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Endothelial adenosine A2a receptor-mediated
glycolysis is essential for pathological retinal
angiogenesis
Zhiping Liu1,2, Siyuan Yan2,3, Jiaojiao Wang1,2, Yiming Xu 2, Yong Wang2, Shuya Zhang4, Xizhen Xu2,

Qiuhua Yang1,2, Xianqiu Zeng1,2, Yaqi Zhou1,2, Xuejiao Gu4, Sarah Lu2, Zhongjie Fu5, David J. Fulton2,

Neal L. Weintraub2, Ruth B. Caldwell2, Wenbo Zhang6, Chaodong Wu 7, Xiao-Ling Liu4, Jiang-Fan Chen4,8,

Aftab Ahmad9, Ismail Kaddour-Djebbar10, Mohamed Al-Shabrawey11, Qinkai Li1, Xuejun Jiang3, Ye Sun 5,

Akrit Sodhi12, Lois Smith5, Mei Hong1 & Yuqing Huo2

Adenosine/adenosine receptor-mediated signaling has been implicated in the development

of various ischemic diseases, including ischemic retinopathies. Here, we show that

the adenosine A2a receptor (ADORA2A) promotes hypoxia-inducible transcription factor-1

(HIF-1)-dependent endothelial cell glycolysis, which is crucial for pathological angiogenesis in

proliferative retinopathies. Adora2a expression is markedly increased in the retina of mice

with oxygen-induced retinopathy (OIR). Endothelial cell-specific, but not macrophage-

specific Adora2a deletion decreases key glycolytic enzymes and reduces pathological neo-

vascularization in the OIR mice. In human primary retinal microvascular endothelial cells,

hypoxia induces the expression of ADORA2A by activating HIF-2α. ADORA2A knockdown

decreases hypoxia-induced glycolytic enzyme expression, glycolytic flux, and endothelial cell

proliferation, sprouting and tubule formation. Mechanistically, ADORA2A activation pro-

motes the transcriptional induction of glycolytic enzymes via ERK- and Akt-dependent

translational activation of HIF-1α protein. Taken together, these findings advance translation

of ADORA2A as a therapeutic target in the treatment of proliferative retinopathies and other

diseases dependent on pathological angiogenesis.
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Pathological angiogenesis is among the most common
causes of irreversible blindness for individuals at all ages,
including newborns (retinopathy of prematurity), middle-

age adults (proliferative diabetic retinopathy, PDR) and the
elderly (age-related macular degeneration, AMD). Retinal
neovascularization is one of the major pathologies for these sight-
threatening retinopathies1–3. Neovascular tissues are character-
ized by incompetent, leaky blood vessels that can bleed or
contract, leading to hemorrhage or retinal detachment and
eventually to blindness1. Increased endothelial sprouting and
proliferation are major cellular events causing pathological
proliferative retinopathies4, 5. Therefore, deciphering the
molecular mechanisms underlying these early cellular events is
key to understanding and further developing novel therapeutic
approaches for the prevention or treatment of these vision-
threatening diseases.

Increased emerging evidence indicates that not only signals
from growth factors and the Notch pathway, but also glucose
metabolism, control endothelial cell (EC) proliferation, migration,
and neovascularization6, 7. ECs rely on glycolysis rather than
oxidative metabolism for ATP production and vessel sprouting8.
Reduction of glycolysis using an inhibitor of 6-phosphofructo-2-
kinase/fructose-2, 6-bisphosphatase isoform 3 (PFKFB3) or
endothelial-specific genetic deletion of Pfkfb3 inhibits pathologi-
cal angiogenesis in murine models of AMD and oxygen-induced
retinopathy (OIR), respectively9, 10. Importantly, increased
glycolysis, evidenced by an increased level of lactate in vitreous
fluid, has been demonstrated in patients with PDR11. Due to this
close association between EC glycolysis and pathological retinal
angiogenesis as well as substantial demand for new treatment
of retinopathies, it is pressing to uncover practical targeting
molecules that regulate the glycolytic pathway in retinal ECs.

Hyperactivation of adenosine signaling has been implicated
in cellular responses to hypoxia and the development of
various ischemic diseases12. Loss of functional vasculature and
consequent hypoxia precedes the development of ischemic
proliferative retinopathies. Hypoxia results in marked increases in
adenosine production and adenosine receptor signaling12. Indeed,
in a canine model of OIR, peak adenosine levels in the retina
correlated temporally with active vasculogenesis in the retina13.
Immunoreactivity of adenosine A2a receptor (Adora2a), one of
the adenosine receptors, is prominent in ECs and angioblasts in
newly formed blood vessels, and is significantly elevated in
intravitreal neovascularization14. Yet it remains unclear whether
retinal endothelial adenosine-Adora2a signaling plays a role in
glycolysis and pathological retinal angiogenesis, although
in mouse models of wound healing and hind limb ischemia,
activation of Adora2a brings about beneficial angiogenesis15, 16.

In this study, we showed that Adora2a expression is
significantly increased in pathological retinal neovessels in OIR.
We found that hypoxia upregulates ADORA2A expression by
activating hypoxia-inducible transcription factor (HIF)-2α in
human microvascular retinal ECs (HRMECs). Using gain- and
loss-of-function approaches, we identified ADORA2A as a key
regulator of the metabolic and angiogenic switch in HRMECs
in vitro. Our study further demonstrated that endothelium-
specific Adora2a deletion reduces glycolysis and pathological
neovascularization in retinopathy in vivo.

Results
Expression of Adora2a in retinal pathological angiogenesis. To
study the role of adenosine receptors (ADORs) in pathological
angiogenesis, we first assessed the expression profile of ADORs in
the retinas of a mouse OIR model (Fig. 1a). Real-time PCR
analysis revealed that expression of the Adora2a gene was

significantly increased while adenosine A1 receptor (Adora1)
and adenosine A2B receptor (Adora2b) levels were reduced on
postnatal day (P)17 in OIR retinas, compared with controls
in room air (RA) (Fig. 1b). We next performed a time-course
analysis of messenger RNA (mRNA) levels of Adors from P7 to
P12 (the hyperoxia phase), and P12 to p17 (the hypoxic-ischemic
phase) of OIR retinas. We found no noticeable changes in
the expression of Adors from P7 to P12 (Fig. 1c), whereas
expression of Adora2a steadily increased from P12 to P17
(Fig. 1d), indicative of a sustained increase in the expression of
Adora2a throughout the hypoxic-ischemic phase of OIR. To
localize the expression of Adora2a, we performed double-
immunofluorescence staining of whole-mount retinas from OIR
or control mice using a well-characterized monoclonal antibody
for Adora2a17, 18, and a retinal blood vessel marker (Isolectin B4),
or a macrophage/microglia marker (IBa1). In RA control retinas,
Adora2a was present in the blood vessel wall, whereas in OIR
retinas, Adora2a was strongly expressed within and around
pathological neovascular tufts, particularly in and around ECs
and macrophages/microglias, as indicated by its colocalization
with blood vessels and IBa1 (Fig. 1e, f). Ablation of Adora2a
expression in retinas of global homozygous Adora2a knockout
mice (Adora2a−/−, Supplementary Fig. 1) confirmed antibody
specificity. Using laser-capture microdissection to isolate patho-
logical neovascular tufts from OIR mice and normal vessels from
control (RA) mice, we confirmed that Adora2a mRNA level is
higher in retinal neovessels compared with normal vessels
(Fig. 1g). Importantly, type 1 diabetic patients homozygous
for the T allele of ADORA2A SNP rs2236624 and rs4822489,
two genotypes associated with low incidence of PDR19, had
lower levels of ADORA2A mRNA compared with their controls,
which are type 1 diabetic patients homozygous for the C allele
of ADORA2A SNP rs2236624 and G allele of rs4822489
(Supplementary Fig. 2). These findings indicate a close associa-
tion of a high level of ADORA2A expression with proliferative
retinopathies.

Retinal neovascularization in mice lacking endothelial
Adora2a. To investigate the biological significance of
Adora2a expressed on vascular ECs or macrophages in retinal
neovascularization, Cdh5-Cre and Lysm-Cre mice were bred
with Adora2aflox/flox mice to generate Adora2aflox/flox;Cdh5-Cre
(Adora2aVEC-KO), and Adora2aflox/flox; Lysm-Cre (Adora2aMφ-KO)
mice, respectively. The littermate Adora2aflox/flox mice (Adora2aWT)
mice were used as wild-type (WT) controls. After mice were
subjected to the OIR, we performed isolectin B4 analysis of whole-
mount retinas and observed that both EC- and macrophage-specific
Adora2a deletion reduced the avascular area compared with the
avascular area in Adora2aWT mice at P17 in the OIR model
(Fig. 2a). However, with the loss of endothelial, but not macrophage
Adora2a, we observed significantly less pathological neovascular-
ization compared with WT controls (7.85± 0.33% vs. 3.31± 0.39%
of total retina area; P< 0.001 using one-way ANOVA followed by
Bonferroni test; Fig. 2a). To assess whether increasing the ischemic
drive could reveal a role for macrophage Adora2a on retinal neo-
vascularization, we exposed mice to 75% (rather than 70%) O2; this
resulted in a larger area of avascular retina, but failed to demonstrate
a decrease in pathological neovascularization with loss of
macrophage-specific Adora2a compared to WT controls (Fig. 2b).
Collectively, these results suggest that genetic Adora2a deletion from
ECs but not macrophages suppresses pathological neovasculariza-
tion during OIR. We also investigated the effect of endothelial-
specific Adora2a deletion on vascular regression at P12 and observed
that there was no significant difference in retinal vaso-obliteration
following the hyperoxic phase between the Adora2aVEC-KOand
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Fig. 1 Localization and expression of Adora2a in rodent proliferative retinopathy. a Schematic illustration of mouse OIR model. Neonatal mice with nursing
mothers were exposed to 75% O2 from postnatal day (P) 7 to P12, followed by room air (RA) with maximum neovascularization at P17. b Real-Time PCR
analysis of Adora1, Adora2a, Adora2b, and Adora3mRNA expression in the whole retina. Retinas were from RA or OIR mice at P17. ***P< 0.001 vs. RA group
(n= 7 mice per group). c, d Real-Time PCR analysis of adenosine receptor mRNA expression in the whole retina. Retinas were obtained from mice at the
times indicated. Data were normalized to both the expression of internal control and to gene mRNA expression of each RA control at each time point. **P
< 0.01 vs. P12 (n= 4 mice per group for c and n= 7 mice per group for d). e, f Localization and expression of Adora2a in the RA and OIR retinas.
Retinopathy was induced in wild-type mice. P17 RA and OIR retinas were stained with Adora2a (green), isolectin B4 (Lectin, red, vessel, e), or IBa1 (red,
macrophages/microglias, f) and DAPI (blue, nuclei). In all, 2nd and 4th rows are magnification of the boxed regions in the 1st and 3rd rows, respectively.
Scale bar: 50 μm (1st and 3rd rows) and 20 μm (2nd and 4th rows). g Real-Time PCR analysis of Adora2a mRNA expression in laser-capture microdissected
pathological neovessels (tufts) from OIR mice compared with normal vessels from control mice raised in RA at P17. ***P< 0.001 vs. RA (n= 4 per group).
Data are represented as means± s.e.m. Statistical significance was determined by unpaired Student’s t-test (for b, g) and one-way ANOVA followed by
Bonferroni test (for c, d)
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Adora2aWT groups (Supplementary Fig. 3), indicating that the
reduced avascular area in Adora2aVEC-KO mice at P17 is ascribed to
the modulation of revascularization at the hypoxic phase, rather than
the alteration of vaso-obliteration at the hyperoxic phase.

To study whether endothelial-specific deletion of Adora2a
affected developmental angiogenesis in the retina, we analyzed
the development of the retinal vascular networks at P5, P7, P12,
and P17 of Adora2aVEC-KO and control mice under RA by isolectin
B4 staining of whole-mounted retinas. Quantitative analysis of the
vascularized retinal area at P5 and P7, as well as the vascular
density of three retinal vascular layers (the superficial, intermediate
and deep layers) at P12 and P17, found no significant difference in
the distribution and density of retinal vascularization between
Adora2aVEC-KO and Adora2aWT mice (Supplementary Fig. 4).

To further evaluate hypoxia-induced pathologic angiogenesis
in the retinas of these animals, we performed hematoxylin
and eosin (H&E) and Ki-67 staining. Histologic examination
revealed that OIR-induced infiltration of non-ganglion cells and
neovascular nuclei from the inner limiting membrane into the
vitreous were significantly reduced in Adora2aVEC-KO mice,
compared with that of WT mice (Fig. 2c, d). Additionally,
we observed a dramatic decrease of proliferative vascular ECs in
Adora2aVEC-KOmice, as assessed by double immunofluorescence
staining of the proliferation marker Ki-67 and the endothelial
nuclear marker ETS related gene (ERG)20, 21 (Fig. 2e, f).
Taken together, these data suggest that endothelial Adora2a
activation plays a causal role in pathological angiogenesis in
the OIR model.
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Fig. 2 Endothelial Adora2a deficiency significantly decreases formation of pathological neovascularization in OIR retinas. a, b Quantification of
pathological neovascularization and vessel dropout area (within the white borders) in postnatal day (P)17 OIR retinas. Adora2aflox/flox (Adora2aWT),
Adora2aflox/floxLysmcre/cre (Adora2aMφ-KO), and Adora2aflox/floxCdh5cre (Adora2aVEC-KO) mice were exposed to 70% O2 a or 75% O2 b. Areas of
pathological neovascularization and vessel dropout are quantified as percentage of total retinal area. n= 16, 20, 15 retinas for a; n= 13, 10, 12 retinas for b;
***P< 0.001 vs. Adora2aWT group. Scale bars: 1000 μm. c Histological analysis of infiltration of neovascular nuclei from inner limiting membrane into
vitreous in the OIR retinas. Nuclei on the vitreal side of the inner limiting membrane are indicated by asterisk. Scale bars: 100 μm. d Quantitative analysis
of the number of neovascular nuclei in the OIR retinas. *P< 0.001 (n= 6 mice for Adora2aWT group; n= 8 for Adora2aMφ-KO and Adora2aVEC-KO groups).
e Ki-67 immunofluorescent staining on OIR retinas. Representative green (Ki-67), red (ERG), blue (nuclei, DAPI), and merged images were captured with
confocal fluorescent microscopy. GCL ganglion cell layer, INL inner nuclear layer, ONL outer nuclear layer. Scale bars: 50 μm. f Quantitative analysis of the
Ki-67 and ERG double-positive cells in each group. *P< 0.001 (n= 9 mice for each group). Data are represented as means± s.e.m. Statistical significance
was determined by one-way ANOVA followed by Bonferroni test
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Increased ADORA2A expression in hypoxic HRMECs via HIF-
2α. Given the observation that endothelial Adora2a activation is
critical for hypoxia-induced pathological angiogenesis during
OIR and that Adora2a expression is increased in mouse OIR
retinas, we next tested whether hypoxia upregulates ADORA2A
expression in HRMECs. Strikingly, primary cultured HRMECs
exposed to hypoxia exhibited a significant increase in mRNA
expression of ADORA2A, but not ADORA1, ADORA2B, and
ADORA3 (Fig. 3a), and the extent of this increase closely corre-
lates with the length of exposure time and the severity of hypoxia
(Fig. 3b, c). Similar changes also occurred in the expression of
ADORA2A at the protein level (Fig. 3d). HIFs, particularly HIF-
1α and HIF-2α, mediate expression of numerous genes under
hypoxic conditions. We investigated the role of these two HIFs in
regulating ADORA2A in HRMECs. To this end, we first carried
out HIF gain-of-function studies using adenoviral vectors
encoding mutant HIF-1α (Ad-mutHIF-1α) or mutant HIF-2α
(Ad-mutHIF-2α), which are both stable and transcriptionally
active under normoxic conditions. Elevation of HIF mRNA levels
in Ad-mutHIF-infected cells was confirmed by Real-Time PCR
(Supplementary Fig. 5a, b). We found that HIF-2α, but not
HIF-1α, upregulated ADORA2A mRNA in HRMECs (Fig. 3e). To
confirm these findings, we also performed HIF loss-of-function
studies in which we silenced the gene of HIF-1α or HIF-2α in
HRMECs using short interfering RNA (siRNA) (Supplementary
Fig. 5c, d). Knockdown of HIF-2α, but not HIF-1α, reversed
ADORA2A upregulation in HRMECs exposed to hypoxia (Fig. 3f,
g). These findings indicate that hypoxia induces ADORA2A
expression via HIF-2α-dependent mechanisms in HRMECs.

ADORA2A-regulated proliferation and sprouting of HRMECs.
To evaluate the effect of ADORA2A on HRMEC proliferation, we

performed BrdU incorporation, Ki-67 reactivity, and WST-1
proliferation assays, as well as cell number counting using
HRMECs transfected with ADORA2A siRNA. Reduction of
mRNA and protein levels of ADORA2A in silenced cells were
confirmed by Real-Time PCR (Supplementary Fig. 6a) and wes-
tern blot (Supplementary Fig. 6b), respectively. These assays
consistently showed that ADORA2A knockdown markedly
decreased HRMEC proliferation under hypoxia conditions
(Fig. 4a–d). Similar results were obtained using the ADORA2A
antagonist ZM241385 (Supplementary Fig. 7a, b). We found that
ADORA2A knockdown also reduced EC proliferation under
normoxic conditions (Supplementary Fig. 7c, d), though only
modestly. Conversely, overexpression of ADORA2A by infection
with adenovirus carrying the ADORA2A gene (Ad-A2AR)
elevated ADORA2A protein levels (Supplementary Fig. 6c) and
promoted HRMEC proliferation (Supplementary Fig. 7e–h). This
proliferation of ADORA2A-overexpressing HRMECs was further
enhanced by adding exogenous adenosine (Fig. 4e–i). In the three-
dimensional spheroid sprouting assay, ADORA2A knockdown
reduced hypoxia and VEGF-induced vessel sprouting (Fig. 4j–l).
ADORA2A overexpression modestly increased sprout numbers
and length under basal conditions (Supplementary Fig. 7i–k). This
increased sprouting was further augmented in the presence of
adenosine (Fig. 4m–o). These findings were confirmed in another
angiogenesis assay, where HRMECs form a 2D vessel network
(Fig. 4p–u). Collectively, these data indicate a significant pro-
angiogenic effect of ADORA2A activation in HRMECs.

ADORA2A-associated glycolysis in retinal ECs. EC glycolysis
plays a critical role in vessel sprouting and angiogenesis22. In
response to hypoxia, HRMECs upregulated mRNA levels of key
glycolytic enzymes, including GLUT1, HK1, GPI, PFKFB3, PFK1,
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loading control. e Real-Time PCR analysis of ADORA2A mRNA expression in HRMECs. HRMECs were infected with 10 ( + ) or 30 ( + + ) pfu per cell of
either Ad-mutHIF-1α, Ad-mutHIF-2α, or Ad-Ctrl. n= 3. *P< 0.001. f, g Real-Time PCR analysis of ADORA2A mRNA expression in HRMECs. HRMECs
were transfected with siHIF-1α f, siHIF-2α g, or siCtrl. Forty-eight hours later, cells were exposed to hypoxia (0.5% O2) or air (21% O2) for an additional
12 h. n= 4. **P< 0.01. Data are represented as means± s.e.m. Statistical significance was determined by unpaired Student’s t-test
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ALDOA, GAPDH, PGK1, ENO1, PDK1, LDHA, and LDHB
(Fig. 5a, b). The mRNA levels of these glycolytic genes were
moderately reduced in ADORA2A knockdown HRMECs under
normoxia compared with those of control HRMECs. Under
hypoxia conditions, ADORA2A knockdown remarkably down-
regulated mRNA levels of these glycolytic genes. Protein levels of

PFKFB3, a key glycolytic activator8, 9, are also reduced in hypoxic
HRMECs treated with siRNAs targeting human ADORA2A
(siA2AR, Supplementary Fig. 8) and OIR retinas from Ador-
a2aVEC-KOmice (Supplementary Fig. 9).To test whether similar
changes also take place in retinal vessels or ECs in vivo, we used
laser-capture microdissection to isolate retinal vessels and anti-
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CD31 antibody-conjugated magnetic beads to isolate mouse ret-
inal ECs from Adora2aVEC-KO and control mice, respectively, and
analyze gene expression specifically in vessels or ECs by Real-
Time PCR. Consistent with the findings from the in vitro data,
most of the key glycolytic genes were significantly downregulated
in vessels (Fig. 5c) or ECs (Supplementary Fig. 10) isolated from
the OIR retinas of Adora2aVEC-KO mice compared with controls.

Lactate is the metabolite generated in the glycolytic pathway by
lactate dehydrogenase A (LDHA) and functions as a signaling
molecule for angiogenesis10, 22. Hypoxia resulted in a robust
increase in the level of secreted lactate by HRMECs, but
this increase was attenuated by transfection of ADORA2A siRNA
into HRMECs (Fig. 5d). Using Seahorse Flux analysis, we
further assessed the glycolytic function of HRMECs directly by
measuring the extracellular acidification rate (ECAR). As shown
in Fig. 5e, f, ADORA2A knockdown in HRMECs significantly
reduced glucose-induced glycolysis and also reduced maximal
glycolytic capacity. Basal cellular oxygen consumption (OCR),
indicative of mitochondrial respiratory activity, and ATP
production were not affected by ADORA2A deletion (Supple-
mentary Fig. 11a, b) or overexpression (Supplementary Fig. 11c,
d), whereas maximal respiration and spare respiratory capacity
were decreased in Ad-A2AR plus adenosine-treated cells.
Altogether, these results demonstrate that ADORA2A is an
endogenous regulator of glycolysis in retinal ECs.

We next explored whether ADORA2A activation per se
without hypoxia is able to increase EC glycolysis. ADORA2A
overexpression or adenosine treatment alone resulted in a modest
increase in expression of key glycolytic genes, lactate production
and ECAR in HRMECs (Fig. 5g–j). Interestingly, these increased
parameters were strikingly further elevated when adenosine was
added to ADORA2A-overexpressing HRMECs compared with
those from control cells or cells treated with adenosine alone
(Fig. 5g–j), supporting that both ADORA2A upregulation and
adenosine availability are crucial for HRMEC glycolysis.

To further confirm the findings obtained through genetic
approaches, we also used the ADORA2A antagonist ZM241385
and ADORA2A agonist CGS21680 to block or activate
ADORA2A in HRMECs, respectively. As shown in Supplemen-
tary Fig. 12, the levels of secreted lactate were decreased in
ZM241385-treated cells and increased in CGS21680-treated cells
compared with vehicle treated controls under hypoxic conditions.

ADORA2A-mediated glycolysis in HRMEC angiogenesis
in vitro. After having shown that ADORA2A plays a crucial role
in HRMEC glycolysis, we examined whether inhibition of gly-
colysis could block the ADORA2A-mediated angiogenic effects.
As expected, ADORA2A overexpression induced HRMEC pro-
liferation and subsequent sprouting in the presence of

adenosine (Fig. 6a–g). Blockade of glycolysis by the PFKFB3
inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO)
or the non-metabolizable glucose analog 2-deoxy-D-glucose
(2-DG) significantly reversed the ADORA2A-mediated
pro-angiogenic effect. We further examined if glycolysis block-
ade is able to inhibit HRMEC spheroid sprouting when
ADORA2A is activated by hypoxia. Indeed, 3PO or 2-DG treat-
ment dramatically decreased hypoxia-mediated hypersprouting
(Fig. 6h–j). Overall, these data suggest that ADORA2A-mediated
glycolysis has a critical role in the ADORA2A activation-driven
angiogenic response.

ADORA2A and glycolysis in the formation of endothelial tips.
Vascular growth is led by endothelial tip cells and supported by
proliferative stalk cells, and each of these cell types is signatured
with an array of unique genes23. To examine whether ADORA2A
and glycolysis modulate the formation of endothelial tip cells, we
measured the expression of these signature genes. In HRMECs,
ADORA2A knockdown downregulated the tip-cell-enriched
genes (CXCR4, CD34, and VEGFA), and upregulated the
stalk-cell-enriched genes (HEY1, HEY2, NTN4, and DLL4) under
baseline conditions (Fig. 7a). Blocking of Notch signaling using
the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-
alanyl]-S-phenylglycine t-butylester) promoted a tip cell pheno-
type24. Indeed, DAPT treatment caused an expected increase in
the expression of tip-cell-enriched genes and downregulation of
stalk-cell-specialized genes, whereas ADORA2A knockdown
(Fig. 7a) or 2-DG-mediated glycolysis blockade (Fig. 7b) coun-
teracted the DAPT-mediated alteration of the genetic tip vs. stalk
cell signature upon Notch signaling blockade. Accordingly,
pharmacological inhibition of Notch signaling in HRMECs has
been shown to increase the number and length of sprouts, but this
hyper-sprouting was abolished when cells were treated with
ADORA2A siRNA (siA2AR, Fig. 7c, d). Using a model of mosaic
spheroids, we further assessed whether ADORA2A knockdown
would influence tip cell formation induced by Notch signaling
inhibition. HRMECs were infected with adenovirus encoding
mCherry (red fluorescence) or EGFP (green fluorescence), then
transfected with either siCtrl (control) or siA2AR. The consequent
siCtrlGFP, siCtrlRED, or siA2ARRED cells were mixed in a 1:1 ratio
to generate mosaic spheroids. In control spheroids, generated by
mixing siCtrlRED and siCtrlGFP cells, a comparable fraction of
siCtrlGFP and siCtrlRED ECs were observed at the tip position
(Fig. 7e, f). In contrast, in spheroids containing a 1:1mixture of
siA2ARRED and siCtrlGFP cells in the presence of DAPT, a
reduced number of siA2ARRED ECs was identified at the tip.
Similar results were obtained with HRMECs under hypoxic
conditions (Fig. 7g, h).

Fig. 4 ADORA2A regulates HRMEC proliferation, sprouting and tube formation. a, b Bromodeoxyuridine (BrdU) staining of HRMECs transfected
with siRNAs targeting human ADORA2A (siA2AR) or with a non-targeting negative control (siCtrl) under hypoxia conditions (0.5% O2). n= 6. *P< 0.05.
c Cell proliferation measured by WST-1 cell proliferation assay. n= 6. **P< 0.01. d Growth curves of transfected cultures. n= 6. *P< 0.05, ***P< 0.001 vs.
siCtrl. e–g Ki-67 and BrdU staining of HRMECs. HRMECs were infected with a recombinant adenovirus vector expressing human ADORA2A (Ad-A2AR) or a
negative control adenovirus (Ad-Ctrl) in the presence of adenosine. Scale bars: 50 μm. n= 6. ***P< 0.001. h Cell proliferation measured by WST-1 cell
proliferation assay. n= 6. ***P< 0.001. i Growth curves of HRMECs over 72 h following infection with Ad-Ctrl or Ad-A2AR in the presence of adenosine.
n= 6. ***P< 0.001 vs. Ad-Ctrl. j–u HRMECs were transfected with siA2AR or siCtrl, or infected with Ad-Ctrl or Ad-A2AR, and then were cultured in collagen
gel to grow into 3D multicellular spheroids, or on a 2D matrix to form a tube network in the presence or absence of VEGF or adenosine. j, m Representative
images of spheroidal sprouting after culturing for 24 h in collagen matrix under hypoxia (0.5% O2) or normoxia (21% O2). Scale bars: 100 μm.
Morphometric quantification of spheroid sprouting by calculating the number of sprouts per spheroid k, n as well as total sprout length l, o. n= 10
per group. n is number of spheroids quantified. **P< 0.01; ***P< 0.001. Representative fluorescence photographs of angiogenic tube formation p, s.
Scale bars: 200 μm. Cumulative tube length quantified using the Image J software q, t, and branch points calculated from five experiments in each
case r, u. *P< 0.05; **P< 0.01; ***P< 0.001. Data are represented as means± s.e.m. Statistical significance was determined by unpaired Student’s t-test
(for b, c, f, g, h, k, l, n, o, q, r, t, u) and two-way ANOVA followed by Bonferroni test (for d, i)
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ADORA2A activation induces HRMEC glycolysis via HIF-1α.
HIF-1 is the principal regulator of the transcriptional response to
hypoxia. Almost all enzymes of the glycolytic cascade, as well as
glucose transport proteins, are upregulated by HIF-1α25, 26.
Therefore, we hypothesized that HIF-1α might mediate the reg-
ulation effect of ADORA2A on EC glycolysis. To test this, we first
analyzed the effects of ADORA2A knockdown or overexpression
on HIF-1α expression in HRMECs. We found that HIF-1α
mRNA levels in HRMECs were indistinguishable between control
and ADORA2A knockdown or overexpression groups

(Supplementary Fig. 13). In contrast, evaluation of HIF-1α pro-
tein expression in siA2AR or Ad-A2AR- infected HRMECs by
western blot showed reduced or increased HIF-1α protein levels,
respectively (Fig. 8a–d). Consistent with these observations, EC-
specific ADORA2A deletion decreased the expression of HIF-1α
in retinal ECs of OIR mice at P15 (initial stages of neovessel
formation) (Fig. 8e, f). Furthermore, we examined the role of
HIF-1α in ADORA2A activation-mediated upregulation of gly-
colytic genes in HRMECs. Both hypoxia and Ad-A2AR/adeno-
sine-driven ADORA2A activation upregulated the key glycolytic
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enzymes (Fig. 8g, h) and enhanced glycolytic function (Fig. 8i, j)
in HRMECs. These effects were abolished by siHIF-1α or treat-
ment with the specific HIF inhibitor CAY10585. Altogether, these
data demonstrate that activation of ADORA2A promotes glyco-
lysis in HRMECs by enhancing HIF-1α protein accumulation
without altering its mRNA level.

ADORA2A regulates HIF-1α level via translational pathways.
In view of our findings that ADORA2A activation upregulates
the protein level of HIF-1α without affecting transcriptional
induction of HIF-1α, we next explored whether ADORA2A
regulates HIF-1α translation or protein stability. To assess
the effect of ADORA2A on HIF-1α mRNA translation, the
proteasome inhibitor MG132 was used to avoid the degradation
of HIF-1α protein. ADORA2A knockdown resulted in a much
slower rate of MG132-induced HIF-1α accumulation (Fig. 9a, c),
indicating that HIF-1α protein synthesis in HRMECs is markedly
impaired by ADORA2A knockdown. To test the effect of
ADORA2A on HIF-1α protein stability, the protein translation
inhibitor cycloheximide (CHx) was employed to prevent de novo
HIF-1α protein synthesis. In the presence of CHx, HIF-1α levels
rapidly declined in HRMECs under hypoxia and ADORA2A
overexpression did not modify the degradation rate of HIF-1α
(Fig. 9b, d). Thus, ADORA2A modulates the protein synthesis of
HIF-1α but not its degradation.

To characterize the underlying mechanisms by which
ADORA2A regulates HIF-1α protein synthesis, we first surveyed
several MAPK and PI3K/Akt signaling pathways. As shown in
Fig. 9e, ADORA2A knockdown or adenosine treatment did not
affect p38 kinase or JNK phosphorylation. However, we observed
a profound activation of the ERK1/2 and Akt signaling pathways
in HREMCs after adenosine treatment under hypoxia, and this
activation was markedly reduced by ADORA2A knockdown.
Furthermore, gain-of-function studies revealed more robust
ERK1/2 and Akt phosphorylation after adenosine treatment in
Ad-ADORA2A-infected HREMCs (Fig. 9f). These observations
prompted us to hypothesize that ERK1/2 and Akt activation may
govern the effects of ADORA2A activation on the enhancement
of HIF-1α protein level. In fact, the MEK/ERK and PI3K/Akt
signaling pathways have been demonstrated to be involved in
HIF-1α translation via functional activation of the translation
initiation factors p70S6K and eIF-4E in various cells27–29. Indeed,
in parallel with the alteration of ERK1/2 and Akt phosphoryla-
tion, ADORA2A knockdown significantly inhibited basal and
adenosine-mediated activation of p70S6K and eIF-4E (Fig. 9e). In
addition, treatment of HRMECs with adenosine and Ad-A2AR
effectively increased the protein level of HIF-1α (Fig. 9f), as well
as the phosphorylation of both p70S6K and eIF-4E, which was
inhibited by the MEK inhibitor U0126 or PI3K inhibitor

LY294002 (Fig. 9g). Collectively, these results suggest that
ADORA2A regulates HIF-1α protein synthesis through the
MEK/ERK and PI3K/Akt pathways that activate the HIF-1α
translational machinery.

Discussion
In this study, we demonstrate a novel cellular and molecular
mechanism whereby endothelial ADORA2A activation promotes
pathological angiogenesis in the retina. Retinal hypoxia leads to
the activation of HIF-2α, which enhances ADORA2A expression.
Increased ADORA2A in retinal ECs, in turn, enhances the
accumulation of HIF-1α via a translational pathway. Elevated
HIF-1α is largely responsible for elevation of glycolytic enzymes
as well as endothelial glycolysis. ADORA2A-mediated glycolysis
critically contributes to retinal EC proliferation, sprouting
and angiogenesis (Fig. 10). These findings provide new insights
into a previously unrecognized effect of ADORA2A on endo-
thelial glycolysis in ischemic retinopathies and highlight the
translational potential of targeting ADORA2A in the treatment of
vision-threatening eye diseases.

Extracellular adenosine accumulates during hypoxia conditions
and signals through four G-protein-coupled adenosine receptors
(ADORA1, ADORA2A, ADORA2B, and ADORA3)12. Adeno-
sine signaling events play a key role in various ischemic diseases,
including ischemic proliferative retinopathies. In a previous
study, Adora2a global knockout mice exhibited markedly
suppressed retinal angiogenesis in the OIR model, which was
accompanied by a low level of VEGF mRNA in the retina30. The
critical role of VEGF in retinal angiogenesis has been long
established by a large body of experimental studies and clinical
application31, 32. EC-autonomous VEGF is indispensable for
vascular homeostasis while VEGF produced by non-ECs is critical
for the angiogenic cascade33. Therefore, the low level of VEGF
mRNA in Adora2a-deficient retinas may be likely due to Adora2a
deficiency in non-ECs, and the Adora2a deficiency in non-ECs
may mainly account for the suppressed retinal angiogenesis
in Adora2a-deficient mice. Adora2a in macrophages has
been reported to be highly involved in VEGF production34. We
suspected that Adora2a deficiency in macrophages may be
the major reason for the low level of VEGF and decreased
neovascularization in the retina. However, Adora2a deficiency in
myeloid cells, although decreasing the avascular area, did
not significantly suppress neovascularization in OIR retinas. In
contrast, endothelial Adora2a deficiency dramatically decreased
both avascular and neovascularization areas in retinas of OIR
models, suggesting that endothelial Adora2a is critical for
pathological retinal angiogenesis. Since endothelial autocrine
VEGF signaling is dispensable in angiogenesis in vivo33,
decreased VEGF production from Adora2a-deficient retinal ECs

Fig. 5 Adenosine-ADORA2A signaling regulates glycolysis in HRMECs and mouse retinal ECs. a Scheme showing the glycolytic pathway and associated
enzymes. b Real-Time PCR analysis of the mRNA levels of glycolytic genes in HRMECs transfected with siA2AR or siCtrl under normoxia (21% O2) or
hypoxia (0.5% O2). n= 5. *P< 0.05, **P< 0.01, ***P< 0.001 vs. siCtrl normoxia group; &P< 0.05, &&P< 0.01, &&&P< 0.001 vs. siCtrl hypoxia group.
c Real-Time PCR analysis of the mRNA levels of glycolytic genes in retinal blood vessels isolated with laser-capture microdissection from OIR-Adora2aWT

and Adora2aVEC-KO mice at P17. n= 4. *P< 0.05 vs. Adora2aWT group. d Levels of secreted lactate of HRMECs transfected with siA2AR or siCtrl under
normoxia or hypoxia for indicated times. n= 3. ***P< 0.001. e ECAR profile showing glycolytic function in siCtrl- and siA2AR-transfected cells under
hypoxia (0.5% O2) or normoxia (21% O2). Vertical lines indicate the time of addition of glucose (10mmol/l), oligomycin (2 μmol/l), and 2-DG (50mmol/l).
f Quantification of glycolytic function parameters from e. n= 8 for normoxic groups and n= 16 for each of CoCl2 treatment groups. *P< 0.05; ***P< 0.001.
g Real-Time PCR analysis of the mRNA levels of glycolytic genes in HRMECs infected with Ad-Ctrl or Ad-A2AR, with or without adenosine treatment. n= 4.
*P< 0.05; **P< 0.01; ***P< 0.001 vs. Ad-Ctrl; &P< 0.05; &&P< 0.01; &&&P< 0.001 vs. Ad-Ctrl + Ado. h Levels of secreted lactate of HRMECs infected
with Ad-A2AR or Ad-Ctrl with or without adenosine treatment. n= 3. ***P< 0.001 vs. Ad-Ctrl. i ECAR profile showing glycolytic function in Ad-Ctrl- and
Ad-A2AR-infected cells, with or without adenosine treatment. j Quantification of glycolytic function parameters from i. n= 8 per group.
*P< 0.05; **P< 0.01; ***P< 0.001 vs. Ad-Ctrl. Data are represented as means± s.e.m. Statistical significance was determined by unpaired Student’s t-test
(for b, c, g), one-way ANOVA followed by Bonferroni test (for f, j), and two-way ANOVA followed by Bonferroni test (for d, h)
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may explain only in part the decreased pathological angiogenesis
in retinas of the OIR model in endothelial Adora2a-deficient
mice.

Tumor cells mainly rely on aerobic glycolysis, a phenomenon
termed “the Warburg effect,” to generate ATP and provide
substances for fast growth35. Interestingly, vascular ECs use the
same pathway to generate their energy. In ECs, glycolysis

generates 85% of the total ATP8. Of this, ECs use 60% for
maintenance of homeostasis and 40% for proliferation36, 37.
PFKFB3 knockdown markedly suppressed angiogenesis,
demonstrating the importance of glycolysis for endothelial
angiogenesis8–10. Growth factors such as VEGF and FGF2
enhance the expression of the key glycolytic enzyme PFKFB3
and increase glycolysis to support the high ATP demands for
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Fig. 7 ADORA2A regulates HRMEC tip cell formation. a Real-Time PCR analysis of the mRNA levels of the sprouting-governing genes in HRMECs
transfected with siA2AR or siCtrl, in the presence or absence of DAPT (n= 3; *P< 0.05; **P< 0.01; ***P< 0.001 vs. siCtrl; &P< 0.05, &&P< 0.01 vs.
siCtrl + DAPT). b Real-Time PCR analysis of the mRNA levels of the sprouting-governing genes in 2-DG-treated HRMECs in the presence or absence of
DAPT (n= 4; *P< 0.05; **P< 0.01; ***P< 0.001 vs. vehicle control; &P< 0.05, &&P< 0.01 vs. DAPT). c, d Morphometric quantification of spheroid
sprouting from cells transfected with siCtrl or siA2AR in the presence or absence of DAPT. n= 10 per group. n is number of spheroids quantified. *P< 0.05;
**P< 0.01; ***P< 0.001. e Representative fluorescence photographs of EC spheroids containing a 1:1 mixture of siCtrlGFP and siCrlRED ECs, or a 1:1 mixture
of siCtrlGFP ECs and ECs with siA2ARRED in the presence of DAPT. Scale bars, 100 μm. f Quantification of the fraction of tip cells with the indicated
genotypes shown in e (n= 10; ***P< 0.001 vs. siCtrlGFP). g Representative fluorescence photographs of mosaic EC spheroids containing a 1:1 mixture of
siCtrlGFP ECs and siA2ARRED ECs under hypoxia conditions. Cells were stained with DRAQ5 (blue) to mark EC nuclei. Tip cells are indicated by “^“; Stalk
cells are indicated by “*“. The 2nd and 4th rows are magnification of the boxed regions in the 1st and 3rd rows, respectively. Scale bar: 50 μm (1st and 3rd
rows) and 20 μm (2nd and 4th rows). h Quantification of the fraction of tip cells with the indicated genotypes shown in g (n= 10 per group). ***P< 0.001
vs. siCtrlGFP. Data are represented as means± s.e.m. Statistical significance was determined by unpaired Student’s t-test (for a, b, f, h) and one-way
ANOVA followed by Bonferroni test (for c, d)
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Fig. 8 ADORA2A activation mediates increase in glycolysis via a HIF-1α-dependent pathway. a–d Western blot analysis of HIF-1α mRNA and protein
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HRMECs transfected with siHIF-1α or siCtrl under normoxia (21% O2) or hypoxia (0.5% O2). n= 3. *P< 0.05; **P< 0.01; ***P< 0.001 vs. siCtrl normoxia
group; &P< 0.05; &&P< 0.01 vs. siCtrl hypoxia group. h Real-Time PCR analysis of the mRNA levels of glycolytic genes in HRMECs. Cells were transfected
with HIF-1α siRNA or siCtrl for 24 h under normoxia, and further infected with Ad-A2AR or Ad-Ctrl for an additional 24 h, followed by adenosine treatment
for another 12 h. n= 4. *P< 0.05; **P< 0.01; ***P< 0.001 vs. Ad-A2AR + Ado + siCtrl group. i Quantification of glycolytic function in HRMECs transfected
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vessel sprouting8, 10, indicating that glycolysis is also critical
for growth factor-driven angiogenesis. Interestingly, we show
here that knockdown or deletion of endothelial ADORA2A
dramatically inhibited gene expression of most glycolytic
enzymes, including PFKFB3, in vitro and in vivo, resulting
in decreased glycolysis under hypoxia conditions. However, it
seems that ADORA2A knockdown or blockade has less effect
on EC glycolysis under normoxia conditions. This may be due
to the low levels of ADORA2A and adenosine in normoxic
cells. In contrast, ADORA2A overexpression significantly upre-
gulated glycolytic enzymes and increased glycolysis in the
presence of adenosine. Blocking glycolysis with 3PO and 2-DG
dramatically inhibited proliferation and hyper-sprouting of
ADORA2A-overexpressing ECs. Overall, these loss- and gain-of-
function assays strongly support that ADORA2A-regulated

glycolysis is one of the critical pathways for ADORA2A-mediated
angiogenesis.

HIFs are currently viewed as the major regulators of oxygen
homeostasis, angiogenesis, and vascular permeability via
induction of a host of pro-angiogenic genes and glycolytic
enzymes38. Proliferative retinopathies are characterized by
hypoxia-induced pathological neovascularization driven by the
HIF-1α and HIF-2α pathways39–41. HIF-2α is a master regulator
of proangiogenic factors in retinal vascular ECs. HIF-2α
haploinsufficiency results in a reduced ability to induce multiple
proangiogenic factors and reduced neovascularization in the
retinas of mice with OIR41. This study indicates HIF-2α is able to
upregulate ADORA2A. Likely, the angiogenic effects of HIF-2α
are, at least in part, mediated through ADORA2A-dependent
signaling. Most of the glycolytic genes are identified as HIF-1α
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target genes25, 26, 42. The expression of HIF-1α can be modulated
by different regulators through various mechanisms, including
the basal transcription and translation machinery, as well
as posttranscriptional and posttranslational mechanisms43.
Ouyang et al.44 showed that ADORA2A activation rapidly
induced HIF-1α mRNA expression via the cAMP/PKA/CREB
pathway in macrophages. In contrast, ADORA2A knockdown or
overexpression in retinal ECs did regulate the protein level of
HIF-1α, but did not alter its mRNA level, implying that
ADORA2A did not affect HIF-1α transcription or mRNA stabi-
lity. Our study further revealed that ADORA2A preferentially
activates PI3K/Akt and MEK/ERK, two critical pathways
responsible for HIF-1α protein synthesis27, 28, 45, as well as the
downstream translational regulatory proteins of p70S6K and eIF-
4E, without altering the phosphorylation of JNK1/2 and p38
MAPK kinase. Importantly, inhibitors of PI3K and MEK effec-
tively blocked the ADORA2A activation-induced increase in HIF-
1α protein, suggestive of a role for the PI3K and MEK-dependent
translational machinery in ADORA2A-mediated upregulation of
HIF-1α protein levels. Additionally, the adenylyl cyclase inhibitor
SQ22536 and PKA inhibitor H-89 did not affect translational
induction of HIF-1α (Supplementary Fig. 14), suggesting that the
cAMP/PKA/CREB pathway is not involved in ADORA2A-
mediated HIF-1α protein synthesis in HRMECs.

A salient observation of the present study is that ADORA2A
knockdown impaired tip cell activity. Tip cells play a critical
role in various models of sprouting angiogenesis, including
proliferative retinopathy46. Tip cells are located at the forefront
of vessel branches, and are highly polarized with numerous
filopodia to probe the environment, and migrate toward angio-
genic stimuli47, 48. Recently a critical role of glycolysis in tip cell
formation has been demonstrated8, 9. Thus, a decrease in tip cell
formation and tip cell activity for ADORA2A knockdown retinal
ECs is, at least in part, dependent on ADORA2A-mediated
glycolysis. Indeed, blockade of glycolysis by the glycolytic inhi-
bitor 3PO and 2-DG markedly suppresses ADORA2A
overexpression-induced endothelial sprouting. It has been shown
that partial and transient reduction of glycolysis by PFKFB3
knockdown or blockade was not able to significantly alter the
genetic tip or stalk cell signature of ECs8, 9. Similarly, we found
that short term treatment with the ADORA2A agonist CGS12680
or ATL313 did not affect transcript levels of Notch1, DLL4 or

Notch1 target genes HES1, HEY1, and HEY2 (Supplementary
Fig. 15), indicating that ADORA2A activation probably does not
directly regulate endothelial Notch signaling. However, we
demonstrate here that systemic downregulation of glycolytic
enzymes by ADORA2A knockdown or near-complete inhibition
of glycolysis by 2-DG treatment downregulated tip-cell-enriched
genes and upregulated stalk-cell-enriched genes. It is, therefore,
likely that some of the glycolytic enzymes and/or their products
regulate these genes. On the other hand, ADORA2A- or 2-DG-
regulated molecules include genes that broadly impact glucose
metabolism rather than selectively suppress glycolysis. For
example, both ADORA2A knockdown and 2-DG treatment can
inhibit hexokinase-1 (HK1), an enzyme that phosphorylates
glucose to produce glucose-6-phosphate (G6P), the first step in
glucose metabolism. As such, many other pathways associated
with glucose metabolism including reactive oxygen species and
the pentose phosphate pathway (PPP) are affected7, 49. This may
contribute to the altered expression of tip-enriched genes.
Additionally, it might be also possible that long-term or severe
inhibition of glycolysis-associated signals by ADORA2A knock-
down or 2-DG may eventually change endothelial homeostasis
and consequently alter gene expression.

A recent genome-wide association study indicates a close
association of vascular disease with the lead SNP in intronic
regions of the ADORA2A gene50. In a recent study on PDR of
patients with type 2 diabetes, microarray analysis of gene
expression in fibrovascular membranes showed that the level
of ADORA2A mRNA was much higher in samples excised
from patients with PDR compared with those from patients with
non-PDR51. In another PDR study, Charles et al. examined the
associations between PDR and variants of the ADORA2A gene in
a cohort of patients with type 1 diabetes. They found that among
tagging SNPs (tSNPs; rs2236624-C/T, and rs4822489-G/T) in
the ADORA2A gene, participants homozygous for the T allele
displayed a decreased risk of developing prevalent PDR19. The
data we collected from the GTEx database have shown that,
compared with individuals homozygous for the C or G alleles,
individuals homozygous for the T allele actually have a low level
of ADORA2A mRNA in their blood cells (Supplementary Fig. 2),
indicating that in Charles’s study, the observation that type 1
diabetic patients have a low risk of developing PDR is very likely
due to a low level of ADORA2A expression in their retinal ECs.
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Fig. 10 Schematic diagram illustrating the molecular mechanisms underlying the angiogenic effect of adenosine-ADORA2A-mediated signaling cascade
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With the results from this study showing that endothelial
Adora2a knockdown or deletion reduces pathological retina
angiogenesis, it may be safe to conclude that highly expressed
ADORA2A, especially in retinal ECs, contributes to the
development of pathological angiogenesis in the human retina.

Inhibiting pathological angiogenesis by targeting angiogenic
factors such as VEGF has become an attractive clinical strategy in
the treatment of proliferative retinopathies52. However, this
approach has only achieved limited success. Recent advances in
the suppression of retinal angiogenesis in preclinical studies have
included therapies targeting EC glycolysis. Blocking the glycolytic
regulator PFKFB3 suppresses retinal neovascularization in mouse
models of OIR and AMD9, 10. As shown in this study, ADORA2A
is an upstream regulator for the HIF-1α-associated glycolytic
pathway in retinal ECs, suggesting its dominant role in regulation
of endothelial glycolysis and the associated angiogenic
effect. Additionally, ADORA2A inhibition is also able to
suppress VEGF-mediated angiogenesis. Hypoxia-mediated para-
crine VEGF can induce EC expression of GLUT153 and PFKFB38

and subsequently promote glycolysis for vessel sprouting during
ischemic retinopathies. Thus, the blocking of glycolysis by
ADORA2A inactivation may also reduce the effect of VEGF on
angiogenesis. Indeed, we found that ADORA2A knockdown led to
a marked reduction in VEGF-induced HRMEC sprouting and
tube formation, suggesting a facilitating role of ADORA2A in
the VEGF pathway, the molecular target of current treatments
for diabetic eye diseases. Over the past decade, ADORA2A
antagonists have been generated to treat Parkinson’s disease and
have shown a good safety profile12. All these circumstances
collectively indicate that targeting ADORA2A holds significant
promise in the treatment of pathological angiogenesis in vision-
threatening eye diseases and many other diseases highly
dependent on pathological angiogenesis.

Methods
Chemicals and reagents. Recombinant hVEGF165 was from R&D Systems
(Minneapolis, MN, USA). Collagen type 1 (rat tail) was from BD Biosciences
(Erembodegem, Belgium). Adenosine, erytho-9-(2-hydroxy-3-nonyl) adenine
(EHNA), cobalt chloride (CoCl2), and dimethyl sulfoxide were from Sigma-Aldrich
(Bornem, Belgium). Calcein-AM, L-glutamine, and penicillin/streptomycin were
from GIBCO (Grand Island, NY), and 4, 6,-diamidino-2-phenylindole (DAPI)
was from Invitrogen (Invitrogen, Life Technologies, Ghent, Belgium). The
PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), the
glycolysis inhibitor 2-deoxy-D-glucose (2-DG), and the γ-secretase inhibitor
N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)
were from Merck Millipore (Overijse, Belgium).

Mouse generation and breeding. Animals were used according to the National
Institutes of Health Guide for the Care and Use of Laboratory Animals and in
accordance with the protocol approved by the Institutional Animal Care and Use
Committee at the Augusta University. The floxed Adora2a (Adora2aflox/flox) mice
were provided by Dr Joel Linden (La Jolla Institute for Allergy and Immunology,
La Jolla, California, USA). Cell-specific inactivation of Adora2a in ECs or in
macrophages was achieved by cross-breeding Adora2aflox/flox mice with Cdh5-Cre
transgenic mice (The Jackson Laboratory, Stk#006137, Bar Harbor, ME) or
Lysm-cre transgenic mice (The Jackson Laboratory, Stk#004781), respectively.
Global homozygous Adora2a (Adora2a−/−) knockout mice were generated as
previously described54. All mice were on a C57BL/6J background.

Mouse model of OIR. The OIR model was described previously55. Briefly, seven-
day-old (P7) C57BL/6J mouse pups, including both males and females, along with
the foster/nursing mothers, were exposed to 70% or 75% O2 for 5 days to induce
vaso-obliteration. At P12, the mice were returned to room air (RA, 21% O2) to
induce retinal neovascularization, which was maximal at P17. Age-matched mice
kept in RA throughout postnatal development (P0-P17) served as the RA controls.
Underdeveloped neonatal mice with weight less than 6 g at P17 were excluded.

Laser-capture microdissection of retinal vessels. Retinal vessels were micro-
dissected with laser capture in retinal cross sections from Adora2aflox/floxCdh5cre

(Adora2aVEC-KO) and Adora2aflox/flox (Adora2aWT) mice at postnatal day (P)17, as
described previously2, 56. In brief, eyes were embedded in OCT and flash frozen

immediately following enucleation. Eyes were cyrosectioned under RNase free
conditions into 10-μm sections, and collected on RNase-free polyethylene
naphthalate glass slides (11505189, Leica). Sections were dehydrated with 70, 90,
and 100% ethanol washes and stained with isolectin (1:50 in 1 mM CaCl2). Retinal
vessels were microdissected with a Leica LMD 6000 system (Leica Microsystems)
and collected directly into RNA stabilizing buffer from the RNeasy Micro kit
(Qiagen, Chatsworth, CA). RNA was extracted from microdissected tissues using
the RNeasy kit as described above (Qiagen), and Real-Time PCR was performed
with the generated cDNA.

Isolation of mouse retinal endothelial cells. Isolation of MAECs was performed
according to protocols as described previously with some modifications57. Briefly,
eyes from one litter (5 to 6 pups) of OIR-Adora2aVEC-KO and Adora2aWTmice at
P17 were enucleated and hemisected. The retinas were dissected out and kept in
pre-cooling phosphate-buffered saline (PBS) buffer. Retinas (10 to 12 from one
litter) were pooled together, rinsed with PBS buffer, quickly minced into small
pieces in a 1.5 ml tube using eye scissors, and digested in 8 ml of collagenase type II
(Worthington, 2 mg/ml in serum free DMEM, Corning, NY, USA) for 20 min at
37 °C. Following digestion, DMEM with 20% FBS was added and cells were
pelleted. The cellular digests then were filtered through 70-μm and 40-μm nylon
filters (Corning, NY, USA), centrifuged at 500×g for 5 min at 4 °C to pellet cells,
and cells were washed with pre-cooling PBS containing 0.5% bovine serum albu-
min (BSA). The cells were resuspended in 100 μl pre-cooled PBS containing 0.5%
BSA and 2mM EDTA, and incubated with CD31-MicroBeads for 10 min at 4 °C
(Miltenyi Biotec Inc). After affinity binding, CD31-positive cells were obtained via
magnetic separation using a MACS separator (Miltenyi Biotec). Purified ECs were
immediately lysed for Real-Time PCR assay.

Cell culture and treatments. Human primary retinal microvascular ECs
(HRMECs) were obtained from Cell Biologics (Cat. No. H-6065; Chicago, IL, USA)
and used between passages 3-8. The type of cells and no pathogen (including
mycoplasma) contamination were confirmed by the supplier.

HRMECs were cultured in Vessel Cell Basal Medium (VCBM, ATCC,
Manassas, VA, USA) supplemented with Microvascular Endothelial Cell Growth
Kit-BBE (ATCC), and 1% penicillin/streptomycin, or in Complete Human
Endothelial Cell Medium (Cell Biologics). In some experiments, HRMECs
were incubated with 20 ng/ml recombinant hVEGF, 10 μM DAPT, 200 μM CoCl2,
or 20-100 µM adenosine in the presence of 10 µM EHNA according to the protocol
previously described58, 59. For the experiments requiring hypoxia, HRMECs were
placed in a modular incubator chamber (Thermo Scientific, Waltham, MA) with
0.1–2% O2.

Adenoviral transduction of HRMECs. Ad-A2AR, a recombinant adenovirus
vector expressing human ADORA2A; Ad-mutHIF-1α encoding the mutant human
HIF-1α construct containing mutations at P564A and N803A; and Ad-mutHIF-2α
containing mutations at P531A and N847A, were generated as previously
described60. Expressed mutHIF-1α and mutHIF-2α are stable and constitutively
active under normoxic conditions60. Adenovirus encoding the inert Escherichia coli
LacZ gene was used as a negative control (Ad-Ctrl). These adenoviruses were
expanded in HEK293 cells, and the virus concentration was determined using an
Adeno-XTM rapid titer kit (Clontech). Adenoviral infection of HRMECs were
carried out at a multiplicity of infection of 10 pfu per cell, as described previously60.

RNA interference. HRMECs were transfected at 60–70% confluence with 30 nM
siRNAs targeting human ADORA2A (Adenosine A2A-R siRNA (siA2AR), Cat. No.
sc-39850; Santa Cruz Biotechnology, Dallas, Texas, USA) or with a non-targeting
negative control (Control siRNA-A (siCtrl), Cat. No. sc-37007; Santa Cruz
Biotechnology) using siRNA transfection reagent (Santa Cruz Biotechnology) or
Lipofectamine RNAiMAX Reagent (Invitrogen) per the manufacturer’s protocol.
Knockdown of HIF-1α and HIF-2α in HRMECs was carried out by using
predesigned SmartPool siRNA purchased from Dharmacon (siHIF-1α, Cat. No.
L-004018; siHIF-2α, Cat. No. L-004814; Lafayette, CO). Twenty-four hours after
transfection, the medium was changed to fresh complete VCBM, and cells were
maintained for an additional 24 h before further experiments.

Spheroid capillary sprouting assay. HRMECs (750 cells) were incubated over-
night in 25% VCBM (25% VCBM complete medium + 75% VCBM basal medium)
containing 0.25% (w/v) methylcellulose (Sigma-Aldrich) to form spheroids as
described previously61, 62. To assess tip cell competition, cells were mixed at a 1:1
ratio. After 24 h, spheroids were harvested and embedded in 0.9 ml collagen
solution in pre-warmed 24-well plates, with a final concentration of rat type I
collagen (BD Biosciences) at 1.5 mg/ml. The spheroid-containing gels were rapidly
transferred into a humidified incubator (37 °C, 5% CO2) and allowed to polymerize
(20 min) after which 0.1 ml VCBM basal medium was pipetted on top of the gel
containing the corresponding cytokines or compounds. After 24 h, cells were fixed
with pre-warmed 4% paraformaldehyde (PFA), stained with DRAQ5 (Thermo
Scientific) to mark EC nuclei and imaged using a Zeiss LSM 780 Inverted Confocal
Microscope. The number of sprouts and cumulative length of sprouts per spheroid
were quantified from 10 spheroids for each condition using Image J software.
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Fluorescence immunostaining in whole-mount retinas. OIR-mice at P17 were
euthanized and perfused successively with PBS and 4% PFA, and the intact retinas
were collected. Retinas were blocked and permeabilized in PBS containing 10%
goat serum and 1% Triton-X-100 (Sigma-Aldrich) for 30 min. Endogenous Fc
receptors and IgG were blocked with rat anti-mouse CD16/CD32 (Mouse BD
BlockTM, 1:50, BD Biosciences, 553142) and the blocking reagent provided in the
mouse-on-mouse kit (Vector Laboratories, Cat. No. FMK-2201, Burlingame, CA,
USA), respectively. Retinas were then incubated with primary antibodies against
mouse Adora2a (1:100, Millipore, 05-717), rabbit IBa1 (1:400, Sakura Finetek,
019-19741, Torrance, CA), and Alexa488- or Alexa-594 labeled Griffonia
simplicifolia isolectin B4 (1:200, Invitrogen, 121411 and 121413, Carlsbad, CA,
USA) overnight at 4 °C, followed by incubation with fluorescence-conjugated
cross-adsorbed secondary antibody (1:500, Molecular Probes, Life Technologies,
A-21131, Carlsbad, CA,USA) for 1 hour, and then counterstained with DAPI
(Invitrogen). Retinas were flat mounted on microscope slides in mounting medium
(Vectashield; Vector Laboratories) and examined by confocal microscopy
(Zeiss 780; Carl Zeiss, Jena, Germany). Areas of vaso-obliteration and vitreoretinal
neovascular tufts were quantified using Adobe Photoshop CS 5 software.

Immunofluorescence of eye sections. Eyes were fixed in 4% PFA for 2 h at room
temperature and equilibrated in 30% sucrose at 4 °C, followed by embedding in
OCT. Sections (10-μm thick) were heated at 98 °C for 10 min in citric acid buffer
for antigen retrieval, blocked with 10% goat serum for 1 hour, and incubated with
mouse HIF-1α (1:100, BD Biosciences, 610958), rabbit Ki-67 (1:200, RM-9106,
Thermo Scientific), rabbit PFKFB3 (1:100, Proteintech, 13763-1-AP), rat CD31
(1:25, Invitrogen, DIA-310) and/ or Alexa-594 labeled Griffonia simplicifolia
isolectin B4 (1:100, Invitrogen, Cat. No. 121413) overnight at 4 °C, followed by
incubation with fluorescence-conjugated secondary antibody (1:250, Molecular
Probes, Life Technologies, Carlsbad, CA,USA) for 1 hour. For Ki-67/ ERG double
immunofluorescent staining, sections were then stained with Anti-ERG antibody
(Alexa Fluor® 594) (1:200, Abcam, Clone number: EPR3864) overnight at 4 °C.
Sections were washed with PBS, immersed in ProLong Gold mounting medium
with DAPI (Invitrogen) to visualize the nuclei, and examined using confocal
microscopy. For all immunofluorescence experiments, parallel groups of sections
were stained with only primary or secondary antibody as negative controls.

Neovascular nuclei quantification. To quantify neovascular nuclei, retina
sections of OIR mice were stained with hematoxylin-eosin (H&E). The extent of
neovascularization was evaluated by counting the number of neovascular nuclei,
which were defined as the nuclei of cells that extended beyond the inner limiting
membrane of the retina into the vitreous. In this study, eyes of 6–8 mice from
each group were examined and analyzed. Neovascular nuclei were counted in
cross-sections with light microscopy under 40× magnification by an investigator
who was blinded to the specific group assignment.

Real-Time PCR analysis. Total RNA of HRMECs and retinas were extracted using
Trizol Reagent (Invitrogen, Grand Island, NY). In all, 0.1–1.0 μg sample of total
RNA was utilized as a template for reverse transcription using the QuantiTect
Reverse Transcription Kit (QIAGEN) for HRMECs or iScriptTM cDNA synthesis
kit (Bio-Rad) for retinas. Real-time PCR was performed on a StepOne Plus
System (Applied Biosystems, Grand Island, NY) using Power SYBR GreenMaster
Mix (Applied Biosystems) with the respective gene-specific primers listed in
Supplementary Table 1. Quantification of relative gene expression was calculated
with the efficiency-corrected 2−△△CT method using GUBS and 18S rRNA
(for human RNA), or HMBS and HRPT (for mouse RNA) as the internal control,
and data were presented as fold change relative to control groups.

Protein extraction and western blot. HRMECs were lysed with RIPA buffer
(Fisher) supplemented with 1% proteinase inhibitor cocktail (Pierce, Rockford, IL)
and 1% phosphatase inhibitors (Pierce). After sonication and centrifugation of cell
lysates, protein was quantified with the BCA assay and then loaded in the 8%
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel at
10–20 μg per lane. Primary antibodies used in this study were as follows:
ADORA2A (Sigma, A-269; rabbit, 1:500), ADORA2A (Millipore, 05-717; Mouse,
1:1000), HIF-1α (BD Biosciences, 610958; mouse, 1:500), HIF-1α (R&D Systems,
AF1935; goat, 1:1000), HIF-2α (Novus Biologicals, NB100-122; Littleton, CO, USA;
rabbit, 1:1000), PFKFB3 (Proteintech, 13763-1-AP; rabbit, 1:2000), p-AKT (Cell
Signaling Technology, 4060; rabbit, 1:2000), AKT (Cell Signaling Technology,
4691; rabbit, 1:2000), p-ERK1/2 (Cell Signaling Technology, 4370; rabbit, 1:2000),
ERK1/2 (Cell Signaling Technology, 4695; rabbit, 1:2000), p-p38 (Cell Signaling
Technology, 9215; rabbit, 1:1000), p38 (Cell Signaling Technology, 8690; rabbit,
1:1000), p-JNK1/2 (Cell Signaling Technology, 9251; rabbit, 1:1000), JNK1/2 (Cell
Signaling Technology, 9252; rabbit, 1:1000), p-p70S6K (Cell Signaling Technology,
9234; rabbit, 1:1000), p70S6K (Cell Signaling Technology, 2708; rabbit, 1:1000),
p-eIF-4E (Cell Signaling Technology, 9741; rabbit, 1:1000), eIF-4E (Cell Signaling
Technology, 2067; rabbit, 1:1000), and β-actin (Cell Signaling Technology, 3700;
mouse, 1:5000). Images were taken with the ChemiDoc MP system (Bio-Rad), and
band densities were quantified using Image Lab software (Bio-Rad). Uncropped
scans for western blots are provided in Supplementary Figs. 16–18.

Capillary tube network formation. HRMECs were seeded on growth factor-
reduced Matrigel (BD Bioscience)-coated 96-well plates (1 × 104 cells per well)
in 0.1 ml VCBM for 4 h. The endothelial tubule formation was observed and
photographed using an inverted confocal microscope after staining with Calcein
AM. Cumulative tube length was quantified using the Image J software. Branch
points were manually counted.

Metabolic measurements. HRMECs were seeded on Seahorse XF96 polystyrene
tissue culture plates (Seahorse Bioscience, North Billerica, MA), and incubated at
37 °C overnight in 25% VCBM. To avoid differences due to unequal cell numbers and
growth rates, all measurements were made starting with confluent cells by seeding
1.5 × 104 per well. The next day, the medium was changed to XF base Medium
(Seahorse Bioscience) supplemented with 2mM glutamine (for ECAR),
or supplemented with 25mM glucose, 1 mM pyruvate, and 2mM glutamine
(for oxygen consumption rate, OCR), and then the plate was incubated for 1 h in
a non-CO2 incubator at 37 °C. ECAR and OCR were measured with an XFe96
extracellular flux analyzer (Seahorse Bioscience). Inhibitors and activators were
used in these tests at the following concentrations: glucose (10mM), oligomycin
(2 µM), 2-DG (50mM), FCCP (1 µM), antimycin A (0.5µM), and rotenone (0.5 µM).

Lactate measurements. The levels of secreted lactate in cell medium of HRMECs
were determined using the Lactate Assay Kit (Sigma-Aldrich, Cat. No. MAK064).

WST-1 proliferation assay. HRMECs were seeded at 4 × 103 cells per well in
96-well plates. The cells were incubated in 25% VCBM for 72 h under normoxia
(21% O2) or hypoxia (0.5% O2) and proliferation was assessed by WST-1 assay
(Sigma-Aldrich, Cat. No. 5015944001).

Ki-67 staining and BrdU incorporation analysis. HRMECs were treated with
BrdU labeling reagent (Invitrogen) for 16 h. Following BrdU treatment, cells were
fixed with 4% PFA for 10 min, permeabilized in PBS containing 0.5% Triton-X-100
for 15 min, treated with 2N HCl for 30 min, blocked with 10% goat serum for 1 h,
and then incubated with a mouse monoclonal anti-BrdU antibody (1:200, Invi-
trogen, Cat. No. 03-3900) and rabbit anti-Ki-67 antibody (1:200, Thermo Scientific,
Cat. No. RM-9106) overnight at 4 °C, followed by incubation with fluorescence-
conjugated secondary antibody (1:250, Molecular Probes, Life Technologies,
Carlsbad, CA, USA) for 1 h. The cells were then immersed in ProLong Gold
mounting medium with DAPI (Invitrogen) to visualize the nuclei. Images were
obtained using an inverted fluorescence microscope (Zeiss Axio Observer Z1)
or upright confocal microscope (Zeiss 780; Carl Zeiss). The number of Ki-67 or
BrdU-positive cells was counted in six non-overlapping and randomly selected
microscopic fields per slide.

Statistical analysis. The optimal animal numbers and sample sizes were estimated
based on power analysis, prior experience, and our preliminary data. Grouping was
performed in a randomized manner when using C57BL/6J wild-type mice. No
randomization was used when using other mice, since all these mice were
genetically defined, inbred mice. Data analysis for in vivo angiogenic phenotype
was performed in a blinded fashion. Data are presented as means± s.e.m. Statistical
analysis was performed using GraphPad Prism Software (La Jolla, CA). After the
normal distribution was confirmed with the Kolmogorov–Smirnov test, statistical
comparisons were done using two-tailed unpaired Student’s t-test or one- or two-
way analysis of variance (ANOVA) followed by Bonferroni’s post hoc tests when
appropriate. Two-sided P-values were calculated and P< 0.05 denoted significance.
Statistical significance was defined as follows: *P< 0.05, **P< 0.01, ***P< 0.001.

Data availability. The authors state that all relevant data are available within
the article and its Supplementary Information files or are available from the cor-
responding authors upon reasonable request.
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