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Simple Summary: Once articular cartilage is damaged, it is unable to regain its original tissue
integrity, which leads to osteoarthritis including degeneration of the joint, suffering and pain. In
equine medicine there is no therapy available to repair joint defects. Hyaline cartilage of nasal septum
shows a high basal collagen II expression, which may have a positive effect on damaged articular
cartilage. Therefore, nasal septum could be a potential source for chondrocytes for autologous
implantation in the future.

Abstract: Osteoarthritis the quality and span of life in horses. Previous studies focused on nasal
cartilage as a possible source for autologous chondrocyte implantation (ACI) in cartilage defects in
humans. “HOX gene-negative” nasal chondrocytes adapted articular HOX patterns after implan-
tation into caprine joint defects and produced cartilage matrix proteins. We compared the HOX
gene profile of equine chondrocytes of nasal septum, anterior and posterior fetlock to identify nasal
cartilage as a potential source for ACI in horses. Cartilage was harvested from seven horses after
death and derived chondrocytes were cultured in a monolayer to fourth subcultivation. HOX A3,
D1, D8 and chondrocyte markers COL2 and SOX9 were analyzed with qPCR in chondrocytes of
three different locations obtained during passage 0 and passage 2. HOX gene expression showed no
significant differences between the locations but varied significantly between the horses. HOX genes
and SOX9 remained stable during culturing. Cultured nasal chondrocytes may be a target for future
research in cell-based regenerative therapies in equine osteoarthritis. The involvement of HOX genes
in the high regenerative and adaptive potential of nasal chondrocytes observed in previous studies
could not be confirmed.

Keywords: HOX genes; equine; cartilage; chondrocytes; nasal; articluar; culture

1. Introduction

Diseases affecting articular cartilage still pose a challenge to clinicians and researchers
today. Cartilage is a tissue with a low metabolic rate, limited regeneration capacity and
high susceptibility to degenerative processes due to trauma and aging [1,2], leading to
osteoarthritis in horses and humans [3,4]. Osteoarthritis in horses often limits the life
expectancy [5] and leads to high medical costs and economical losses [6]. As these animals
are used for sport or leisure activities, common articular therapies in equine medicine
such as microfracture are unsatisfying because their histological outcomes resemble those
of untreated lesions. [7]. Horses are also considered an animal model for translational
research because their cartilage composition is similar to that of humans, and equine joints
are exposed to tremendous load and stress [3].

Promising cell-based therapies have been explored in recent years to restore chondro-
cyte function, many of them autologous-cell-based [8]. Mesenchymal stem cells (MSCs)
have been studied intensively, as these cells are easy to isolate from various tissues [9]
and demonstrated chondrogenic differentiation in culture [10]. In vivo studies revealed
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that MSCs become hypertrophic and calcified [11] and form fibrocartilage-like tissue after
implantation [12]. Since fibrous cartilage is vulnerable to mechanical joint forces in long-
term studies [1] and thus are prone to complications such as chip formation or re-tearing at
the implantation site, MSC-based therapies have not fulfilled the requirements for clinical
approval.

In contrast, autologous chondrocyte implantation (ACI)-based therapy is already FDA
approved [13]. Autologous chondrocytes form hyaline-like cartilage [14] and demonstrated
satisfying long-term MRI and clinical outcomes [15]. Nevertheless, ACI-based therapies
remain insufficient as the gold standard, since donor cartilage is required from a less
affected joint [16].

In comparison with ACs, nasal chondrocytes (NCs) are easy to obtain and cause
minimal morbidity at the donor site [17]. NCs originate from the neural-crest in contrast to
mesoderm-derived ACs [8]. The identification and differentiation of tissues are largely de-
termined by specific homeobox (HOX) gene profiles [18]. Pelttari et al. (2014) investigated
HOX gene profiles in human and caprine nasal and articular cartilage. They found that
only a few HOX genes were active in nasal cartilage (HOX negative), while many HOX
genes were activated in the joints. Pelttari et al. (2014) treated artificial articular joint defects
of goats with autologous NCs that were expanded in a chondrogenic culture before implan-
tation. Three and six months after implantation, the NCs produced hyaline matrix proteins
and matched the articular HOX gene profile. The group concluded that the negative HOX
gene profile of nasal cartilage may be crucial for their adaptability [19]. Accordingly, chon-
drocytes retrieved from nasal cartilage present a potential therapy for articular cartilage
defects [20]. Since nasal cartilage has already been used for the reconstruction of nostrils in
humans, safety concerns are low [21].

Despite the high degree of evolutionary conservation of HOX genes [22], HOX D8
of nasal chondrocytes exhibited species-specific expression in humans and goats [19].
Furthermore, NCs produce a functional cartilagous matrix [23] and seem to be more robust
than MSCs and ACs with respect to the effect of inflammatory factors [24].

We determined the HOX gene profile of equine chondrocytes obtained from the
nasal septum, anterior and posterior fetlock joints during cultivation in a monolayer.
Additionally, we measured the gene expression of the chondrocyte markers SOX9 and
COL2 [25,26]. The aim of this study was to investigate cultured nasal chondrocytes as a
potential therapeutic option for equine osteoarthritis by analyzing the HOX gene profile
in these cells. To our knowledge, no study has been carried out on HOX genes in equine
cartilage so far.

2. Materials and Methods
2.1. Animals

Cartilage samples were collected from seven horses (three females, two males, two
neutered males). Ages ranged from 1 to 23 years, whereby in one case, age was estimated
to at least 15 years based on dentition. Six horses were euthanized for medical reasons, and
one died of tetanus at the Department for Horses, Faculty of Veterinary Medicine, Leipzig
University. Subsequently, the animals were transported to the Institute of Pathology,
Faculty of Veterinary Medicine, Leipzig University, and were stored in a cooling chamber
until sample collection.

2.2. Isolation of Cartilage

Articular cartilage and the nasal septum were isolated in the Department for Veterinary
Pathology of the University of Leipzig. The collection of cartilages from each individual
started between 6.25 and 19.5 h after death from one front fetlock, one hind fetlock and
the nasal septum. Separate dissection kits were used for each layer. After the opening,
the joints were checked for integrity of the cartilage. Only two horses showed superficial
erosions in both joints. No cartilage was isolated from these defects. Immediately after the
retrieval of a layer, the remaining tissues were rinsed several times with 1X PBS and gloves
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were changed. Cartilage was exfoliated in pieces of 3 to 4 mm with a scalpel, rinsed several
times with 1X PBS and transferred into a sterile tube with transport solution containing 1X
PBS, 1% penicillin/streptomycin (Biochrom, Berlin, Germany) and 0.8% amphotericin B
(Sigma-Aldrich®, St. Louis, MO, USA).

2.3. Cell Dissociation

Enzyme solutions containing 1X PBS with 1.0 mg/mL collagenase CLS II (Biochrom,
Berlin, Germany, sterile-filtered), 0.5 mg/mL collagenase P (Sigma-Aldrich®, St. Louis, MO,
USA, sterile-filtered), 0.1 mg/mL hyaluronidase (Sigma-Aldrich®, St. Louis, MO, USA,
sterile-filtered), 10% heat-inactivated fetal bovine serum (FBS, Biochrom, Berlin, Germany),
1% penicillin/streptomycin (Biochrom, Berlin, Germany) and 0.9% amphotericin (Sigma-
Aldrich®, St. Louis, MO, USA) were mixed directly before isolation of the cartilage and
kept at 4 ◦C until usage. Transport solutions were discarded carefully before adding the
enzymatic solution to each tube with the cartilage slices. The samples were incubated
at 37 ◦C and shaken at 108 rpm (Heidolph® unimax 1010, Incubator 1000, Schwabach,
Germany) for 18 to 19 h. After digestion, the enzymatic solution was diluted with 1X PBS
(37 ◦C), filtered through a 100 µm cell strainer and washed twice with 1X PBS at room
temperature (Multifuge® 3 S-R, Heraeus®, Hanau, Germany, at 1200 rpm for 6 min) before
suspending the chondrocytes in 2 mL of culture medium (37 ◦C).

2.4. Cell Culture

Chondrocytes were counted microscopically (Zeiss® Axiovert®, Oberkochen, Ger-
many, 100×) with an improved NEUBAUER chamber with Trypan Blue (Sigma-Aldrich®,
St. Louis, MO, USA). Cells were seeded in 25 cm3 cell culture flasks coated with 1 mL of
FBS (37 ◦C) at a density of 5000 cells per cm2 and cultured in 4 mL of Dulbecco’s Modi-
fied Eagle Medium (DMEM) with 4500 mg/L glucose, L-glutamine, sodium bicarbonate,
without sodium pyruvate (Biochrom, Berlin, Germany) supplemented with 50.0 mg/L
phospho-2-ascorbate (Sigma-Aldrich®, St. Louis, MO, USA), 0.9 mL/L human insulin
(Sigma-Aldrich®, St. Louis, MO, USA) and 100 µL/L of a 20-fold diluted 100× non-essential
amino acids stock solution (Sigma-Aldrich®, St. Louis, MO, USA) with 10% heat inacti-
vated FBS (Biochrom, Berlin, Germany), 1% penicillin/streptomycin (Biochrom, Berlin,
Germany) and 0.8% amphotericin B (Sigma-Aldrich®, St. Louis, MO, USA) at 37 ◦C in
10% CO2 and relative air humidity of 95%. Cultures were checked by macroscopic and
microscopic inspection (Zeiss® Axiovert®, Oberkochen, Germany, 25×, 100× and 400×)
every 3 or 4 days. Chondrocytes were fed with 2 mL of fresh medium, or complete medium
(37 ◦C) was exchanged depending on the adherence of cells.

2.5. Cell Passage

All cultures of each horse were subcultivated on the same day to ensure comparability
between all three locations in one individual. Cells were subcultivated when all three
cultures reached a minimum confluence of 50%. An amount of 0.05% Trypsin-EDTA was
added to the cultures and the flasks were incubated for 6 min to detach chondrocytes.
Subsequently, the flasks were shaken (KS-15 control, Edmund Bühler®, Bodelshausen,
Germany) at room temperature for 1 min to increase the cell yield. Following two washing
steps with 1X PBS followed at room temperature, cells were counted, seeded and cultured
as described above, or cryoconserved at −80 ◦C with 10% DMSO (AppliChem®, Darmstadt,
Germany) for further use.

2.6. RNA Extraction

RNA extraction was performed by using the Monarch Total RNA Miniprep Kit (New
England Biolabs®, Ipswich, MA, USA). Solutions and the samples were stored on cooling
blocks. Chondrocytes were obtained from passage 0, designated as T1, and from passage 2,
designated as T2. A total of 300.000 to 400.000 cells were transferred in 2 mL of RNase-free
Eppendorf® tubes, washed two times with 1X PBS and centrifuged at 500× g (Eppendorf®
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Centrifuge 5417R, Hamburg, Germany). RNA was extracted following the manufacturer’s
instructions for cultured mammalian cells, including the recommended DNase I treatment.
A two-step elution of RNA was performed, whereby 18 µL of RNase-free water was added
to the spin columns, followed by centrifugation. This was repeated to maximize the RNA
yield and concentration. The columns were spun for 30 s during the first step and for
1 min during the second step. RNA solutions were aliquoted and stored at −80 ◦C for
further use.

2.7. RNA Concentration and Quality

All samples were stored on dry ice. RIN was measured with a Fragment Analyzer at
the Interdisciplinary Centre for Clinical Research of Leipzig University. Of the 42 samples,
11 were selected randomly for RIN measurement and showed high quality (mean 8.6,
SD = 1.19). The RNA concentrations and A260/A280 ratios of all samples were measured
with a NanoPhotometer® (Implen®, Munich, Germany) with a lid-factor of 10 at the
Division of Molecular Biological–biochemical Processing Technology of the Centre for
Biotechnology and Biomedicine Centre of Leipzig University. The mean A260/A280 ratio
was 1.98 (SD = 0.07).

2.8. cDNA Synthesis

cDNA synthesis was carried out with the Protoscript II First Strand cDNA Synthesis
kit (New England Biolabs®, Ipswich, MA, USA) following the manufacturer’s recommenda-
tions using Oligo-d(T)-primers. A total of 375 ng of total RNA was transcribed into cDNA.
For no-reverse transcription (no-RT) controls, 150 ng of total RNA was used. Incubations
were performed with an Eppendorf Thermomixer comfort. cDNA samples were aliquoted
and stored at −20 ◦C for further use.

2.9. Primer Design and Testing

Species-specific primers spanning across exon–exon boundaries were designed based
on nucleotide sequences available in the NCBI database using Primer-BLAST (https://
www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on 18 December 2018) and are listed
in Table 1. The selection of the reference genes was based on a previous publication [27].
According to the NCBI database, all gene sequences were predicted, except for GAPDH and
COL2. Primers were synthesized and HPLC purified by Metabion® (Planegg, Germany). In
accordance with the MIQE Guidelines [28], primers were tested, including a qualitative PCR
which was carried out with a T-Gradient ThermoBlock (Biometra®, Goettingen, Germany)
using FastGene® Optima HotStart Ready Mix (Nippon Genetics®, Dueren, Germany) and
the following settings: 95 ◦C for 3 min (activation of Taq polymerase), followed by 50 cycles
of denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s, elongation at 72 °C for 30 s and a
final inactivation step at 72 °C for 3 min. Amplicons were analyzed by electrophoresis in 1%
TAE buffer at 60 V for 50 min on a 1.8% agarose gel containing GelRed® (Biotium, Fremont,
CA, USA). Documentation was carried out using a GeneGenius Bio Imaging System
(Syngene®, Cambridge, UK), GeneSnap (Syngene®, Cambridge, UK, version 7.12.06) and
GeneTools software (Syngene®, Cambridge, UK, version 4.03.05.0). Primer efficiency tests
were carried out under experimental conditions. Efficiencies of 0.79 to 1.12 were accepted.
After the primer evaluation, five genes of interest (GOI), including three HOX genes as
well as two chondrocyte marker genes, and two reference genes were retained in the study.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 1. List of used primers.

NCBI Product Tm
Gene Acc. No. Primer Sequence (5′-3′) Size bp ◦C

HOX genes

HOX A3 XM_0147 F: TCTGAAAAATGGCTCCCTCC 118 58
39059.2 R: CGCAGACCTCGAAAGATGT 57

HOX D1 XM_0236 F: CCCCCAAGAAAAGCAAACTC 81 58
22046.1 R: GTTGCTTGGTGCTGAAGTTA 56

HOX D8 XM_0236 F: GATGAGACCACAAGCTCCT 119 57
22042.1 R: CGATCCTTCTCTTCCTGGTC 60

chondrocyte marker genes

SOX9 XM_0236 F: CTCTGGAGACTGCTGAACG 129 59
52130.1 R: GTTCTTCACCGACTTCCTCC 60

COL2 NM_0010 F: CTTCCACTTCAGCTATGGAGATG 117 63
81764.1 R: TTCTTGCAGTGGTAGGTGATG 59

reference genes

GAPDH NM_0011 F: AGCTCATTTCCTGGTATGACA 120 57
63856.1 R: CCTTCTCTTGCTGGGTGATT 58

RPL32 XM_00149 F: TGTGCAACAAATCGTACTGT 112 54
2042.6 R: GCATTGGGATTGGTGATTCT 56

2.10. qPCR

qPCR was run in a Rotor-Gene Q® (Qiagen®, Hilden, Germany) using a SensiFAST
SYBR® No-Rox Kit (Bioline, Meridian Bioscience®, London, UK) containing SYBE Green
I, 3 nM Mg2Cl and antibody-mediated hot-start DNA polymerase following the manu-
facturer’s instructions. The optimal amount of template was 200 ng. The best primer
performance was observed at a concentration of 100 nM for GAPDH, RPL32 and COL2
and 200 nM for HOX A3, D1, D8 and SOX9. NTCs were included in every run. No-RTs
were carried out in a separate run with one positive control and NTCs. The reaction mix
was heated to 95 ◦C for 2 min to activate polymerase. This was followed by 40 cycles
at the following settings: 95 ◦C for 15 s (melting), 55 ◦C for 30 s (annealing), 72 ◦C for
15 s (elongation). A melting curve was recorded between 55 and 99 ◦C. Three technical
replicates were prepared for each gene of each horse.

2.11. Data Analysis

Data were analyzed with the Q-Rex software (Qiagen ®, Hilden, Germany, 2013).
The threshold was set to 0.05 for the CT values and melting curves were checked for
unspecific products and primer dimers. The three technical replicates were checked for
outliers with the Grubbs Test [29] with the GraphPad online tool (https://www.graphpad.
com/quickcalcs/Grubbs1.cfm, accessed on 22 December 2020), whereas one outlier was
found in the technical replicates of RPL32, which was excluded from further calculations.
Subsequent data preprocessing was performed in Microsoft Excel. The arithmetic means
of the CT values of the technical replicates were calculated. The arithmetic means of all
technical replicates of each gene were averaged (arithmetic mean) to create a calibrator CT.
After subtracting each technical replicate from the calibrator CT, the obtained ∆CT values
were corrected for primer efficiencies. The relative gene expressions of the GOIs were
calculated by the ∆∆CT method, using the geometric means of the efficiency-corrected ∆CT
values of RPL32 and GAPDH [30]. The obtained relative gene expressions were exported
to IBM SPSS Statistics 27 for statistical analyses.

2.12. Statistical Analysis

Values were rounded to two decimal places [31]. Locations were numbered consecu-
tively from 1 to 3 following the cranial–caudal axis. After raw data analysis, the multiple

https://www.graphpad.com/quickcalcs/Grubbs1.cfm
https://www.graphpad.com/quickcalcs/Grubbs1.cfm
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linear regression model (MLR) was applied to account for the complex influences on the
cell cultures. All ∆∆CT data were positive and greater than zero. Furthermore, the ∆∆CT
values showed a right-skewed distribution for HOX A3, D1, SOX9 and COL2 and their
data fitted to square root functions. Therefore, we combined reverse score transformation
with squaring (Equation (1)) to meet MLR requirements and reduce outliers [31].

∆∆CTGOItrans = (∆∆CTGOIvalue − ∆∆CTGOImax value)
2 (1)

The transformed ∆∆CT values were checked for normality with the Shapiro–Wilk test.
Only HOX D1 showed a normal distribution. We performed a multiple linear regression
model (MLR), in which location and cultivation times were set as predictors. The trans-
formed ∆∆CT were sorted by cultivation time [31]. Furthermore, a one-way ANOVA was
performed to check whether the transformed ∆∆CT values differed significantly between
locations at T1 and T2, as this statistical test is robust to violations of the normal distribution
regardless of group size [32]. Variance homogeneity was tested with Levene’s test. In the
case of significance, the Bonferroni post hoc test was performed [31]. To determine whether
∆∆CT values differed significantly between T1 and T2, the differences of the paired values
were checked for normal distribution with the Shapiro–Wilk test, and a paired t-test was
performed for each location.

3. Results
3.1. Cell Culture

Chondrocytes of P0 were small with an either round or polygonal shape in all cultures.
After the first subcultivation, the cells became increasingly spindle-shaped in all cultures,
whereby nasal chondrocytes dedifferentiated faster than articular chondrocytes. After
the third subcultivation, almost all cells were spindle-shaped. Additionally, enlarged
and irregular shaped chondrocytes appeared (Figure A1). The cell yields are provided as
Supplementary Figure S1.

3.2. Descriptive Statistics

Mean values, standard deviations (SD) and medians (Md) of the ∆∆CT values are
presented for each gene and localization in Table 2 for measurement time point T1 and
in Table 3 for measurement time point T2. The distributions of ∆∆CT values around the
respective median distributions are shown in box plots for each location in T1 and T2
(Figure 1).

Table 2. Descriptive statistics for T1.

T1

Nose Front Fetlock Hind Fetlock

∆∆CT Mean SD Md Mean SD Md Mean SD Md

HOX A3 1.61 0.89 1.53 1.47 1.39 0.98 1.06 0.60 0.89
HOX D1 1.59 1.27 1.40 1.40 1.00 1.32 1.34 1.00 1.30
HOX D8 1.87 1.78 1.41 1.80 1.35 1.46 1.71 1.39 1.46

SOX9 4.31 7.72 0.79 2.76 4.28 0.48 2.81 4.92 0.62
COL2 13.18 12.88 11.22 2.80 1.75 3.18 3.13 2.89 3.09
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Table 3. Descriptive statistics for T2.

T2

Nose Front Fetlock Hind Fetlock

∆∆CT Mean SD Md Mean SD Md Mean SD Md

HOX A3 1.18 1.10 0.65 1.05 0.56 1.16 1.07 0.71 0.97
HOX D1 1.71 1.77 1.24 1.45 0.92 1.30 1.48 1.15 1.20
HOX D8 1.54 0.79 1.84 1.52 0.97 1.60 1.96 1.24 2.41

SOX9 3.47 4.77 1.55 2.53 4.13 0.48 3.82 7.10 0.54
COL2 1.24 2.54 0.29 0.32 0.20 0.24 0.36 0.23 0.33

Figure 1. Expression of the HOX genes A3 (A), D1 (B), D8 (C) and the chondrocyte marker genes
SOX9 (D) and COL2 (E) in the three locations at T1 and T2. Dots and asterisks represent outliers and
extreme outliers, respectively.

3.3. Multiple Linear Regression

∆∆CT values revealed individual gene expression levels in the HOX genes (Figure A2).
Therefore, ID was included as a covariate. MLR data are presented as recommended [33] in
Table 4. Regarding the HOX genes, significant effects were found for ID, whereas neither
cultivation time nor location were significant. SOX9 values were not associated with the
predictors or the covariate. COL2 was affected significantly by location and cultivation
time, but not by the ID (Table 4). The positive coefficient of the transformed COL2 data
confirms the descreasing COL2 levels over the cranio–caudal axis between the time points
shown in Figure 1.

The MLR model was significant for HOX A3, HOX D1 and COL2. The adjusted R2

was 0.51 for HOX A3, 0.44 for D1 and 0.39 for COL2, indicating a good fit of the MLR
to the data, as a large proportion of variance is accounted for by the predictors and the
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covariate. HOX D8 and SOX9 were not significant. The adjusted R2 of HOX D8 reveals
that the chosen MLR model has a low goodness of fit for this gene (Table 5).

Table 4. MLR coefficients (B) and corrected coefficients (ß) of constant, predictors, and covariates are
presented as well as their significance levels (p) for the transformed ∆∆CT values of each GOI.

GOI ∆∆CTtrans B [95% CI] ß p

HOX A3 constant 11.82 [6.81, 16.83] 0.00
location 0.78 [−0.74, 2.29] 0.15 0.31

cultivation time 0.07 [−0.07, 0.208] 0.14 0.34
ID −1.00 [−1.62, −0.37] −0.46 0.00

HOX D1 constant 26.69 [19.06, 34.33] 0.00
location 0.42 [−1.89, 2.74] 0.05 0.71

cultivation time −0.00 [−0.22, 0.21] −0.00 0.98
ID −2.53 [−3.48, −1.58] −0.66 0.00

HOX D8 constant 6.21 [−1.40, 13.83] 0.11
location −0.42 [−2.73, 1.89] −0.06 0.71

cultivation time −0.04 [−0.25, 0.175] −0.06 0.72
ID 1.01 [0.06, 1.95] 0.33 0.04

SOX9 constant 364.16 [185.62, 542.69] 0.00
location 8.59 [−45.49, 62.68] 0.05 0.75

cultivation time −0.53 [−5.55, 4.48] −0.04 0.83
ID −4.15 [−26.31, 18.01] −0.06 0.71

COL2 constant 632.11 [288.89, 975.33] 0.01
location 140.86 [36.88, 244.84] 0.35 0.01

cultivation time 19.17 [9.53, 28.81] 0.51 0.00
ID 21.93 [−20.67, 64.53] 0.13 0.30

Table 5. F-values for MLR with degrees of freedom (df), significance levels (p) and quality of the
MLR model for each GOI without (R2) and with correction (adjusted R2) for the parameters location,
cultivation time and ID .

GOI ∆∆CTtrans F (df = 3; 38) p R2 adj R2

HOX A3 4.38 0.01 0.51 0.26
HOX D1 9.83 0.00 0.66 0.44
HOX D8 1.70 0.18 0.34 0.12

SOX9 0.09 0.96 0.09 0.01
COL2 8.07 0.00 0.62 0.39

3.4. One-Way ANOVA

Levene’s test showed that equal variances could be assumed for all transformed ∆∆CT
values of HOX genes and SOX9 in T1 and T2. Levene’s test indicates equal variances for
transformed ∆∆CT values of COL2 in T1 but unequal variances for this variable in T2. The
transformed ∆∆CT of COL2 violated the homogeneity of variance assumption in T2, and
therefore, ANOVA was not performed for COL2 at this time point (Table 6).

Table 6. Levene’s test with F-values and significance levels (p) for the time points T1 and T2.

T1 T2

GOI ∆∆CTtrans F (df = 2; 18) p F (df = 2; 18) p

HOX A3 0.35 0.71 0.26 0.76
HOX D1 0.20 0.82 0.1 0.91
HOX D8 0.21 0.82 0.64 0.54

SOX9 0.24 0.79 0.15 0.86
COL2 2.85 0.08 4.44 0.03
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One-way ANOVA revealed no significant differences in the ∆∆CT values of SOX9 and
HOX A3, D1 and D8 at T1 and T2. The expression of COL2 is significant at T1 (Table 7).
Bonferroni-adjusted post hoc analysis revealed a significant difference between the nose
and front fetlock (p = 0.02, mean difference= −520.22, 95% CI [−979.59, -60.85]) as well as
the nose and hind fetlock (p = 0.03, mean difference= −500.97, 95% CI [−960.34, −41.60])
of the transformed ∆∆CT COL2. In contrast, the transformed ∆∆CT for COL2 was not
significant between the two articular chondrocytes.

Table 7. One-way ANOVA with F-values and significance levels (p) for the time points T1 and T2
between the three locations.

T1 T2

GOI ∆∆CTtrans F (df = 2; 18) p F (df = 2; 18) p

HOX A3 0.68 0.52 0.00 0.99
HOX D1 0.06 0.94 0.00 0.99
HOX D8 0.02 0.98 0.18 0.83

SOX9 0.05 0.95 0.08 0.93
COL2 5.74 0.01

3.5. Paired t-Test

The differences of the ∆∆CT values of T1 and T2 were normally distributed (p > 0.05)
over all locations and for all paired values. Only COL2 differed significantly between T1
and T2 in each location (Table 8), confirming the results of the MLR model, in which only
COL2 showed a significant change over time.

Table 8. Results of two-tailed paired t-test for ∆∆CTtrans in each location, with confidential interval
(CI), difference (T), degrees of freedom (df) and significance levels (p).

GOI ∆∆CTtrans 95% CI
T1–T2 Paired Lower; Upper T df p (Two-Tailed)

nose = location 1

HOX A3 −7.18; 1.37 −1.66 6 0.15
HOX D1 −4.02; 3.33 −0.23 6 0.83
HOX D8 −4.20; 5.04 0.224 6 0.83

SOX9 −40.95; 45.39 0.13 6 0.90
COL2 −1135.97; −147.22 −3.18 6 0.02

front fetlock = location 2

HOX A3 −3.69; 1.23 −1.23 6 0.27
HOX D1 −3.83; 4.81 0.28 6 0.79
HOX D8 −4.01; 2.49 −0.57 6 0.59

SOX9 −20.51; 4.96 −1.49 6 0.19
COL2 −305.71; −69.57 −3.89 6 0.01

hind fetlock = location 3

HOX A3 −3.02; 2.87 −0.06 6 0.95
HOX D1 −2.95; 4.68 0.56 6 0.60
HOX D8 −0.74; 4.03 1.69 6 0.14

SOX9 −18.36; 46.35 1.06 6 0.33
COL2 −386.53; −19.65 −2.71 6 0.04

4. Discussion

Pelttari et al. (2014) observed local differences in the HOX genes C4, C5, C8 and D3
between nasal and articular chondrocytes in humans and goats. In contrast to articular
chondrocytes, these genes were not or barely expressed in nasal chondrocytes in both
species. Therefore, they termed the nasal HOX gene profile “HOX negative” [19].
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In the present study, no significant differences were detected in the gene expression
of HOX A3, D1 and D8 between nasal and articular chondrocytes. However, we do not
consider our results as contradictory to the study in goats and humans [19], as HOX
genes define cellular identity and tissue specific functions [34,35]. Furthermore, both
articular and nasal chondrocytes form hyaline cartilage. Consequently, it is likely that there
are similarities in the HOX gene profiles of chondrocytes from different locations. Our
results for HOX A3, D1 and D8 gene expression using equine chondrocytes confirm this
assumption.

In contrast to the studies on human and caprine chondrocytes [19], no “HOX-negative”
gene profile was detected. However, this statement must be interpreted carefully, as we
were not able to generate a complete HOX gene profile for the three locations, since the
NCBI database provided predicted targets, only. Following the MIQE guidelines [28], only
HOX A3, D1 and D8 could be used for this study. Despite the limited number of genes
that were examined, we assume high validity, since HOX genes are evolutionarily con-
served [36]. Nevertheless, complete information on the gene sequences and functions are
needed to make reliable statements. Since equus caballus is a challenging and informative
animal model in chondrocyte-related translational research [9], there is a knowledge gap
that should be filled in the interest of future research addressing similar issues.

While examining the influence of cultivation time on the HOX gene profile of culti-
vated chondrocytes, no significant differences between the measurements T1 and T2 were
found. Similar results were observed in human nasal and articular chondrocytes during
expansion in a monolayer culture [19]. Given the similar HOX gene expression between the
three locations and their stability during cultivation, we conclude that nasal chondrocytes
up to the second passage may represent a potential target for future research on therapy
options for articular cartilage. However, it must be considered that gene profiles might be
different between native cartilage and cultivated chondrocytes as cell dissociation leads to
molecular changes, which results in poor RNA quality [37]. In fact, due to the digestion
of the cartilage, we obtained low RIN values (under 5) for several RNA samples (data
not shown), which were therefore excluded from the study [38]. The reported differences
in the gene expression of HOX C5, D3 and D8 between native human cartilage and the
derived chondrocytes [19] may also be a consequence of the cell isolation step. In our
study, the collected cartilage samples were enzymatically digested to obtain the required
cell numbers for the experiments. Therefore, there was not enough tissue left to determine
the HOX gene profile in native cartilage. Cells after the second passage were not used in
our studies because cells of passage 3 showed signs of senescence [39] and morphological
changes due to dedifferentiation [40].

In humans, nasal cartilage showed no expression of HOX D8, whereas this gene was
expressed in caprine chondrocytes. Our results confirm species-specific differences, as
horses express the HOX D8 gene in nasal cartilage. Moreover, in horses, HOX A3 was active
in all three locations, whereas human chondrocytes were negative for this gene regardless
of location [19]. Different gene expression levels between different species is known as
evolutionary adaptation and has already been described for bats and dolphins [41].

Our study showed that HOX gene profiles even differ significantly within a species
with respect to their individual expression level. Given there were only limited anamnestic
and clinical data on the horses and only seven animals of different age and breed were
available, the dataset does not allow one to draw any conclusions on the causes of this
individuality. Since HOX genes are known to be influenced by age, physical activity [42],
hormonal status [43,44], and even by diseases (e.g., osteoarthritic cartilage expressed
higher HOX A13 levels in humans [45]), there are certainly several factors that affected
each individual.

In contrast to the HOX genes, the chondrocytes marker genes SOX9 and COL2 were
not affected by the individual. COL2 showed significant relations to location and cultivation
time in the performed statistics. Nasal chondrocytes showed high median expression levels
at T1 that decreased to COL2 levels of the articular chondrocytes in T2 (Figure 1) and
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shows that the equine nasal chondrocytes undergo fast dedifferentiation between T1 an
T2. Furthermore, the measurement of the COL2 levels confirmed our observations of the
nasal cell cultures, that already showed a high proportion of spindle-shaped cells after
first subcultivation. The significant reduction in COL2 level in combination with the stable
expression of SOX9 expression confirms the purity of the cultures [46]. In an in vitro study
with human osteoarthritic chondrocytes, COL2 production could be re-initiated over more
than seven passages after retroviral SOX9 transduction and pellet cultivation with the
growth factors IGF-1 and TGF-ß3. In the same publication, it was noted that sufficient
SOX9 production is present in early passages (under four), and thus the reactivation of
the chondrogenic phenotype may be possible in chondrogenic cultures [26]. In an in vivo
study in goats, AC and NCs were expanded in chondrogenic cultures before autologous
implantation in articular defects. After three and six months, joint defects treated with
NCs exhibited higher O’Driscoll scores in comparison with the articular defects that were
treated with ACs [19]. In our study, robust SOX9 levels up to T2 were found in all locations,
which might indicate that the re-differentiation of all chondrocytes is possible up to T2.
Considering the higher basal COL2 expression of equine NCs that we observed and the
results reported in the study of Pelttari et al. (2014), the nasal cartilage is an interesting
target for further research of therapeutic options for cartilage joint defects in horses. In
our study, we see no evidence that the HOX genes of the different locations correlate with
chondrocyte markers.

Although SOX9 and COL2 are reliable parameters for the differentiation status of
chondrocytes in vitro, other factors such as Collagen I or proteoglycans [46] should be
analyzed to assess the differentiation status of chondrocytes more specifically. Moreover, a
gene expression profile does not reflect the proteins that are contained in the extracellular
matrix. In former studies, the analyses of extracellular matrix proteins [17] or histology [46]
were performed to determine the differentiation status of chondrocyte cultures.

Regarding cultivation, recent studies show that conditions could be optimized in
favor of the functional preservation of chondrocytes. In recent years, growth factors were
used predominantly to maintain the chondrocyte’s gene expression patterns. Growth
factors affect many regulatory genes [19,47,48], including HOX genes. Without a reliable
knowledge of signaling pathways, the treatment of cell cultures with growth factors always
bears the risk of unwanted clinical outcomes, especially given that HOX genes might
have a functional role in cancer development [35]. A solution for this might be the use of
physical forces on cultivated chondrocytes which have been studied in several publications
already. It was found that the production of COL2 and SOX9 could be maintained at higher
passages if chondrocyte cultures were exposed to moderate pressure [49,50]. New findings
even suggest that the components of the medium and the type of culture [46] might have
an influence on the re-differentiation capacity of chondrocytes. Another study revealed a
re-differentiation effect in chondrocytes cultured on inactivated collagen matrix without
growth factor supplementation [51].

5. Conclusions

In this study, we demonstrated that cultured nasal chondrocytes may be of interest
for research on potential therapeutic options for equine joint defects. The HOX genes’
expression of A3, D1 and D8 between articular and nasal chondrocytes are similar and
stable during cultivation. Furthermore, equine nasal chondrocytes showed a higher basal
COL2 expression than articular chondrocytes. This study also confirms that chondrocytes
undergo dedifferentiation in a monolayer culture, and that the expression levels of the
three investigated HOX genes are more dependent on the individual horse, e.g., in terms
of age, than on location or cultivation time.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11092542/s1.
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AC articular chondrocytes
Acc. No. accession number
ACI autologous chondrocyte implantation
bp base pairs
cDNA complementary DNA
CI confidential interval
COL2 collagen II
df degrees of freedom of the F-statistic
cult cultivation time in equation
F F-statistic in the MLR, dispersion between sample means
FBS fetal bovine serum
FDA Food and Drug Administration
GAPDH gene of glyceraldehyde 3-phosphate dehydrogenase
GOI gene of interest
HOX homeobox
ID individual
loc location in equation
MACI on porcine collagen membrane cultured autologous

chondrocytes implantation
Md Median
MLR Multiple Linear Regression
mRNA messenger RNA
max value maximum value of all ∆∆CT values of one gene in this study
MSC mesenchymal stem cells
NC nasal chondrocytes
no-RT no reverse transcriptase control
NTC no template control
PBS phosphate buffered saline
PCR polymerase chain reaction
qPCR Real time quantitative polymerase chain reaction
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RIN RNA integrity number
RPL32 gene of 60S ribosomal protein L32
SD standard deviation
SOX9 sex determining region Y-box9
T1 harvest time point 1
T2 harvest time point 2
Tm melting temperature
trans transformed

Appendix A

Figure A1. Representative images of cultured equine chondrocytes of the three different locations
in P0, P1, P2 and P3 (100× and 400× magnification, respectively). In P1, all cell cultures contained
polygonal and spindle-shaped cells. Nasal cell cultures showed a higher proportion of spindle-shaped
chondrocytes than articular cultures. In P2, most of the nasal chondrocytes were spindle-shaped,
whereas the number of polygonal and spindle-shaped articular chondrocytes was approximately
equal. In P3, nearly all cells were spindle-shaped regardless of their site of origin. Bottom row:
enlarged and irregularly shaped chondrocytes (arrows) were observed next to normally shaped and
sized chondrocytes undergoing mitosis (asterisk).
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Appendix B

Figure A2. Individual expression levels of HOX genes A3 (A), D1 (B), D8 (C) and the tissue-
identifying genes SOX9 (D) and COL2 (E) in the three locations: 1 = nose, 2 front fetlock, 3 = hind
fetlock. (A–C) The different quantities of mRNA of the HOX genes showed individual levels, without
a noticeable dependence of cultivation time or location. (D) In SOX9, the only adult male horse not
neutered showed a high expression level, whereas the levels of the other individuals were markedly
lower. ∆∆CT value of SOX9 does not seem to be correlated to cultivation time or location. (E) COL2
shows wider spreading of nasal mRNA levels than articular mRNA levels during early cultivation.
All COL2 ∆∆CT values are close to zero in late cultivation. Individual levels are hardly noticeable in
COL2.
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