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Background. We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by
recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This
is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens,
PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA
dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen
vaccine. Methodology. In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid
injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on
poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval
between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria
antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was
measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection
were measured by ELIspot production of interferon-c, and by ELISA. Conclusions. 1) the number of DNA injections, the
formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to
vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and
PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined;
3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into
separate legs; and 4) in a counter-intuitive result, higher interferon-c ELIspot responses to the PkCSP antigen correlated with
earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect.
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INTRODUCTION
In recent years, research on vaccines against malaria infection has

been moving along two parallel tracks. On the one track are the

recombinant protein vaccines given with novel adjutants. Human

phase 1 and 2a/b trials of several of these vaccines have shown

moderate levels of efficacy [1–10]. Great emphasis is placed on the

proper folding and glycosylation of recombinant protein vaccines,

particularly of the blood stage antigens, as protective antibodies often

recognize conformational epitopes on these antigens. [11–23].

The other track of malaria vaccine development is genetic

vaccination with DNA plasmids, recombinant viral vectors, or often

with both in a DNA prime-viral boost combination. In rodent

models, genetic vaccines produce strong T cell responses of both

CD4+ and CD8+ subsets, as well as specific antibodies. The murine

prime-boost vaccines have been very successful at attacking the

malaria parasite as it develops inside the hepatocyte prior to infecting

red blood cells [24–31]. Genetic pre-erythrocytic vaccines have also

begun to be tested in human phase 1 and 2a malaria trials [32–44].

However, these initial studies show that genetic vaccines are less

immunogenic in humans, with only slight efficacy in preventing

parasitemia following experimental sporozoite infection.

Several years ago, we decided to develop a primate malaria

vaccine model for sporozoite infection. This would allow us to

study immunity against sporozoites, liver stage, and blood stage

malaria in a model system closer to the human than the mouse,

and to optimize the delivery of genetic malaria vaccines as a guide

to planning human trials. We chose to use Plasmodium knowlesi (Pk)

in the Indian rhesus monkey, as sporozoites are highly infectious

and blood stage parasitemias rise to high levels similar to P.

falciparum in humans. Our previous studies have shown that DNA

prime-viral boost malaria vaccines can partially protect monkeys

[45,46]. Our vaccine regimen uses a mix of four Pk antigens

(PkCSP, PkSSP2 (TRAP), PkAMA1, and PkMSP1-42kD subunit).

The vaccine has typically used three injections of DNA in PBS for

priming, followed by a recombinant COPAK poxvirus boost after

a 16 week interval. This vaccine has protected approximately 60%

of Indian origin rhesus monkeys against potentially lethal Pk

malaria (10% sterile protection plus an additional 50% which have

parasites in their blood but self-cure). In this paper, we will refer to
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this vaccine as DNA Pk463/COPAK, to emphasize that it uses

four Pk antigens and has three doses of DNA before the

recombinant COPAK poxvirus boost.

The three experiments presented in this paper all include the

DNA Pk463/COPAK vaccine, and compare variations on the

priming regimen or the number of antigens included. We hoped

that some of the variations, such as the use of high doses of DNA

plasmid or the use of DNA on poly-lactic co-glycolide (PLG)

particles [47–50], might lead to better protection. Other varia-

tions, such as shortening vaccination intervals or priming with

single DNA doses, were aimed at streamlining vaccine schedules.

By comparing the four antigen vaccine with vaccines containing

only the pre-erythrocytic components (PkCSP and PkSSP2) we

hoped to understand the role of the different antigens in

protection. Endpoints for all three experiments were parasitemia

after sporozoite challenge and in vitro T cell and antibody

responses. We begin by presenting each experiment separately,

including parasitemias after challenge and immune responses. At

the end of the paper, we combine results from all three studies to

look at the correlation of immune responses with protection.

METHODS

Animals
Rhesus monkeys (Macaca mulatta) descended from Indian stock were

used for all three experiments. Animals were from 6 to 16 years old

and of both sexes. For Experiment #1, monkeys were obtained by and

housed at Southern Research Institute, Frederick MD. For Experi-

ments #2 and #3, monkeys were obtained by and housed at the

Walter Reed Army Institute of Research/Naval Medical Research

Center Silver Spring, MD. Experiment #1 was approved by the SRI

Institutional Animal Care and Use Committee. Experiments #2 and

#3 were approved by the WRAIR/NMRC Institutional Animal

Care and Use Committee. All experiments were conducted according

to Guide for the Care and Use of Laboratory Animals 1996.

Animals were selected to be in general good health, and to have

no history of prior exposure to malaria or pox viruses. Prior to

selection for the studies serum specimens from all animals were

tested in IFAT assays against Pk sporozoites and Pk infected red

cells, and all animals with positive serum titers at dilutions of 1:80

or higher were excluded.

Plasmid vaccines
The DNA plasmid vaccines encoding Pk genes have been previously

described [45]. Briefly, DNA sequences encoding the full length

genes from the Pk H strain of PkCSP, PkSSP2, and PkAMA-1 and

the 42 kD C terminal fragment of PkMSP-1 were cloned into the

VR1020 mammalian expression vector (Vical Inc, San Diego CA).

This vector contains a CMV promoter, and a TPA signal sequence.

Each gene was cloned into a separate plasmid. DNA plasmids for

vaccination were produced by Vical, Inc and contained less that 0.6

EU of endotoxin per mg and were at least 80% super-coiled.

Plasmids were diluted in PBS pH 7.2 prior to injection.

PLG formulation of DNA plasmids. In Experiment #1 some

animals were immunized with DNA plasmids adsorbed to poly-lactic

co-glycolide (PLG) particles. Formulation of these DNA-PLG

particles was as previously described [50]. Each of the 4 DNA

plasmids was adsorbed to separate PLG particles. A dose equivalent

to 0.5 mg of each plasmid was injected in a total volume of 1ml.

Poxvirus
The poxvirus vaccines encoding Pk genes have been previously

described [45]. Briefly, the same four Pk DNA sequences which

were used to construct the Pk DNA plasmids were cloned into the

COPAK poxvirus immunization vector (Virogenetics, Troy, N.Y).

COPAK is derived from the Copenhagen strain of vaccinia virus.

Each Pk gene was cloned into a separate COPAK virus.

Immunizations
DNA injections

Experiments #1 and #3. DNA was diluted in PBS pH 7.2 and

immunizations were given with a #20 gauge needle and syringe.

PLG formulated DNA was injected using a #18 gauge needle

because of increased viscosity. Each injection had a total volume of

1 ml and a total of 0.5 mg of plasmid. Each plasmid was injected

separately and subsequent injections of each plasmid were into the

same muscle: PkCSP right rectus femoris, PkSSP2 left rectus

femoris, PkAMA1 right triceps, and PkMSP1 left triceps.

Experiment #2. Immunizations in this experiment were the

same as in Experiments #1 except for the group receiving 5 mg of

PkCSP DNA per injection. Because of increased viscosity, for this

group the DNA was diluted in 2 ml of PBS, and 1 ml was injected

into each femoral muscle.

COPAK injections were given im with a #20 gauge needle and

syringe into the right rectus femoris muscle in 1 ml of PBS pH 7.2.

All COPAK vaccinations used 26108 pfu of virus for each malaria

antigen. For multiple antigen COPAK immunizations, all vaccines

were mixed together in the same syringe in 1 ml of PBS and

delivered into the same site, a total of 86108 pfu . Control COPAK

for the Pk4 vaccine was 86108 pfu of parental COPAK virus.

Malaria Parasites
Plasmodium knowlesi H strain sporozoites were grown in Anopheles

dirus mosquitoes. Sporozoites were harvested 14 days after

mosquitoes had fed on an rhesus monkey infected with Pk.

Harvesting was by the Ozaki method. Sporozoites were diluted in

E199 medium with 5% normal rhesus serum and counted with

a hemocytometer. 100 sporozoites in a total volume of 1 ml were

injected IV on the day of challenge.

Beginning 6 days after sporozoite challenge, each day at 1 PM

blood was taken by ear prick and prepared for thin and thick

malaria smears using Giemsa stain at pH 7.01. For thin smears,

20,000 red cells were examined. For thick smears, 0.025 ml of

blood were examined. These data was used to calculate the

percent infected red blood cells. Animals were followed for 30 days

after challenge. To minimize morbidity, monkeys were treated

when their parasitemia exceeded 1% in experiment #1. Because

of the lack of morbidity in experiment #1 the treatment threshold

was raised to 2% in experiments #2 and #3. Monkeys were also

treated if their hematocrit fell to 50% of baseline values, which

occurred in several animals with malaria infections which persisted

at low levels for longer than 18 days after sporozoite challenge.

Measurement of malaria antibodies
Plasma was tested by ELISA for IgG titer using as capture antigens

each of the four Pk antigens used in the immunization studies.

Capture antigen for PkCSP was an E. coli produced full length

protein used at 0.1 microgram per ml provided by Sanjay Kumar.

Capture antigen for the full length PkSSP2, PkAMA-1, and the

PkMSP-1 42kD fragment we produced by in vitro synthesis using

the Rapid Translation System RTS 500 E. coli HY kit (Roche

Diagnostics Corporation, Indianapolis, IN). These capture anti-

gens were used at concentrations of 1 to 4 micrograms per ml in

PBS pH 7.2 in Immulon II 96 well plates (Dynex Technologies

Inc., Chantilly, Virginia ). Plates were blocked with 5% milk

powder in PBS for 2 hours. Plasma samples were diluted in 3%

non-fat dry milk in PBS and kept at room temperature for 4–
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18 hours. Peroxidase-labeled goat anti-human IgG (H+L) (Kier-

kegard Perry Laboratories, Gaithersburg MD) at a 1:10,000

dilution in 3% non-fat dry milk was added for 1 hour, and

substrate was ABTS (Kierkegard Perry Laboratories). OD was

read using a SPECTRA MAX 190 ELISA reader (Molecular

Devices Corp., Sunnyvale, CA). Endpoint titer for each sample

was the highest plasma dilution at which the OD was greater than

twice the value of plasma from naı̈ve monkeys.

Measurement of T cell responses
ELIspot assay for cells producing INF-c was done as previously

described [51]. Briefly, MAIP S 4510 plates (Millipore, Bedford,

MA) were coated with BMS 107, a monoclonal antibody against

human interferon c, (Bender Med Systems, Austria) at 5 mg/ml in

PBS. 26105 cryopreserved PBMC were added per well in a total

volume of 0.2 ml containing medium alone, concanavalin A at 10

microgram per ml or malaria antigen. After overnight incubation,

a secondary anti-human biotinylated anti-IFN-c antibody, clone

7B6-1 (Mabtech, Cincinnati, OH) was added at concentration of

2.5 mg/ml. Spots were developed using streptavidin -alkaline

phosphatase conjugate (PharMingen, San Diego, CA) at 1:2000

dilution at room temperature for 1 hr. Following six washes with

PBS Tween, spots were developed with 5-bromo-4 chloro-3

indolyl phosphatase (BCIP) (Sigma-Aldrich, St. Louis, MO). Spots

were read using a CTL ELIspot reader (Cellular Technology Ltd.,

Cleveland,OH). A response was considered positive only if there

were greater than 50 spots per million cells, and if responses were

greater than twice those recorded in the media controls.

Technicians were blinded as to the vaccination group of the

animals whose cells they were testing.

Malaria test antigens for ELIspot
In all three studies we tested ELIspot response to the PkCSP antigen

using pools of synthetic 20 aa peptides overlapping by 10 aa and

spanning the antigen. The concentration of each peptide in the pool

was 10 mM. In experiment #1, response to PkMSP1 was tested

using an E. coli derived PkMSP1 19kD fragment tested at 2 mM (a

gift of Dr. Sanjai Kumar). This 19kD fragment is contained within

the 42kD PkMSP1 fragment used in our Pk vaccines. In experiment

#3, we tested response to the PkAMA-1 antigen using pools of

synthetic 15 aa peptides overlapping by 11 aa and spanning the

antigen. The concentration of each peptide in the pool was 2 mM.

Statistical Methods: For each of the three separate experiments,

we used Student’s T test and Fisher’s Exact Test for analysis of

continuous and dichotomous variables respectively. For analysis of

combined data from the three experiments in the final figure, we

used a simple linear regression model.

RESULTS
Experiment # 1. Our goal in experiment #1 was to compare

three priming regimens: 3 injections of DNA in PBS, 1 injection of

DNA in PBS, and 3 injections of DNA formulated on PLG

microspheres. All three groups received a boost with the same

COPAK virus vaccine 16 weeks after the last DNA immunization.

A control group received a mock vaccine, with control plasmid on

PLG microspheres and a boost with control COPAK virus

(Table 1). The three experimental groups were immunized with

DNA encoding four Pk antigens, PkCSP, PkSSP2, PkAMA-1, and

PkMSP1. Each of these four DNA plasmids was given into

a separate im site (the left and right triceps and the left and right

quadriceps) to preclude any interactions at the injection sites. Four

weeks after the COPAK dose, all animals were challenged with

100 Pk sporozoites given iv and followed for the development of

blood stage parasitemias. Blood was taken for in vitro studies

before the first injection, four weeks after each DNA vaccination,

and prior to challenge.

Figure 1 shows the parasitemias for individual monkeys plotted

by vaccine group. We followed each animal until its parasitemia

exceeded 1% at which time it was treated with anti-malarial drugs.

Three animals, two in the control group and one in the PLG DNA

group were inadvertently treated for malaria at parasitemias lower

than 1% (these are shown with open markers). Figure 1 panel E

shows the geometric mean parasitemia for each vaccine group for

each day that at least three animals remained untreated for

malaria. Table 2 summarizes the information on the first day

parasites appeared in the blood and the day they reached 1%.

The DNA priming method strongly affected the efficacy of the

DNA/COPAK vaccine. The group of monkeys primed with three

doses of DNA in PBS were best protected (p,0.05 Fisher Exact

test, Table 2). Of the 5 animals primed with three doses of DNA in

PBS one monkey never developed blood stage parasites pre-

sumably due to complete inhibition of malaria in the sporozoite

and liver stages. The other 4 animals developed parasitemias at the

same time as the Control animals but as a group had lower

geometric mean parasitemia on all days, although this did not

reach statistical significance (Figure 1 panel E). Growth of parasites

was similar in all groups up until days 12–13 when growth slowed

in 3 of 4 infected animals in the DNA Pk463/COPAK group.

These 3 animals controlled their blood stage infections below 1%

parasitemia without drug therapy. In contrast, all 5 monkeys

receiving only a single dose of DNA in PBS developed parasitemia,

and 4 of 5 reached parasite levels over 1% and were treated. All 5

monkeys receiving 3 doses of DNA on PLG microspheres all

became infected, and the 4 animals followed to the end of the

study developed parasitemias over 1%.

Table 1. Immunization schedule for Experiment #1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group Vaccine Name Dose 1 Dose 2 Dose 3 Dose 4 Challenge

wk 0 4 8 24 28

1 DNA Pk463/COPAK DNA DNA DNA COPAK X

2 DNA Pk461/COPAK DNA COPAK X

3 PLG Pk463/COPAK DNA on PLG DNA on PLG DNA on PLG COPAK X

4 Control Control DNA on PLG Control DNA on PLG Control DNA on PLG Control COPAK X

Five monkeys in each of four vaccine groups were immunized and challenged with Pk malaria sporozoites. ‘Pk4’ refers to four Pk antigens (PkCSP, PkSSP2, PkAMA1, and
PkMSP1). ‘DNA’ indicates plasmid vaccines in PBS. ‘PLG’ indicates plasmid vaccines complexed to PLG particles. ‘COPAK’ indicates vaccinia encoding malaria antigen.
Animals in the Control group received a mock vaccine consisting of plasmid without malaria inserts complexed to PLG particles followed by parental COPAK without
malaria inserts. (See text for more details).
doi:10.1371/journal.pone.0001063.t001..
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Figure 2. summarizes the immune responses for individual

monkeys in experiment #1. Both ELISA’s and INF-g ELIspot

assays were run on frozen samples taken before immunization, four

weeks after the final DNA immunization, on the day of COPAK

boost, and four weeks after boost at the time of malaria challenge. No

significant antibody or IFN-g responses were seen at baseline or after

the priming immunizations (data not shown). After COPAK boost,

substantial T cell and antibody responses appeared.

Figure 2 panel A plots the interferon-c ELIspot responses after

COPAK boost for the two antigens tested, PkCSP and PkMSP1.

The group primed with DNA on PLG microspheres had the

highest average ELIspot responses for both antigens however this

was not statistically significant (p = 0.58 Student’s T test) because

of the large variation in responses between animals.

Figure 2 panel B shows antibody responses to each of the four

vaccine components after the COPAK boost. The group of

animals primed with three doses of DNA in PBS had the highest

geometric mean titers of serum IgG for all four antigens. For most

antigens, these differences were statistically significant (see legend).

Experiment #2 was designed to answer two questions. Firstly,

can the PkCSP vaccine alone or with the PkSSP2 vaccine protect

as well as the four antigens Pk4 vaccine (with PkCSP, PkSSP2,

PkAMA-1, and PkMSP1)? Secondly, does increasing PkCSP DNA

doses during priming from 0.5 mg to 5.0 mg lead to stronger

Figure 1. Panels A–D show the % parasitemia for individual monkeys by vaccine group according to the day after sporozoite challenge for
Experiment #1. Data shows the first day parasites were detected and continues until the animal was drug treated when parasitemia exceeded 1% (
3 animals inadvertently treated at lower parasitemias have open symbols). For comparison, in each panel the grey line shows the mean parasitemia
for the Control group. In panel C, one animal never became parasitemic as indicated by x-x. Panel E shows the geometric mean parasitemias for
vaccine groups for all days in which at least three animals had not been drug treated. (The monkey from the DNA Pk463/COPAK group which did not
become infected was excluded from the average).
doi:10.1371/journal.pone.0001063.g001
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immune responses or enhanced protection after COPAK boost?

Table 3 gives the immunization schedule for experiment #2. As in

experiment #1, each component of the DNA vaccine was given

im by a single 1 ml injection into a separate limb. The one

exception was the group receiving 5 mg of PkCSP DNA, which

received two injections of 1 ml into each thigh because of concerns

about concentration and viscosity of the DNA vaccine. In

experiment #2 monkeys were followed until parasitemias

exceeded 2% and then treated with anti-malarial drugs.

Experiment #2. Vaccine effects on parasitemia.

Figure 3 panels A–E show the parasitemias for individual

monkeys in this experiment while panel F shows the geometric

mean parasitemias for each group. Table 4 summarizes in-

formation on the day parasites were first detected following

challenge, and the day when each animal’s parasitemia exceeded

2%. Figure 3 panel A shows parasitemias in Control monkeys

immunized with the mock vaccine. All Control animals had

parasites detected in the blood on day 7 or 8 after sporozoite

challenge, showed logarithmic parasite growth, and all were

treated on day 11 after they exceed 2% parasitemia. Panel E shows

parasitemias for the monkeys receiving the Pk4 DNA63/COPAK

vaccine (given identically as in Experiment #1). In Experiment

#2, no monkeys were sterilely protected however the vaccine had

a substantial impact on infection. There was a statistically

significant one day delay in the appearance of the first parasites

compared to Control (p = 0.03, Fisher Exact test). Geometric

mean parasitemias were lower in the Pk4 DNA63/COPAK

vaccine group with statistically significant differences from Control

monkeys on days 8, 10, and 11 (p,0.05, Student’s T test). Parasite

numbers increased at similar rates in all groups until day 11, when

4 of 5 of the monkeys receiving the Pk4 DNA/COPAK vaccine

showed a slowing of parasite growth. As a result, 2 of 5 monkeys in

this vaccine group never reached 2% parasitemia, and 2 animals

had a delay of several days until treatment was required,

a statistically significant difference from Control animals

(p,0.001, Fisher Exact test).

Figure 3 panels B, C, and D and Table 4 show parasitemias for

animals receiving the PkCSP vaccine alone, the high DNA dose

PkCSP vaccine, and both the PkCSP and PkSSP2 vaccines.

Monkeys receiving the PkCSP 0.5 mg DNA/COPAK vaccine

showed a one day delay in the time to first parasitemia as

compared to the control group (p = 0.03, Fisher Exact test).

Animals receiving the ten-fold higher doses of the DNA vaccine

did not show any increased time to first parasitemia compared to

monkeys given lower doses. Curiously, monkeys receiving

concurrent vaccinations with both the PkCSP and the PkSSP2

antigens were less protected than animals receiving the PkCSP

vaccine alone (p = 0.03, Fisher Exact test), showing first parasites

in the blood the same day as the Control group.

Of the 15 animals receiving only the pre-erythrocytic PkCSP and/

or PkSSP2 vaccines, none was able to control its blood stage parasite

growth and all needed treatment for parasitemias over 2% by day

13. This contrasts with the monkeys receiving the 4 antigen vaccine

which included PkAMA1 and PkMSP1 (p,0.001 Fisher’s Exact

Test). Of these 5 monkeys, 2 animals controlled their parasitemia

without drug treatment, 2 had long delay until parasitemia reached

treatment levels, while one was treated on day 11.

Figure 4. shows immune responses of animals to the PkCSP

antigen in Experiment #2. Interferon-c ELIspot T cell responses

to PkCSP were measured in all animals at baseline, four weeks

after the third DNA injection, and two weeks after the COPAK

boost. After three DNA immunizations only weak T cell responses

were detected (Figure 4 panel A). Animals receiving three 5.0 mg

doses of PkCSP plasmid had slightly higher numbers of INF-c
producing T cells than did animals receiving 0.5 mg doses

(p = 0.11). Monkeys receiving 0.5 mg doses of both the PkCSP

and PkSSP2 DNA vaccines given in opposite legs (mean 16 spots/

million sd = 11) had lower levels of PkCSP specific interferon-c
responses than monkeys receiving 0.5 mg PkCSP DNA alone

(mean 54 spots/million sd = 36) (p = 0.04, Student’s T test).

After boosting with COPAK vaccines, T cell responses to PkCSP

increased in all groups. Monkeys primed with 0.5 mg PkCSP DNA

had the highest T cell response but this was not significantly different

than animals receiving the higher 5.0 mg dose ( p = 0.08). Animals

receiving the 2 antigen PkCSP and PkSSP2 vaccine (mean 257

spots/million sd = 271) or the 4 antigen Pk4 DNA vaccine (mean 301

spots/million sd = 167) had lower interferon-c responses than did

animals receiving the single antigen 0.5 mg PkCSP vaccine (mean

997 spots/million sd = 981) (p = 0.04, Fishers Exact test).

Figure 4 panel B shows antibodies to PkCSP in experiment #2.

Four weeks after the third DNA immunization, the anti-PkCSP

titers were highest in the monkeys receiving the 5.0 mg plasmid

dose (p,0.05) although titers were still modest. After the COPAK

boost, all vaccine groups had high antibody titers to PkCSP.

Although monkeys primed with the 5 mg DNA had the highest

titers after boost, this was not statistically different from monkeys

primed with 0.5 mg DNA (p = 0.28). Antibodies to PkCSP were

the same in groups receiving 0.5 mg of PkCSP DNA alone, or

simultaneous vaccination with 0.5 mg of PkSSP2 DNA.

Very large PkCSP DNA doses gave higher immune T cell and

antibody responses after DNA vaccination. However, these

Table 2. Summary of Parasitemia Data in Experiment #1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vaccine
Day 1st

parasitemia
Mean day 1st

parasitemia
Day .1%
parasitemia

Mean Day
.1%
parasitemia

DNA Pk461/COPAK 8 13

8 13

9 8.8 13 13+

9 13

10 never

DNA Pk463/COPAK 8 never

8 never

10 9.0+ never 14+ *

10 14

never -

PLG Pk463/COPAK 7 12

8 12

8 8.2 12 12.25

8 13

10 unknown

Control 8 unknown

8 14

9 9.0 unknown 13

9 12

11 13

‘Day 1st parasitemia’ is the day after sporozoite challenge when parasites were
first seen on malaria smear. ‘Day .1% parasitemia’ is the day of drug treatment
(‘unknown’ means that monkeys were drug treated before reaching 1%
parasitemia). Priming with 3 doses of DNA in PBS gave better protection than
priming with 1 dose of DNA in PBS or 3 doses of DNA on PLG (*p = 0.04 Fisher’s
Exact test).
doi:10.1371/journal.pone.0001063.t002..
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Figure 2. Panel A. Interferon-c ELIspot was tested for only two antigens: PkCSP and PkMSP1. Spots in medium controls were subtracted from
antigen test wells, and the results averaged. Priming with DNA on PLG gave a stronger interferon-c response than DNA in PBS but this was not
significant (p = 0.58). Panel B. Geometric mean antibody titers by ELISA at time of sporozoite challenge for each of the four malaria vaccine antigens.
Priming with 3 doses of DNA gave higher antibody levels than did a single DNA priming dose for PkCSP, PkMSP1 and PkAMA1 antigens (p,0.05).
Priming with 3 doses of DNA in PBS produced higher serum antibody titers than did priming with 3 doses of DNA on PLG for PkCSP, PkSSP2, and
PkAMA1 antigens (p,0.05).
doi:10.1371/journal.pone.0001063.g002

Table 3. Immunization schedule for Experiment #2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group Vaccine Name DNA amount Dose 1 Dose 2 Dose 3 Dose 4 Challenge

wk 0 4 8 24 28

1 DNA Pk463/COPAK 0.5 mg of 4 DNAs DNA DNA DNA Pk4 COPAK X

2 PkCSP 0.5 mg/COPAK 0.5 mg DNA DNA DNA PkCSP COPAK X

3 PkCSP 5.0 mg/COPAK 5.0 mg DNA DNA DNA PkCSP COPAK X

4 PkCSP+PkSSP2/COPAK 0.5 mg of 2 DNAs DNA DNA DNA PkCSP+PkSSP2 COPAK X

5 Control 2.0 mg DNA DNA DNA Control COPAK X

Five monkeys in each of five vaccine groups were immunized and challenged with Pk malaria sporozoites. The four antigen vaccine given Group 1 was identical to that
given to Group 1 in Experiment 1. Group 2 received only the PkCSP components of the vaccine given to Group 1. Group 3 received a ten-fold larger dose of the PkCSP
DNA than Group 2 and the same dose of PkCSP COPAK. Group 4 received only the PkCSP and PkSSP2 components of the vaccine given to Group 1. Group 5, the Control
group, received a mock vaccine consisting of plasmid DNA without malaria antigen inserts followed by parental COPAK without malaria inserts. (See text for more
details).
doi:10.1371/journal.pone.0001063.t003..
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improved responses after DNA priming did not translate into

improved immune response after the PkCSP COPAK boosting.

Neither did the animals receiving high dose DNA priming show

any improved protection against malaria as compared with those

receiving low dose priming.

Simultaneous vaccination with PkSSP2 DNA into a separate limb

seems to have inhibited interferon-c T cell responses to PkCSP

DNA. This is seen in a lower PkCSP specific interferon-c response

after the third DNA dose, as well as after the COPAK boost. These

lower responses were mirrored in a complete lack of protection in the

Figure 3. Panels A–E show the % parasitemia for individual monkeys by vaccine group according to the day after sporozoite challenge for
Experiment #2. Data shows the first day parasites were detected and continues until the animal was treated with anti-malarial drugs. For
comparison, in each panel the grey line shows the mean parasitemia for the Control group. Panel F shows the geometric mean parasitemias for all
the vaccine groups for all days in which at least three animals had not been drug treated.
doi:10.1371/journal.pone.0001063.g003
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PkCSP+PkSSP2 group. We had hoped that using two pre-

erythrocytic antigens would improve protection, but it appears that

a negative interaction is occurring when animals are exposed to these

two antigens. Interestingly, this interaction affected interferon-c
responses but did not affect antibody responses to PkCSP.

Finally, only animals receiving the four antigen vaccine

including the blood stage antigens PkMSP1 and PkAMA-1 were

able to control their malaria infections once organisms appeared in

the blood. This is strong evidence that this blood stage protection

is due to the antigen specific responses to these two proteins

induced by genetic vaccination. In the absence of a group

receiving only the PkMSP1 and PkAMA1 vaccines, we do know if

the two pre-erythrocytic stage antigens contribute to this blood

stage efficacy, or if protection against blood stage infections would

be seen with a vaccine containing only PkMSP1 and PkAMA1.

Experiment #3. In this experiment, we compared 7 week and

21 week intervals between the third DNA dose and COPAK boost

using the Pk463DNA/COPAK vaccine. (A 16 week interval was

used in Experiments #1 and #2. It was our intention to compare

7 and 16 week intervals in this experiment, however logistical

problems caused a delay). The vaccination and challenge were as

in Experiments #1 and #2. There were 4 animals in the 7 week

interval group, and 5 animals in the other two groups.

Figure 5 panels A–C show the parasitemias for individual

monkeys in Experiment #3 and panel D shows the geometric

mean parasitemias for each group. All Control and vaccinated

monkeys developed blood stage infections on days 7–9 after

sporozoite injection. Neither of the vaccine groups had a delay to

day of first parasitemia compared to the Control group. However,

compared to the Control and 7 week interval groups, the Pk4

DNA63/COPAK 21 week group had a lower mean parasitemia

on days 8–11 (p,0.05 by Student’s T test) and a one day delay to

day .2% parasitemia compared to the Control group (p = 0.023

Fishers Exact test). All monkeys required drug treatment and there

were no self-cures. Immune responses at the time of challenge

showed no statistically significant differences between the groups

with 7 or 21 week intervals in antibody titers by ELISA or in

interferon-c ELIspots, although there were slightly higher T cell

responses in the group with the longer interval (data not shown).

Conclusions from Experiment 3. Comparing the groups with 7

and 21 week intervals, the longer interval resulted in lower mean

daily parasitemias and a delay in reaching 2% parasitemia.

Although the group with 21 week intervals was not as well

protected as were the groups with 16 week intervals in Experi-

ments #1 and #2, we are loath to conclude that one is interval is

superior as the animals in the three experiments were challenged

at different times with different batches of sporozoites.

Correlation of Immune Responses to PkCSP with parasitemia

in experiments 1, 2, and 3.

The small numbers of animals in each of the three experiments

lead us to combine the results for correlation of immune response

at the time of sporozoite challenge and protection against malaria.

There was no correlation between antibody titers to any vaccine

antigen with day of first parasitemia or day when the treatment

threshold of parasitemia was reached (data not shown). Interferon-

c ELIspot responses for PkMSP1 and PkAMA1 were only tested in

single experiments and the small samples size provides insufficient

statistical power to attempt correlations with protection. However,

interferon-c ELIspot responses to PkCSP were measured for all

animals in these three experiments and they showed a negative

correlation with the appearance of first parasites in the blood.

Figure 6 shows this surprising result. We have included all

animals from Experiments 1, 2, and 3 that were immunized with

any vaccine containing PkCSP (i.e. Control animals are excluded).

In panel A, we have plotted the PkCSP antibody titer on day of

challenge vs. day of first parasitemia. There is no correlation

between antibody titer and time to parasitemia. Figure 6. panel B

shows a plot of interferon-c ELIspot to the PkCSP antigen for the

same animals. Here there is a statistically significant negative

association, with animals having stronger responses showing

parasites earlier in the blood (p = 0.04, linear regression model).

This negative correlation of PkCSP interferon-c response and time

to first parasite detected is also true for each of the three

experiments analyzed individually, although the smaller numbers

do not lead to statistically significant results (data not shown).

DISCUSSION
Our goal in developing a primate malaria vaccine model is to

define the important parameters governing vaccine efficacy prior

to designing malaria vaccines studies in humans. We draw four

lessons from the malaria vaccine experiments presented in this

Table 4. Summary of parasitemia data in Experiment #2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vaccine
Day 1st

parasite
Mean day 1st

parasite
Day .2%
parasitemia

Mean Day .2%
parasitemia

PkCSP 0.5 mg63/
COPAK

8 11

8 11

8 8.4 * 12 11.6

8 12

10 12

PkCSP 5.0 mg63/
COPAK

7 11

8 11

8 8.0 12 11.8

8 12

9 13

PkCSP+PkSSP263/
COPAK

7 11

7 11

7 7.4 11 11.4

8 12

8 12

DNA Pk463/COPAK 8 11

8 15

8 8.4* 16 14+**

9 never

9 never

Control 7 11

7 11

7 7.4 11 11

8 11

8 11

‘Day 1st parasite’ is the day after sporozite challenge when a parasite was first
seen on malaria smear. ‘Day .2% parasitemia’ is the time of drug treatment.
The group receiving the four antigen vaccine and the single antigen PkCSP
vaccine had a delay in the appearance of parasites in the blood (*p = 0.03 vs
Control group, Fisher’s Exact Test). The group receiving high doses of PkCSP
DNA priming was not as well protected. Co-immunization with PkSSP2 and
PkCSP was worse than immunization with PkCSP alone (p = 0.03). Only the
monkeys receiving all 4 antigens were protected against high parasitemias
(**p,0.001 vs Control group).
doi:10.1371/journal.pone.0001063.t004..
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paper: 1) The timing, number and formulation of the DNA

injections is critical to the protective efficacy of the DNA/COPAK

vaccine, 2) DNA/COPAK malaria vaccines can provide pro-

tection against both pre-erythrocytic and blood stage malaria

infection, 3) the antigens can interfere with each other in a multi-

antigen vaccine even when they are given at separate injection

sites, and 4) we have not yet identified the immune responses

which protect these immunized monkeys against malaria.

1) In this prime/boost vaccine model in rhesus monkeys, the dose,

number, and formulation of DNA injections are critical for vaccine

efficacy. However, the absolute quantity of DNA injected in priming

before COPAK boost was less important. In experiment #1, the Pk4

DNA63/COPAK vaccine with 3 monthly DNA doses provided

a moderate level of protection against sporozoite challenge, similar to

what we have previously reported [45,46]. Priming with only a single

dose of DNA plasmid led to similar interferon-c responses, but

reduced antibody levels and less vaccine efficacy. Formulating the

three DNA doses on PLG microspheres enhanced the interferon-c
responses to the vaccine but also reduced antibody responses and

efficacy. In Experiment #2, large doses of PkCSP plasmid gave

higher immune responses before the viral boost, but this did not

translate into better immune responses or protection after boost. In

Experiment #3, shorter intervals between prime and boost led to less

protection. The lesson for human vaccine development would seem

to be that much effort should be spent in optimizing priming

regimens in human DNA prime/viral boost trials, with emphasis on

finding optimum intervals [52] and formulations rather than

escalating DNA quantities.

2) In these experiments, only animals receiving the four antigen

vaccines were able to control parasite growth after parasites were

detected in the blood. Of the four malaria antigens in this vaccine,

PkCSP and PkSSP2 are primarily expressed on sporozoites [53–

57] and may be present in early stage infected liver cells. PkAMA1

and PkMSP1 are expressed in infected red cells and late stage

infected liver cells [58] , although there is some data indicating

that AMA1 is also expressed in sporozoites [54,59]. Animals

receiving vaccines with the PkCSP and or PkSSP2 antigens

demonstrated a delay in appearance of parasites in the blood,

consistent with killing of sporozoites or infected liver cells and

development of fewer liver schizonts [60]. However, in animals

Figure 4. Panel A shows interferon-c ELIspot response to PkCSP by vaccine group prior to vaccination, after the third DNA vaccination, and after
the COPAK boost. After the third DNA vaccination, the PkCSP 5.0 mg group has the highest response but this is not significantly greater than the
PkCSP 0.5 mg group (p = 0.11). After the third DNA vaccination monkeys receiving both PkCSP and PkSSP2 immunizations had significantly lower
responses to PkCSP than did animals receiving only PkCSP DNA (p = 0.04). After the COPAK boost, monkeys primed with low dose PkCSP 0.5 mg DNA
had the highest response interferon-c response (p = 0.08 vs high dose PkCSP, p = 0.04 vs Pk4 vaccine, p = 0.04 vs PkCSP+PkSSP2). Panel B shows IgG
responses at the three time points. After three DNA vaccinations, serum titers were highest in the high dose DNA PkCSP 5.0 mg group (p = 0.01). After
boosting with recombinant COPAK virus, monkeys primed with the high dose DNA had the highest serum IgG titers but this was not significantly
different from the other vaccine groups.
doi:10.1371/journal.pone.0001063.g004
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which only received vaccines with PkCSP or PkSSP2, once red

cells became infected there were logarithmic increases of parasites.

Only animals receiving vaccines containing the PkAMA1 and

PkMSP1 antigens could control their red cell infections below

levels requiring drug treatment. This is strong evidence that the

immune response to these blood stage antigens induced by

a DNA/viral vaccine was effective in limiting parasite growth.

Most work on blood stage vaccines, including AMA1 and

MSP1, has focused on protein vaccines where the correct folding

and glycosylation of antigens has been critical for the development

of inhibitory antibodies and protection [11–23]. Both the DNA

plasmid and viral components of our vaccine are based on parasite

DNA sequences which the mammalian cell uses to produce

antigenic proteins using its intrinsic controls for folding, post-

translational modifications, and degradation. These vaccine

antigens may or may not have the same folding and glycosylation

as they have in the parasite. We believe that the lesson for human

vaccine development is that blood stage antigens can be protective

in genetic vaccines, and should be included despite the limited

ability to control their final three dimensional structures. It is not

clear that the protective effect of these genetic blood stage vaccines

is due to the direct induction of inhibitory antibodies. The typical

course of parasitemia in our vaccinated animals is a logarithmic

rise in blood stage parasites for several days which then slows,

plateaus, and decreases. This is not the pattern expected from

a vaccine which induces high levels of protective antibody, where

Figure 5. Panels A–C show the % parasitemias for individual monkeys by vaccine group according to the day after sporozoite challenge for
Experiment #3. Data shows the first day parasites were detected and continues until the animal was treated with anti-malaria drugs. For
comparison, in each panel the grey line shows the mean parasitemia for the Control group. Panel D shows the geometric mean parasitemias for all
the vaccine groups for all days in which at least three animals had not been drug treated. For each day 8–11 the mean parasitemia for the group
receiving the booster dose at the 21 week interval was lower than the other groups (p,0.05, Student’s T test).
doi:10.1371/journal.pone.0001063.g005
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one might expect a uniform slow rate of parasite growth. An

alternative hypothesis is that the genetic vaccines have induced

helper T cell responses to the blood stage antigens, which allows

the host to rapidly produce inhibitory antibodies after antigens

appear in the blood. We are currently examining this hypothesis

by comparing the inhibitory effects of serum antibody in

immunized animals both before and after challenge.

3) Experiment #2 provided evidence of antigen interference

between PkCSP and PkSSP2. Our unexpected finding is that

administration of the PkSSP2 DNA vaccine in the left leg diminished

the interferon-c T cell responses and efficacy of the PkCSP DNA

vaccine given in the right leg. However, antibody responses to

PkCSP DNA vaccination were not affected. Monkeys in the four

antigen vaccine group, which received the PkCSP and PkSSP2 DNA

Figure 6. Immune response to PkCSP antigen at time of challenge for individual animals by day to first parasite seen in blood. Data from
Experiments #1, 2, and 3 are plotted. Data from Control animals are not included. Panel A shows PkCSP endpoint ELISA titers where there is no
significant correlation. Panel B shows PkCSP interferon-c ELIspot titers with a linear regression line included. There is a significant negative correlation
(p = 0.04), animals with lower ELIspot responses having longer times to the appearance of first parasite in the blood.
doi:10.1371/journal.pone.0001063.g006
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vaccines in the legs but also received the PkAMA1 and PkMSP1

DNA vaccines in the arms, also had lower interferon-c responses to

PkCSP than the group receiving PkCSP alone. We do not pretend to

understand these phenomena. Previously, inhibition between DNA

vaccines has been described when the vaccines were given together

in the same syringe, and was thought to be due to competition

between plasmids within mammalian cells [61–63]. To avoid such

competition, we administered each of our DNA vaccine antigens

into muscles on different limbs. However, this is not the first instance

of undesirable interactions between CSP and SSP2 vaccines [64]. If

the PkSSP2 antigen is detrimental, it might be interesting to test

a trivalent vaccine with PkCSP, PkMSP1, and PkAMA1. Similarly,

it will be important to test for inhibition in multi-antigen human

malaria vaccines.

4) The most surprising result of our experiments is the negative

correlation between interferon-c responses to the PkCSP and time to

first parasite detected in the blood. Why should stronger T cell

responses lead to parasites appearing sooner? We believe that T cell

responses are protective but that the protective T cell responses are

in some way reciprocal to the T cell responses we are measuring.

Our assay measures interferon- c using circulating lymphocytes in an

overnight stimulation assay. This assay primarily measures responses

from CD4+ T cells which are activated effector cells [51]. In humans

immunized with pre-erythrocytic vaccine antigens, overnight ELI-

spot assays which measure circulating active effector cells correlate

poorly with protection, but multi-day cultures which measure

effector memory cells have a stronger association with protection

from malaria challenge [65]. It is likely that the true cells which are

killing parasites are immune T cells residing in the liver, which are

difficult to sample [66]. Perhaps the puzzling inverse correlation we

have described is because the number of antigen specific effector cells

remaining in the circulation is inversely related to the numbers of

protective immune cells which have homed to the liver. We are

developing methods for directly measuring immune responses in

monkey liver so that we can test this hypothesis in future

experiments. The implication of this finding for human vaccine

studies is that we have not found an immune correlate of protection.

Until we do, pre-erythrocytic vaccines should not be optimized to

produce specific immune responses but instead protection against

sporozoite challenge must continue to be the standard.
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