
PC(40:8) 830.5700 830.5672 −3.4091 20:4/20:4 C48H81NO8P
PC(40:7) 832.5856 832.5820 −4.4128 b C48H83NO8P

PC(42:11) 852.5543 852.5510 −3.9274 a C50H79NO8P

LPC identified as [M+H]+

LPC(14:0) 468.3090 468.3093 0.5844 14:0 C22H47NO7P
LPC(16:1) 494.3247 494.3235 −2.3082 16:1 C24H49NO7P
LPC(16:0) 496.3403 496.3400 −0.7179 16:0 C24H51NO7P
LPC(18:4) 516.3090 516.3074 −3.2093 a C26H47NO7P
LPC(18:3) 518.3247 518.3232 −2.843 18:3 C26H49NO7P
LPC(18:2) 520.3403 520.3407 0.7228 18:2 C26H51NO7P
LPC(18:1) 522.3560 522.3563 0.5418 18:1 C26H53NO7P
LPC(20:5) 542.3247 542.3244 −0.5427 20:5 C28H49NO7P
LPC(20:4) 544.3403 544.3406 0.4892 20:4 C28H51NO7P
LPC(20:3) 546.3560 546.3540 −3.5931 20:3 C28H53NO7P
LPC(20:1) 550.3873 550.3881 1.5545 a C28H57NO7P
LPC(22:6) 568.3403 568.3397 −1.1639 a C30H51NO7P
LPC(22:5) 570.3560 570.3548 −2.1309 a C30H53NO7P

www.lipidmaps.org
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Table 4. Cont.

Lipid Species (C:N) Calculated m/z Observed m/z Error (ppm) Fatty Acyl Chains (C:N) Formula

PE identified as [M − H]−

PE(30:2) 658.4448 658.4464 2.4664 a C35H65NO8P
PE(30:1) 660.4604 660.4620 2.4129 16:1/14:0 C35H67NO8P
PE(30:0) 662.4761 662.4762 0.0882 a C35H69NO8P
PE(32:3) 684.4604 684.4622 2.6111 a C37H67NO8P
PE(32:2) 686.4761 686.4774 1.9274 16:1/16:1 C37H69O8NP
PE(32:1) 688.4917 688.4932 2.1531 16:0/16:1 C37H71NO8P
PE(34:3) 712.4917 712.4934 2.3376 16:0/18:3 C39H71O8NP
PE(34:2) 714.5074 714.5087 1.8928 16:1/18:1;16:0/18:2 C39H73NO8P
PE(34:1) 716.5230 716.5231 0.1676 16:0/18:1 C39H75NO8P
PE(36:5) 736.4917 736.4928 1.4659 16:0/20:5 C41H71O8NP
PE(36:2) 742.5387 742.5422 4.6648 18:1/18:1 C41H77O8NP
PE(38:8) 758.4760 758.4780 2.641 20:5/18:3 C43H69NO8P
PE(38:7) 760.4920 760.4931 1.4905 20:5/18:2; 20:4/18:3 C43H71NO8P
PE(38:5) 764.5230 764.5230 −0.0385 a C43H75NO8P

LPE identified as [M − H]−

LPE(14:0) 424.2464 424.2479 3.6359 a C19H39NO7P
LPE(16:1) 450.2621 450.2634 2.9407 16:1 C21H41NO7P
LPE(16:0) 452.2777 452.2787 2.2511 16:0 C21H43NO7P
LPE(18:3) 474.2621 474.2631 2.3415 18:3 C23H41NO7P
LPE(18:2) 476.2777 476.2790 2.811 18:2 C23H43NO7P
LPE(18:1) 478.2934 478.2947 2.7404 18:1 C23H45NO7P
LPE(18:0) 480.3090 480.3109 3.961 a C23H47NO7P
LPE(20:5) 498.2621 498.2634 2.6089 a C25H41NO7P
LPE(20:4) 500.2777 500.2793 3.2658 20:4 C25H43NO7P

PG identified as [M − H]−

PG(30:1) 691.4550 691.4562 1.7284 16:1/14:0 C36H68O10P
PG(30:0) 693.4707 693.4725 2.5772 a C36H70O10P
PG(32:2) 717.4707 717.4725 2.4841 16:1/16:1; 18:2/14:0 C38H70O10P
PG(32:1) 719.4863 719.4864 0.2257 16:0/16:1 C38H72O10P
PG(32:0) 721.5020 721.5036 2.2107 a C38H74O10P
PG(34:4) 741.4707 741.4706 −0.1774 20:4/14:0; 16:1/18:3 C40H70O10P
PG(34:3) 743.4863 743.4854 −1.1754 18:3/16:0 C40H72O10P
PG(34:2) 745.5020 745.5046 3.4986 18:1/16:1 C40H74O10P
PG(34:1) 747.5176 747.5189 1.6913 18:1/16:0 C40H76O10P
PG(36:5) 767.4863 767.4878 1.9572 20:5/16:0; 20:4/16:1 C42H72O10P

PG(36:5)OH 783.4829 783.4833 0.4648 20:5/16:0−OH C42H72O10PO
PG(36:4) 769.5020 769.5039 2.4166 20:4/ 16:0; 18:2/18:2 C42H74O10P
PG(36:3) 771.5176 771.5181 0.6347 18:2/18:1 C42H76O10P
PG(36:2) 773.5333 773.5346 1.6895 18:1/18:1 C42H78O10P
PG(42:9) 843.5176 843.5169 −0.8453 a C48H76O10P

LPG identified as [M − H]−

LPG(14:0) 455.2410 455.2421 2.5057 14:0 C20H40O9P
LPG(16:1) 481.2566 481.2576 2.0266 16:1 C22H42O9P
LPG(16:0) 483.2723 483.2734 2.2252 16:0 C22H44O9P

LPG(16:0)OH 499.2677 499.2678 0.0841 16:0−OH C22H44O10P
LPG(18:2) 507.2723 507.2740 3.1604 a C24H44O9P
LPG(18:1) 509.2879 509.2888 1.649 18:1 C24H46O9P
LPG(20:5) 529.2566 529.2577 1.9811 20:5 C26H42O9P
LPG(20:4) 531.2723 531.2744 4.0749 20:4 C26H44O9P
LPG(22:5) 557.2879 557.2877 −0.3698 a C28H46O9P
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Table 4. Cont.

Lipid Species (C:N) Calculated m/z Observed m/z Error (ppm) Fatty Acyl Chains (C:N) Formula

PA identified as [M − H]−

PA(36:7) 689.4182 689.4178 −0.6446 a C39H62O8P
PA(36:6) 691.4339 691.4359 2.941 16:1/20:5 C39H64O8P
PA(36:5) 693.4495 693.4508 1.8144 16:0/20:5 C39H66O8P

PA(40:10) 739.4339 739.4356 2.3648 a C43H64O8P
PA(40:9) 741.4495 741.4496 0.0455 20:5/20:4 C43H66O8P
PA(40:8) 743.4652 743.4660 1.1816 20:4/20:4 C43H68O8P

LPA identified as [M − H]−

LPA(20:4) 457.2355 457.2362 1.5001 a C23H38O7P

PI identified as [M − H]−

PI(34:3) 831.5024 831.5030 0.7891 a C43H76O13P
PI(34:1) 835.5337 835.5307 −3.5756 16:0/18:1 C43H80O13P
PI(38:5) 883.5337 883.5337 0.0086 a C47H80O13P

PI(40:10) 901.4867 901.4870 0.2814 a C49H74O13P
PI(42:0) 949.6745 949.6721 −2.567 a C51H98O13P

LPI identified as [M − H]−

LPI(16:0) 571.2883 571.2897 2.3400 16:0 C25H48O12P

PI-Cer identified as [M − H]−

PI−Cer(t38:0h) 868.5915 868.5901 −1.6315 a C44H87NO13P
PI−Cer(t40:1h) 894.6077 894.6082 0.6170 b C46H89NO13P
PI−Cer(t40:0h) 896.6228 896.6218 −1.0707 a C46H91NO13P
PI−Cer(t42:0h) 924.6541 924.6509 −3.5109 a C48H95NO13P
PI−Cer(t42:1h) 922.6390 922.6378 −1.2553 b C48H93NO13P
PI−Cer(t42:2h) 920.6233 920.6240 0.8190 t18:1/h24:1 C48H91NO13P
PI−Cer(t43:2h) 934.6390 934.6403 1.3860 b C49H93NO13P
PI−Cer(t44:2h) 948.6546 948.6553 0.7034 b C50H95NO13P

2.2.4. Fatty Acids Profile of Grateloupia turuturu

The lipid extracts were further analysed for esterified fatty acids (FA) profiling and a
total of 19 FA were identified by GC–MS after the transmethylation (Table 5, Figure S11).
The FA acid profile calculated as relative abundance showed ca. 37.50% of saturated FA
(SFA), ca. 16.70% of monounsaturated FA (MUFA) and ca. 49.51% of polyunsaturated
FA (PUFA) (Table 5). The three fatty acids that contributed about 60% of the total FA
content were palmitic acid (C16:0), the most abundant fatty acid which accounted for
60.48 ± 10.44 µg mg−1 extract, ca. 22.03% of the FA content (or 628.89 ± 47.70 µg g−1 DW
biomass), eicosapentaenoic acid (EPA; C20:5n-3) which accounted for 57.18 ± 8.74 µg mg−1

extract, ca. 20.86% of FA content (or 595.19 ± 32.17 µg g−1 DW biomass), and arachidonic
acid (AA, C20:4n-6) which accounted for 35.41 ± 5.76 µg mg−1 extract, ca. 12.91% of FA
content (368.19 ± 20.56 µg g−1 DW biomass). Stearic acid (C18:0) and oleic acid (C18:1n-
9) accounted for 5.44 % and 7.44 %, respectively, while other FAs, such as linoleic acid
(C18:2n-6), linolenic acid (C18:3n-3) and octadecatetraenoic acid (C18:4), were less than
5% of total FA content. Other minor fatty acids were identified, including FA with odd-
number carbon chains (e.g., C15:0 and C17:0). The total content of esterified fatty acids was
273.52 ± 34.49 µg mg−1 extract (2853.16 ± 139.33 µg g−1 DW biomass).
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Figure 4. The relative percentage of normalized peak area of the phospholipids lipids classes of Grateloupia turuturu
identified, PC (a), LPC (b), PE (c), LPE (d), PG (e), LPG (f), PA (g), PI (h) and PI-Cer (i), calculated as normalized peak
area of each lipid species / sum of normalized peak areas for all lipid species in the class obtained after LC–MS analysis.
PC (a) and LPC (b) were identified as [M + H]+ ions, while PE (c), LPE (d), PG (e), LPG (f), PA (g), PI (h) and PI-Cer (i)
were identified as [M – H]− ions. The number in parentheses (C:N) indicates the number of carbon atoms (C) and the total
number of double bounds (N) in the side chains of fatty acids.
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Table 5. Fatty acid profile of lipid extracts of Grateloupia turuturu, expressed in µg mg−1 extract,
µg g−1 of biomass DW and relative percentage (%, w/w) of mean ± SD, n = 3. The nutritional,
health and quality parameters of the lipid extract were calculated using the fatty acid composition.
Abbreviations: saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated
fatty acids (PUFA), PUFA/SFA, PUFA n-6/n-3 and nutritive value (NVI) indices, health lipid indices,
such as atherogenic (AI), thrombogenic (TI), hypocholesterolemic/hypercholesterolemic (h/H) and
peroxidizability index (PI) ratios.

Fatty Acid

Mean ± SD
Mean

(µg mg−1 Extract) (µg g−1 DW Biomass) (Relative Percentage, %)

C14:0 5.48 ± 0.75 57.11 ± 1.37 2.00 ± 0.07
C15:0 4.62 ± 0.21 48.41 ± 3.73 1.70 ± 0.13
C16:0 60.48 ± 10.44 628.89 ± 47.70 22.03 ± 0.98

C16:1n-9 4.28 ± 0.21 44.89 ± 3.43 1.58 ± 0.14
C16:1n-7 6.7 ± 0.50 70.12 ± 4.23 2.46 ± 0.12
C16:2n-6 4.37 ± 0.13 45.94 ± 4.81 1.61 ± 0.15

C17:0 3.78 ± 0.02 39.74 ± 4.75 1.39 ± 0.16
C17:1 4.83 ± 0.25 50.64 ± 3.88 1.78 ± 0.12
C18:0 15.02 ± 3.77 155.51 ± 23.29 5.44 ± 0.66

C18:1n-9 20.3 ± 1.94 212.35 ± 13.59 7.44 ± 0.24
C18:1n-7 11.2 ± 0.71 117.36 ± 8.03 4.12 ± 0.24
C18:2n-6 10.85 ± 0.78 113.8 ± 11.22 3.99 ± 0.28
C18:3n-6 5.79 ± 0.20 60.79 ± 5.51 2.13 ± 0.18
C18:3n-3 5.15 ± 0.07 54.12 ± 6.05 1.90 ± 0.22
C18:4n-3 5.14 ± 0.07 54.07 ± 5.92 1.90 ± 0.20

C20:0 6.22 ± 0.04 65.46 ± 8.23 2.30 ± 0.28
C20:3n-6 6.73 ± 0.29 70.58 ± 5.86 2.48 ± 0.19
C20:4n-6 35.41 ± 5.76 368.19 ± 20.56 12.91 ± 0.56
C20:5n-3 57.18 ± 8.74 595.19 ± 32.17 20.86 ± 0.56

Sum 273.52 ± 34.49 2853.16 ± 139.33

SFA 95.6 ± 15.09 995.12 ± 66.55 37.49 ± 5.91
MUFA 42.48 ± 3.28 444.72 ± 27.65 16.66 ± 1.29
PUFA 126.24 ± 15.77 1316.74 ± 57.07 49.51 ± 6.18

Σ PUFA/Σ SFA 1.32 ± 0.04
Σ n-6 58.77 ± 6.93 613.35 ± 27.28
Σ n-3 67.47 ± 8.84 703.39 ± 30.47

n-6/n-3 0.87 ± 0.01
NVI 0.77 ± 0.03

EPA/AA 1.62 ± 0.02

AI 0.49 ± 0.02
TI 0.32 ± 0.02

h/H 2.4 ± 0.12
PI, % 218.42 ± 30.47

Based on their FA profile, lipid extracts were evaluated in light of their nutritional
value and potential health benefits not only by determining the fatty acids profile, but
also by calculating health lipid indices, such as Σ PUFA/Σ SFA and Σ PUFA n-6/n-
3 ratios, as well as nutritive value (NVI), atherogenic (AI), thrombogenic (TI), hypoc-
holesterolemic/hypercholesterolemic (h/H) and the peroxidizability index (PI) ratios
(Table 5). The ratios of Σ PUFA/Σ SFA and Σ PUFA n-6/n-3 ratios represented, respectively,
1.32 ± 0.04 and 0.87 ± 0.01. Grateloupia turuturu FA showed an n-6/n-3 ratio < 1 and an
NVI of about 0.77 ± 0.03, mainly due to the highest proportion of C16:0. Both AI and TI
were < 1, while the h/H index was 2.4 ± 0.12. In addition, the quality of the lipid extract
expressed as the percentage of PI was 218.42 ± 30.47%.
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2.3. Antioxidant Activity of the Lipid Extracts of Grateloupia turuturu

A dose-dependent increase in the scavenging capacity was observed for all concentra-
tions tested (Figure 5). For ABTS, a 50% inhibition (IC50) of the ABTS•+ radical was achieved
at a concentration of 130.4 ± 52.4 µg mL−1, which represents a TE of 7.3 ± 3.7 µmol g−1.
In the DPPH assay, the IC50 value could not be calculated because the percentage of an-
tioxidant activity was less than 50%, so the IC50 values of the extracts were outside the
tested concentration range. Thus, a 25% inhibition (IC25) of DPPH• was obtained at a
concentration of 129.1 ± 58.7 µg mL−1, representing a TE of 83.2 ± 39.6 µmol g−1. The best
radical scavenging capacity was achieved at a concentration of 250 µg mL−1 in both ABTS
(89.79% ± 8.22%) and DPPH (52.21% ± 19.57%).
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2.4. Cyclooxygenase 2 (COX 2) Enzyme Inhibitory Capacity of the Lipids Extracts of
Grateloupia turuturu

All the concentrations of lipid extracts tested showed the capacity to inhibit COX-2
activity in vitro, although showing only a dose-dependent response between 12.5 and
50 µg mL−1 of lipid extract (Figure 6). However, a concentration of ca. 33 µg mL−1 was
able to inhibit the PG2 production by 50%, demonstrating that the extract has a potential
anti-inflammatory activity.
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3. Discussion

Grateloupia turuturu is widely consumed in Asia [39] and its nutritional value is
evidenced by the high proportion of proteins and n-3 fatty acid EPA (C20:5, n-3) that it
displays [13,40,41]. In Europe, G. turuturu is yet to be explored, despite having EPA as
one of its main fatty acids in the lipid pool, much as Palmaria palmata, a red seaweed
commercially used and appreciated in western countries [42].

Grateloupia turuturu, studied in the present work, contained 26.26 ± 0.69 g 100g−1 DW
of protein, in line with the levels reported for other red seaweeds [13,14]. This value is close
to the maximum concentration indicated by Denis et al. for the specimens sampled on the
Brittany coast [13]. The total lipid content of G. turuturu was determined and accounted
for 0.88 ± 0.25 g 100 g−1 of biomass in dry weight (DW). This result is consistent with
data from the literature (ca. 0.7%, up to 4.0% DW) [14,17,43,44] and in line for that of
other red seaweeds [28,45–47]. Low fat and high protein content make red seaweeds a
promising alternative for non-animal proteins [48,49]. In addition, the obtained C/N ratio
of 8.30 ± 0.19 (Table 1) represents a value quite similar to those of nitrophilic red seaweeds,
values below the proposed critical limit of 10 [50]. This value expresses a balanced nutrient
status of G. turuturu [51,52] and corresponds to the trend high protein–low lipid relationship
as found in our study.

The nutritional value of G. turuturu was also demonstrated by the profiling of FAs and
the calculation of nutritional indices (Table 5). The saturated FA level was lower than that
previously described for G. turuturu from Brittany [13] and within the range reported by
Hotimchenko for G. turuturu sampled in the Sea of Japan [44]. Palmitic acid (C16:0) was the
most abundant FA (ca. 22.03%) followed by C20:5n-3 (ca. 20.86%) (Table 5), as previously
described by Rodrigues et al. [15] and Hotimchenko [44], but different from those reported
by Denis et al. [13] and Kendel et al. [16,19], who obtained a 2.0-fold relationship of C16:0
versus C20:5n-3 FA in G. turuturu. This difference was attributed to both environmental
conditions and genetic status of the seaweed [13].

Eicosapentaenoic acid is the main PUFA in the lipid extract of G. turuturu (5.7 g
per 100 g−1 of lipid extract (ca. 0.06 g of EPA per 100 grams of DW biomass, or ca.
0.01 g of EPA per 100 grams of fresh biomass)), that can be proximate to certain n-3
in fish such as dogfish [53]. According to U.S. Food and Drug Administration (FDA,
https://www.fda.gov/food, accessed on 13 May 2021), new recommendations for the
consumption of EPA and DHA claim that a daily dose of, at least, 0.8 g of EPA and
DHA (combined total) provides a beneficial effect on health. Taking into account the EPA
content of the lipid extract of G. turuturu, ca. 14 g of lipid extract (1.4 times a tablespoon)
would provide proximately 0.8 g of EPA per serving. The nutritional value of G. turuturu
extracts was corroborated by the PUFA/SFA ratio calculated in the present work, as it
was greater than the recommended threshold 0.45, as well as by its n-6/n-3 ratio (<1).
These values are consistent with those previously reported in Grateloupia spp. [15] and
other red seaweeds [46] and have been associated with human health benefits, such as
the prevention of noncommunicable and cardiovascular diseases [54,55]. The nutritive
index (NVI) obtained (0.77 ± 0.03) was clearly driven by the higher proportion of C16:0,
compared to C18:0 and C18:1 FA. The calculated AI and TI were < 1 and < 0.5, respectively,
as recommended to be protective against coronary artery disease [56]. The values of AI and
TI were within the reported for the red seaweeds Porphyra dioica [29] and P. palmata [46] and
marine fish [57]. The ratio between hypocholesterolemic and hypercholesterolemic fatty
acids (h/H index) is also within the values reported for marine fish [57]. Finally, the quality
of lipid extract and the stability of PUFA included in food and its vulnerability to oxidation,
evaluated by calculating the peroxidizability index (PI percentage), achieved a value of
218.42 ± 30.47%, thus expressing a balanced relation between the required amount and
type of PUFA that guarantees a protective effect for coronary disease. Therefore, G. turuturu
can be used in the food industry applications contributing to dietary recommendations of
SFA and PUFA intake (http://www.fao.org, accessed on 13 May 2021).

https://www.fda.gov/food
https://www.fda.gov/food
http://www.fao.org


Mar. Drugs 2021, 19, 414 16 of 24

Polar lipids from seaweeds are considered high-value lipids with beneficial health
effects fostering seaweed valorization. The lipidome of G. turuturu was identified here
for the first time using an approach based on liquid chromatography–mass spectrometry,
which allowed the identification of 205 lipid species distributed over glycolipids, betaine
lipids, phospholipids and phosphoinositol ceramides PI-Cer (Tables 2–4). The complex
lipids (polar lipids) from seaweeds are gaining a new interest because they are the key
carriers of PUFAs and feature bioactive properties [58,59]. The classes of glycolipid were
previously identified for G. turuturu [19] and G. jilicina [60] by using preparative thin-layer
chromatography and the PL was determined by HPLC coupled to an evaporative light
scattering detector [16]. Betaine lipids and PI-Cer classes were identified in the lipidome of
G. turuturu for the first time in the present study but have already been described in other
red seaweeds [26], such as Porphyra dioica [29] and Palmaria palmata [46]. It is also worth
referring that PI-Cer lipids are considered to be biomarkers of Rhodophyta [46,61,62].

Several glycolipids and phospholipids identified in the G. turuturu lipidome were
esterified to EPA, including the most abundant lipid species in most classes, as described
for P. palmata [46]. Marine polar lipids are considered to be important carriers of n-3 fatty
acids with higher n-3 PUFA levels than triglycerides (TAG) [63,64]. The bioavailability of
PUFAs comprising n-3 FAs is also considered to be higher when these FAs are esterified
into polar lipids, namely PL, compared to TAG [65]. In addition, polar lipids such as
glycolipids and phospholipids from seaweeds are recognized by their wide range of bio
functionalities [66] and the interest in these healthy and bioactive molecules is growing.
Polar lipids can be used as an ingredient for food fortification in PUFA and in functional
food, or used as emulsifying agents in the food industry [63–66].

In this study, the antioxidant and cyclooxygenase-2 inhibitory actions of the lipid
extract of G. turuturu were tested. The concentrations necessary to inhibit the activity
of the DPPH radical by 20% are of the same order as that reported for G. gracilis (IC20
119.5 ± 1.8 µg mL−1) and P. palmata (IC20 119.6 ± 8.0 µg mL−1) [67]. Our results reveal
that a polar lipid extract of G. turuturu features antioxidant activity at low concentrations.
The scavenging activity of G. filicina extracts, obtained using other organic solvent sys-
tems (e.g., ethyl acetate, chloroform, or acetone) [35], was a 50% inhibition achieved at
higher concentrations (2 mg mL−1 of extract). In the same study, chloroform extracts had
higher antioxidant activity than commercial antioxidants, such as BHA (butylated hydrox-
yanisole), BHT (butylated hydroxytoluene) and a-tocopherol [35]. Overall, G. turuturu lipid
extracts exhibit antioxidant activity and can be used as natural antioxidants for food and
feed, as a dietary supplement to nutraceuticals, or as an active ingredient in functional
foods or cosmeceuticals promoting health and prevention against damages caused by
free radicals. Other potential applications include food processing industries to prevent
oxidation and replace synthetic antioxidants. The antioxidant effects of natural products
are necessary both for health and wellbeing to counter oxidative stress [68,69], but also
for the preservation and packaging of food to increase shelf life through reduction of lipid
peroxidation [70].

The ability of lipid extracts from G. turuturu to inhibit COX-2 and, thus, reducing the
formation of PGH2, was herein demonstrated reaching 50% inhibitory effect at 33 µg mL−1

(Figure 6). Our findings show that these extracts were more effective than those from other
red seaweeds, such as P. palmata and P. dioica, which achieved more than 80% inhibition
of COX-2 using 500 µg mL−1 of lipid extract [67]. Cyclooxygenase-2 (COX-2) is a key
enzyme in fatty acid metabolism that is upregulated in inflammation. COX-2 is induced by
proinflammatory cytokines and enhances the synthesis of prostaglandins, which stimulates
inflammation response [54]. Targeted inhibition of COX-2 is a promising approach to
inhibit inflammation, with phytonutrients and phytochemicals holding the potential to
act in this regulation [71]. These results are in line with those reported by Yang et al. [37],
who showed the anti-inflammatory effect of ethyl acetate extracts from G. elliptica on
the inhibition of prostaglandin E2 (PGE2) in a macrophages cell line (IC50 values of the
same order found in this study). In the same work, inhibition of the production of pro-
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inflammatory mediators such as nitric oxide (NO) was also reported. Even though no
lipid species have so far been attributed to this specific activity, several lipid species that
were well-represented in the lipid extracts of G. turuturu analyzed in the present work
(MGDG and DGDG contained (20:5/20:5), (20:5/20:4), (18:4/16:0), (20:4/16:0), (20:5/16:0)
and (20:5/14:0), SQDG (20:5/14:0), PG (20:5/16:0), PG (20:5/16:1) and PC (20:5/20:5)), have
been reported to be related with anti-inflammatory activity on the downregulation of iNOS
in macrophages [72,73]. These lipid species were isolated from extracts of red seaweeds
Chondrus crispus and P. palmata. All of those lipid species contained C20:5(n-3) FA and
showed higher activity than the free FA C20:5(n-3), suggesting that a higher bioactivity
was likely due to the polar head of these molecules. These characteristics support per se
the growing interest in polar lipids from seaweeds, principally those originating from red
seaweeds [67]. Particularly, GLs bearing n-3 PUFA have been related to bioactive properties,
such as antibacterial, antitumoral and antiviral activities, enhancing the pharmacological
potential of these compounds [58]. Recent research associated with galactolipids “takes
us back to our origins” by reminding that eating vegetables provides access to n-3 FA
and contributes to the balance anti-inflammatory (n-3) and pro-inflammatory (n-6) fatty
acids [74]. It is known that PLs display anti-inflammatory, anti-oxidant, anti-fibrogenic,
anti-apoptotic, membrane-protective and lipid-regulating effects, with a positive impact on
several diseases, apparently without significant side effects [63]. Although the market for
marine PLs is still in its early stages, there is a growing trend to use marine PLs to supply
n-3 PUFA for the global food and dietary supplements market [63]. All beneficial effects of
marine lipids should be considered venues for future research.

In summary, G. turuturu lipids can be used in the food industry, using the seaweed
biomass as an ingredient for food fortification and functional foods (e.g., dairy products or
supplements), or by using the lipid extracts as ingredients for nutraceutical, pharmaceutical
and cosmeceutical applications, providing valuable products to be explored for commer-
cialization [75]. Lipidomics can therefore be used for screening the biomass with the best
composition in polar lipids richer in PUFA and with the most promising bioactivities,
allowing the selection of the seaweed strains for commercial exploitation [6,29].

Overall, the findings reported in the present work add value to G. turuturu and
contribute to the development of blue bioeconomy.

4. Materials and Methods
4.1. Reagents

All chemicals and reagents were purchased from Fisher Scientific Ltd. (Loughbor-
ough, UK), unless otherwise specified [71]. Lipid standards were purchased from Avanti
Polar Lipids, Inc. (Alabaster, AL, USA) [71]. Ammonium acetate and 6-hydroxyl-2,5,7,8-
tetramethylchromane-2-carboxylic acid (Trolox) were purchased from Sigma-Aldrich (St
Louis, MO, USA). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) was purchased from Aldrich
(Milwaukee, WI, USA). 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid diammo-
nium salt (ABTS) was obtained from Fluka (Buchs, Switzerland). Milli-Q water (Synergy,
Millipore Corporation, Billerica, MA, USA) was used.

4.2. Collection of Macroalgae and Preparation of Biomass

The specimens of the red seaweed G. turuturu Yamada were hand-harvested in Ria
de Aveiro coastal lagoon (Gafanha da Nazaré, Portugal, 40◦39′ N, 8◦43′ W) in February
2017 (winter). Samples were rinsed with fresh water, cleaned of epiphytes, if present,
and oven-dried at 30 ◦C in an air tunnel (up to ca. 13% moisture content was achieved).
Biomass of at least 5 specimens was used, five replicates of ca. 200 mg to extract total lipids
and three replicates of 2 mg to determine the C/N ratio.

4.3. Proximate Elemental Composition Analysis

Elemental analysis (C and N) (2 mg × 3 replicates) was performed using an elemental
analyzer (Leco TruspecMicro CHNS 630-200-200) at the combustion furnace temperature
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of 1075 ◦C and an afterburner temperature of 850 ◦C. The carbon-to-nitrogen ratio (C/N)
was calculated through tissue C (g 100 g−1 dry weight biomass, DW)/tissue N content
(g 100 g−1 DW) ratio (excluding moisture from sample weight). The nitrogen–protein
conversion factor 6.25 was used to estimate protein content.

4.4. Lipid Extraction

The lipid content was determined by gravimetry. Lipids were extracted from weighed
samples (200 mg each, for a total of 5 replicates) by adding 3 mL of methanol: chloroform
mixture (2:1, v/v) to each sample replicate in glass tubes with Teflon-lined screw caps
(modified Bligh and Dyer method used in the Marine Lipidomics Laboratory [28,71]). The
organic phase was collected first and the remaining biomass residue was re-extracted twice.
Water (2 mL) and chloroform (2 mL) were added to the collected total organic phase and
the lower organic phase was collected for drying under a stream of nitrogen gas. The
content of total lipid extract was estimated by gravimetry and stored at –20 ◦C, under a
nitrogen atmosphere, before analysis. The five replicates were analyzed by LC–MS.

4.5. Hydrophilic Interaction Liquid Chromatography−High Resolution Mass Spectrometry
(HILIC−MS) and Tandem Mass Spectrometry (MS/MS)

Analysis of lipid extracts was performed in a high-performance liquid chromatogra-
phy (HPLC) Ultimate 3000 Dionex (Thermo Fisher Scientific, Bremen, Germany) system
with an autosampler and coupled online to the Q-Exactive® hybrid quadrupole Orbitrap®

mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). An Ascentis Si column
(150 mm × 1 mm, 3 µm, Sigma-Aldrich, St. Louis, MO, USA) and a two-phases-solvent
system (mobile phase A, acetonitrile/methanol/water (50:25:25, v/v/v) with 1 mM ammo-
nium acetate; mobile phase B, acetonitrile/ methanol (60:40, v/v) with 1 mM ammonium
acetate) were employed for the separation of lipids by HILIC-chromatography, as previ-
ously described [71]. The injection volume was 5 µL of each sample containing 10 µg of
lipid extract, a volume of 4 µL of a mixture of phospholipid standards mix, described in da
Costa et al. (2020) [71], and 86 µL of mobile phase B.

The MS employed was equipped with Orbitrap technology and was operated using
a positive/negative switching toggle between positive (electrospray voltage of 3.0 kV)
and negative (electrospray voltage of 2.7 kV) ion modes, with a capillary temperature
of 250 ◦C and sheath gas flow of 15 arbitrary units (a.u.). Mass spectra were acquired
using data-depending acquisition (DDA) mode, with cycles of one full-scan mass spectrum
(mass resolving power of 70,000 full width at half-maximum, automatic gain control target
of 1 × 106, 200–1600 m/z scan range) and ten data-dependent MS/MS scans (resolution
of 17,500 width at half-maximum and automatic gain control target of 1 × 105) with
the dynamic exclusion of 60 s and intensity threshold of 1×104, repeated continuously
throughout the experiments. Tandem MS fragmentation was performed by higher-energy
collisional dissociation (HCD), using stepped normalized collision energy ranging between
25, 30 and 35 eV. Data acquisition was carried out using the Xcalibur data system (V3.3,
Thermo Fisher Scientific, MA, USA).

4.6. Data Analysis and Lipids Identification

Data acquisition was performed using the Xcalibur data system (V3.3, Thermo Fisher
Scientific, Waltham, MA, USA). Peak integration and HPLC–MS data assignments were per-
formed using MZmine 2.42 and the predefined parameters for data processing, as described
in similar approaches published by the Marine Lipidomics Group [30]. Lipid identification
was performed by matching the LC retention time (shown in the total ion chromatograms,
Supplementary Materials, Figure S1), with the assignment of the molecular ions observed
in the LC–MS spectra (Figures S2–S8), with an accuracy of mass measurements < 5 ppm
(Tables 2–4). Additionally, manual analysis of MS/MS spectra confirmed the identity of the
polar head and fatty acyl composition of most of the identified lipid the molecular species
(Supplementary Materials, Table S1 and Figures S2–S10). Typical fragmentation rules used
to generate the assignments were included [71]. The normalization of lipid species was
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completed by dividing the exported values of integrated peak areas of each lipid species
by the value of the peak area of a standard lipid species with the closest retention time.

4.7. Analysis of Fatty acid by Gas Chromatography–Mass Spectrometry (GC–MS)

Fatty acid methyl esters (FAMEs) were prepared by an alkaline well-established
methodology [28,71,76]. A 70 µg aliquot of the lipids extracted from each sample was
derivatized in a screw cap glass tube. Transesterification was performed by transferring
1 mL of a standard of methyl nonadecanoate (C19:0, 74208, Sigma-Aldrich, St. Louis, MO,
USA) solution in hexane (1.27 µg mL−1) and 200 µL of KOH 2 M methanol. An aliquot
of 600 µL of the upper phase was collected, dried under a stream of nitrogen gas and,
subsequently, 120 µL of hexane was added to prepare the final solution for GC–MS analysis.

A 2 µL subsample of the FAME solution in hexane obtained from the derivatization
was injected in an Agilent 8860 GC System gas chromatograph with GC 5977B Network
Mass Selective Detector operating at 70 eV at 250 ◦C and equipped with a DBFFAP (Agilent
123-3232, 30 m × 320 µm × 0.25 µm) column. GC–MS was equipped with an auto sampler
with a splitless injector at 220 ◦C. The separation of FAME was carried out with helium
being used as the carrier gas (constant flow rate of 1.4 mL min−1) and using a tempera-
ture program for the column starting at 80 ◦C during 2 min and increasing to 160 ◦C at
25 ◦C/min, heating up to 210 ◦C at 2 ◦C/min, then to 225 ◦C at 20 ◦C/min and holding
for 20 min. The system employed includes a Mass Selective Detector operating in Electron
Ionization (EI) mode at 70 eV and scanning the mass range m/z 50–550 in a 1 s cycle in
a full scan mode acquisition. Analyses were always replicated (at least n = 3). Methyl
esters were identified using the software Agilent MassHunter Qualitative10.0, supported
by NIST2014 mass spectral library, by comparing their retention time and MS spectra with
those of Sigma-Aldrich standards (37 Component FAME Mix, Sigma-Aldrich) and by MS
spectra comparison with online databases (AOCS lipid library). Quantitative analysis of
FA was achieved from calibration curves of each methyl ester of FA from a FAME mixture
(Supelco 37 Component FAME Mix, CRM47885, Sigma Aldrich, St. Louis, MO, USA),
analyzed by GC–MS under the same conditions of extracts, with results being expressed as
µg mg−1 of extract and µg g−1 of dry biomass. The relative amounts of FAs were calculated
using the ratio of the amount of each FAME and the sum of all FAMEs identified; results
are expressed as means (%, w/w). Nutritional, health and quality indices nutritive value
(NVI), atherogenic (AI), thrombogenic (TI), hypocholesterolemic/hypercholesterolemic
(h/H) and peroxidizability indices (PI) were determined according to the literature [56].

4.8. 2,2′-Azino-bis-3-Ethylbenzothiazoline-6-Sulfonic Acid Radical Cation Assay—ABTS Radical
Scavenging Activity

The antioxidant scavenging activity against the 2,2′-azino-bis-3-ethyl benzothiazoline-6-
sulfonic acid radical cation (ABTS•+) was evaluated using a previously described method [77].
The ABTS radical solution (3.5 mmol L−1) was prepared. This mixture was kept for 16 h in
the dark at room temperature; then, it was diluted in ethanol to obtain an absorbance value
of ~0.9, measured at 734 nm using a UV-vis spectrophotometer (Multiskan GO 1.00.38,
Thermo Scientific, Hudson, NH, USA). Radical stability was determined as reported by
Santos et al. [77]. For an evaluation of the radical scavenging potential, a volume of 150 µL
of each lipid extract of G. turuturu (12.5-250 µmol L−1 in ethanol, n = 4), or 150 µL of Trolox
standard solution (10–75 µmol L−1), was placed in each well, followed by the addition
of 150 µL of ABTS•+ diluted solution. Control lipid assays were prepared by replacing
150 µL of ABTS•+ diluted solution with 150 µL of ethanol. The % of the ABTS radical
remaining was determined according to Equation (1); free radical-scavenging activity of
samples was calculated as the percentage of inhibition of the ABTS radical (Equation (2)).
The concentration of samples reducing 50% of the ABTS radical after 120 min (IC50) were
calculated by linear regression using the concentration of samples and the percentage of
the inhibition curve. The activity was expressed as Trolox Equivalents (TE, µmol Trolox/g
of sample) according to Equation (3). The significant differences (p < 0.05) calculated
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by Kruskal–Wallis with Dunn’s multiple comparisons were used to analyze the results
between groups (GraphPad Prism 8).

% ABTS remaining = (Abs samples after incubation time/Abs sample at the beginning of reaction) × 100 (1)

% Inhibition = ((Abs ABTS − (Abs samples − Abs control))/Abs ABTS) × 100 (2)

(TE = IC50 Trolox (µmol L−1) × 1000/IC50 of samples (µg mL−1) (3)

4.9. 2,2-Diphenyl-1-Picrylhydrazyl Radical Assay—DPPH Radical Scavenging Activity

The antioxidant scavenging activity against the 2,2-diphenyl-β-picrylhydrazyl radical
(DPPH•) was evaluated using a previously described method [77]. A stock solution of
DPPH• in ethanol (250 µmol L−1) was prepared and diluted to provide a working solution
with an absorbance value of ~0.9, measured at 517 nm using a UV-Vis spectrophotometer
(Multiskan GO 1.00.38, Thermo Scientific, Hudson, NH, USA). The evaluation of the
radical stability was determined as previously reported [77]. For evaluation of the radical
scavenging potential, a volume of 150 µL of each lipid extract of G. turuturu (12.5–250
µmol L−1, n = 4), or 150 µL of Trolox standard solution (10–75 µmol L−1), was placed in
each well, followed by the addition of 150 µL of a DPPH• diluted solution and, again, an
incubation period of 120 min before measuring absorbance at 517 nm every 5 min. The
% of the DPPH radical remaining was calculated according to Equation (4); free radical-
scavenging activity of samples was determined as the percentage of inhibition of the DPPH
radical (Equation (5)); the concentration of samples reducing 25% of the DPPH radical after
120 min (IC25) was calculated by linear regression using the concentration of samples and
the percentage of the inhibition curve. The activity expressed, as TE (µmol Trolox g−1 of
sample), was determined (Equation (6)). The significant differences (p < 0.05) calculated
by Kruskal–Wallis with Dunn’s multiple comparisons were used to analyze the results
between groups (GraphPad Prism 8).

% DPPH remaining = (Abs samples after incubation time/Abs sample at the beginning of reaction) × 100 (4)

% Inhibition = ((Abs DPPH − (Abs samples − Abs control))/Abs DPPH) × 100 (5)

TE = IC25 Trolox (µmol L−1) × 1000/IC25 of samples (µg mL−1) (6)

4.10. Cyclooxygenase 2 (COX 2) Enzyme Inhibitory Capacity of Lipid Extract

The inhibition potential against COX-2 was carried out by enzyme immunoassay
(EIA) kit (catalogue No. 701080, Cayman Chemical Company, Ann Arbor, MI, USA), as de-
scribed by the manufacturer (https://www.caymanchem.com/pdfs/701080.pdf, accessed
on 6 March 2021) [67,71]. Lipid extracts were dissolved in 100% DMSO and five concentra-
tions ranging between 12.5 and 250 µg mL−1 were tested. The amount of prostaglandin F2α
generated from AA in the cyclooxygenase reaction was determined by spectrophotometry
at 412 nm using a Multiskan GO 1.00.38 (Thermo Scientific, Hudson, NH, USA). The results
are expressed as a percentage of inhibited COX-2. The significant differences (p < 0.05)
calculated by Kruskal–Wallis with Dunn’s multiple comparisons were used to analyze the
results between groups (GraphPad Prism 8).

5. Conclusions

The present work provides the first insight on the G. turuturu lipidome, its nutritional
value and its anti-oxidant and anti-inflammatory potential. The lipid and protein com-
position of this red seaweed, the profiles of fatty acids and lipid species and the health
lipid indices determined demonstrated the nutritional value of G. turuturu. The biomass of
this red seaweed can therefore be considered as a potential source for food, feed and other
high-end uses. For industrial applications, structural characterization efforts are essential
for the valorization of these lipids. The antioxidant free radical scavenging potential and

https://www.caymanchem.com/pdfs/701080.pdf
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cyclooxygenase-2 inhibitory activity were investigated and activities were achieved at low
concentrations of extracts. The lipid extracts of G. turuturu constitute an interesting offer
of natural and effective molecules to fight against pathological complications linked to
free radicals and to be used in industry. Overall, our findings will likely inspire future
studies targeting G. turuturu as a source of nutritive biomass and bioactive molecules for
nutraceutical, pharmaceutical and cosmeceutical applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19080414/s1, Table S1: Typical fragmentation patterns observed by Tandem Mass Spec-
trometry used to identify the head group and fatty acyl composition of polar lipids structures
from Grateloupia turuturu (NL-neutral loss; PI-product ion), Figure S1: Representative examples of
HILIC–LC–MS chromatograms of the polar lipids extracts from G. turuturu acquired on positive
mode (a) and negative mode (b), Figure S2: LC–MS spectra of the galactolipids classes of Grateloupia
turuturu monogalactosyl diacylglycerol, MGDG (a); monogalactosyl monoacylglycerol, MGMG (c);
digalactosyl diacylglycerol, DGDG (e); and digalactosyl monoacylglycerol, DGMG (g), identified as
[M + NH4]+ ions, Figure S3: LC–MS spectra of the sulfolipids classes of Grateloupia turuturu sulfo-
quinovosyl diacylglycerol, SQDG (a) and sulfoquinovosyl monoacylglycerol SQMG (c) identified as
[M−H]− ions, Figure S4: LC–MS of betaine lipids of Grateloupia turuturu diacyglyceryl-O-4′-(N,N,N-
trimethyl) homoserine DGTS (a) and monoacyglyceryl-O-4′-(N,N,N-trimethyl) homoserine, MGTS
(c), identified as [M + H]+ ions, Figure S5: LC–MS of the phospholipids classes of Grateloupia turuturu
phosphatidylcholine, PC (a) and lyso-phosphatidylcholine, LPC (d) identified as [M + H]+ ions,
Figure S6: LC–MS of the phospholipids classes phosphatidylethanolamine, PE (a) and lyso- phos-
phatidylethanolamine, LPE (d), identified as [M − H]− ions, Figure S7: LC–MS of the phospholipids
classes of Grateloupia turuturu phosphatidylglycerol, PG (a) and lyso- phosphatidylglycerol, LPG
(c), identified as [M − H]− ions, Figure S8: LC–MS of the phospholipid class of Grateloupia turuturu
phosphatidic acid, PA (a), identified as [M − H]− ion, Figure S9: LC–HCD–MS/MS of the selected
[M−H]− ion at m/z 835.53 of the phosphatidylinositol, Figure S10: LC–HCD–MS of phosphoinositol
ceramide class of Grateloupia turuturu PI-Cer (a), identified as [M − H]− ions, Figure S11: GC–MS
chromatogram of the esterified fatty acid (FA) of Grateloupia turuturu lipid extract.
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