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ABSTRACT The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is
the leading cause of hospital-acquired infection in the United States. Due to growing
antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents
a new approach to combat this infection. Genome-scale metabolic network recon-
structions (GENREs) have been used to identify therapeutic targets and uncover prop-
erties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a
hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating
both with in vitro and in vivo data sets. Growth simulations revealed significant corre-
lations with measured carbon source usage (positive predictive value [PPV] $ 92.7%),
and single-gene deletion analysis showed .89.0% accuracy. Next, we utilized each
GENRE to identify metabolic drivers of both sporulation and biofilm formation.
Through contextualization of each model using transcriptomes generated from in vitro
and infection conditions, we discovered reliance on the pentose phosphate pathway
as well as increased usage of cytidine and N-acetylneuraminate when virulence expres-
sion is reduced, which was subsequently supported experimentally. Our results high-
light the ability of GENREs to identify novel metabolite signals in higher-order pheno-
types like bacterial pathogenesis.

IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-
acquired infections. Numerous studies have demonstrated the importance of specific
metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization
to regulation of virulence factors. In the past, genome-scale metabolic network
reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of
the genetic and metabolic properties that contribute to downstream virulence phe-
notypes. With this in mind, we generated and extensively curated C. difficile GENREs
for both a well-studied laboratory strain (str. 630) and a more recently characterized
hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high
degrees of agreement with experimental gene essentiality and carbon source utiliza-
tion data sets. Subsequent exploration of context-specific metabolism during both in
vitro growth and infection revealed consistent patterns of metabolism which corre-
sponded with experimentally measured increases in virulence factor expression. Our
results support that differential C. difficile virulence is associated with distinct meta-
bolic programs related to use of carbon sources and provide a platform for identifi-
cation of novel therapeutic targets.
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C lostridioides difficile is a Gram-positive, sporulating anaerobe that remains a critical
problem in health care facilities across the developed world (1, 2). Susceptibility to

C. difficile infection (CDI) is most frequently preceded by exposure to antibiotic therapy
(3). While these drugs are lifesaving, they also diminish the abundance of other bacte-
ria in the microbiota, altering the metabolic environment of the gut and leaving it
susceptible to colonization by C. difficile (4–6). Recently, we observed that C. difficile
adapts transcription of distinct catabolic pathways to the unique conditions in suscep-
tible gut environments following different antibiotic pretreatments (7, 8). These tran-
scriptional shifts indicated that C. difficile must coordinate metabolic activity accord-
ingly to compete within new hosts. In spite of these differences, there are known core
elements of C. difficile metabolism across different environments including carbohy-
drate and amino acid fermentation (9). It is known that specific growth nutrients influ-
ence expression of virulence genes in C. difficile (9, 10). Given these findings, targeted
therapeutic strategies that alter active metabolism and downregulate virulence may
be possible without continued exposure to antibiotics. This form of treatment would
be especially beneficial as there have been stark increases in the prevalence of antibi-
otic resistance and hypervirulence among C. difficile clinical isolates (11, 12).

Genome-scale metabolic network reconstructions (GENREs) are mathematical for-
malizations of metabolic reactions encoded in the genome of an organism. These
models are subsequently constrained by known biological and physical parameters
such as membrane transport and enzyme kinetics. GENREs can be utilized to interro-
gate the metabolic capability of a given organism, as well as providing a means to sim-
ulate growth and assess the impact of genotype on metabolism. GENREs have been
implemented in directing genetic engineering efforts (13) and accurately predicting
auxotrophies and interactions between species for growth substrates (14, 15). These
platforms also create improved context for the interpretation of omics data (16), and
have provided powerful utility for identification of novel drug and gene targets, accel-
erating downstream laboratory testing (17). This concept is especially critical when
delineating a complex array of signals from communities of organisms like the gut
microbiome (18). Leveraging these tools, several recent studies have identified nodes
of metabolism that promise to provide novel therapeutic targets in clinically relevant
pathogens including Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus
mutans (17, 19, 20). However, there has been limited progress to date applying GENREs
to obtain mechanistic understanding for metabolism during infection as they relate to
colonization and virulence. Taken together, these principles make GENREs strong plat-
forms for deciphering novel metabolic drivers of virulence-associated phenotypes in C.
difficile.

We began by generating new GENREs for two strains of C. difficile including a highly
characterized laboratory strain, C. difficile strain (str.) 630 (21), as well as a more recently
isolated hypervirulent strain, R20291 (22). De novo reconstruction for both models was
followed by extensive literature-driven manual curation of catabolic pathways and
related metabolite transport, with specific emphasis on Stickland fermentation for ATP
generation and C. difficile-specific redox maintenance (23). Additionally, both GENREs
contain a tailored biomass objective function (an in silico proxy for bacterial growth,
requiring synthesis of major macromolecular components) which accounts for codon
biases and amino acid balance and cell wall structure. Growth simulations from both
GENREs were compared against in vitro gene essentiality and carbon utilization
screens, which indicated significant levels of agreement across all validation data sets.

To assess potential mechanisms of metabolic control of virulence, we then created
context-specific models of C. difficile metabolism by integrating transcriptomic data
collected from both laboratory culture and infection conditions where differential
expression of C. difficile virulence factors was observed. Overall, during increased viru-
lence expression both strains of C. difficile were predicted to favor increased fermenta-
tion of amino acids and decreased reliance on carbohydrate usage. Specifically in the
hypervirulent strain R20291 during states of phase variation, we found efflux of the

Jenior et al.

September/October 2021 Volume 6 Issue 5 e00919-21 msystems.asm.org 2

https://msystems.asm.org


biofilm component N-acetylglucosamine in variants known to produce significantly
more biofilm experimentally. Additionally, this state was predicted to have increased
reliance on glucose to fuel nucleotide synthesis, instead of ATP generation. When
tested in vitro, we indeed found that the colony morphology associated with this
phase variant was dependent on environmental glucose availability. Alternatively, in
infection-specific models of strain 630, we identified consistent patterns of proline and
ornithine fermentation in states of both high and low sporulation, which agreed with
metabolomic analysis of each condition. However, in instances of lower spore burden
our model predicted significantly greater usage of the host-derived glycan N-acetyl-
neuraminate (Neu5Ac) and the nucleotide precursor cytidine as primary sources of car-
bon. In subsequent laboratory testing we were able to show that not only can C. diffi-
cile use the substrates for growth but also both lead to lower quantities of spores,
which are essential for transmission of the pathogen (24, 25). This work is the first time
that contextualized GENREs of a pathogen have been utilized to identify new metabo-
lite signals of virulence regulation. As such, the high-quality GENREs described here
can greatly augment the discovery of novel metabolism-directed therapeutics to treat
CDI. Moreover, our results demonstrate that GENREs provide an advantage for delin-
eating complex patterns in transcriptomic and metabolomic data sets into tractable ex-
perimental targets.

RESULTS
C. difficile metabolic network generation, gap-filling, and curation. The emer-

gence of hypervirulent strains of C. difficile that have unique metabolism and virulence
factors highlights the importance for the in-depth study of metabolic pathways to
understand and identify targets within these isolates. Core metabolic processes also
present an attractive target for novel antimicrobial measures as they may be less likely
to allow for acquired antibiotic resistance (26). With these concepts in mind, we
focused on the best-characterized hypervirulent isolate, str. R20291. However, to maxi-
mize the utility of the bulk of published C. difficile metabolic research, we elected to
generate a reconstruction for the lab-adapted str. 630 in parallel. This focus afforded
the ability to continuously cross-reference curations between the models and to more
readily identify emergent differences that are specifically due to genomic content.

We began the reconstruction process by accessing the reannotated genome of str.
630 (27) and the published str. R20291 genome (22), both available on the Pathosystems
Resource Integration Center database (PATRIC) (28). Following an established protocol
for creating high-quality genome-scale models (29), and utilizing the ModelSEED frame-
work and modified reaction database (30), we created scaffold reconstructions for both
strains. We subsequently performed complete translated proteome alignment between
str. 630 and str. R20291, resulting in 684 homologous metabolic gene products and 22
and 33 unique gene products, respectively (see Table S2 in the supplemental material).
Among the distinctive features were additional genes for dipeptide import in str. 630
and glycogen import and utilization in str. R20291, which have both been linked to
modulated levels of virulence across strains of C. difficile (31, 32).

Manual curation is required to ultimately produce high-quality GENREs and make
meaningful biological predictions (33). As such, we proceeded to manually incorporate
259 new reactions (with associated genes and metabolites) and altered the conditions
of an additional 312 reactions already present within each GENRE prior to gap-filling
(Table S1). Primary targets and considerations for the manual curation of the C. difficile
GENREs included the following:

� Anaerobic glycolysis, fragmented tricarboxylic acid (TCA) cycle, and known
molecular oxygen detoxification (23, 34)

� Minimal medium components and known auxotrophies (35–37)
� Aminoglycan and dipeptide catabolism (38–40)
� Numerous Stickland fermentation oxidative and reductive pathways (Table S2)
(41–52)
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� Carbohydrate fermentation and short-chain fatty acid metabolism (41, 53–55)
� Elements of the Wood-Ljungdahl pathway (56)
� Energy metabolite reversibility (e.g., ATP, GTP, FAD, etc.) (57)
� Structural components including teichoic acid, peptidoglycan, and isoprenoid
biosynthesis

� Additional pathogenicity-associated metabolites (e.g., p-cresol [44] and ethanolamine
[58])

Following the outlined manual additions, we created a customized biomass objective
function with certain elements tailored to each strain of C. difficile and complete synthe-
sis requirements for macromolecular components. Our biomass objective function for-
mulation was initially adapted from the well-curated GENRE of the close phylogenetic
relative Clostridium acetobutylicum (59) with additional considerations for tRNA synthesis
and formation of cell wall macromolecules, including teichoic acid and peptidoglycan
(Table S1). Coefficients within the formulations of DNA replication, RNA replication, and
protein synthesis component reactions were adjusted by genomic nucleotide abundan-
ces and codon frequencies to yield strain-specific biomass objective functions (60). To
successfully simulate growth, we next performed an ensemble-based parsimonious flux
balance analysis (pFBA) gap-filling approach (61, 62), utilizing a metabolic reaction data-
base centered on Gram-positive anaerobic bacterial metabolism (see Materials and
Methods). Gap-filling refers to the automated process of identifying incomplete meta-
bolic pathways due to an absence of genetic evidence that are necessary for in silico
growth and addition of the minimal functionality needed to achieve flux through these
pathways (63). We performed gap-filling across six distinct and progressively more lim-
ited medium conditions—complete medium, brain heart infusion (BHI) (64), C. difficile
defined medium with and without glucose (CDM) (37), no-carbohydrate minimal me-
dium (NCMM) (5), and basal defined medium (BDM) (35)—which added a total of 68
new reactions that allowed for robust growth across all conditions, the largest fraction of
which was involved in large phospholipid biosynthesis for generation of more complex
cell wall components (Table S1).

The final steps of the curation process were focused on limiting the directionality of
reactions known to be irreversible, extensive balancing of the remaining incorrect reac-
tion stoichiometries, and adding annotation data for all network components. This
step also included adding gene associations to gap-filled reactions where possible.
After completion, we repeated the assessments that were performed for the earlier
reconstructions and found that our GENREs had substantial improvements in all met-
rics including few, if any, flux or mass inconsistencies, and now each received a cumu-
lative MEMOTE score of 86% (Table S1). The new network reconstructions were desig-
nated iCdG709 (str. 630) and iCdR703 (str. R20291).

C. difficile GENRE validation against laboratory measurements. A standard mea-
surement of GENRE performance is the comparison of predicted essential genes for growth
in silico and those found to be essential experimentally through forward genetic screens
(65). For a gene to be considered essential, less than 1% of optimal biomass can be pro-
duced by a given mutant (the equivalent of no observable growth) during single-gene
knockout simulations (66). Recently, a large-scale transposon mutagenesis screen was pub-
lished for str. R20291 (67), and as such, we utilized the proteomic alignment from the previ-
ous section to determine homologs in str. 630. While interpretation of results from in vitro
essentiality screens of this nature can be difficult and associated with a degree of noise,
they provide an important starting point for initial model validation as well as a basis for
future curation efforts. Simulating growth in BHI rich medium, we identified essential genes
for both models, which revealed overall accuracies of 89.1% and 88.9%, with negative pre-
dictive values as high as 90.0% for iCdR703 and 89.9% for iCdG709 (Fig. S1A). This high
degree of agreement supported that metabolic pathways in the new GENREs were struc-
tured correctly and are more likely to provide useful downstream predictions.

To then assess if GENRE requirements reflected the components of minimal medium
derived experimentally, we identified the minimum subset of metabolites necessary for
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growth. Through systematic limitation of extracellular metabolites, we were able to deter-
mine the impact of each component on achieving some level of biomass flux (Fig. S1C). This
analysis revealed that most metabolites found to be essential during growth simulation
have also been shown experimentally to be required for in vitro growth in basal defined me-
dium (BDM) (35). Interestingly, while growth simulations indicated that neither iCdG709 (str.
630) nor iCdR703 (str. R20291) was auxotrophic for methionine, the published formulation
of BDM indicates methionine is found to be largely growth enhancing but not essential for
low levels of growth (36). Additionally, it has been demonstrated in the laboratory that C. dif-
ficile is able to harvest sufficient bioavailable sulfur from excess cysteine instead of methio-
nine (37, 68), further supporting growth simulation results. Similarly, the published formula-
tion of BDM indicates that pantothenate (vitamin B5) appears to enhance growth rate only
in vitro and is not necessarily required to support low growth rates. Our results also indicated
that iCdR703 was not auxotrophic for isoleucine relative to iCdG709 and indeed contained
additional genes coding for synthesis of a precursor (3S)-3-methyl-2-oxopentanoate (ilvC, a
ketol-acid reductoisomerase) which were not present in its counterpart GENRE (Table S2). In
summary, the in silico minimal requirements for iCdG709 and iCdR703 closely mirrored ex-
perimental results for both strains of C. difficile in the laboratory.

We next assessed additional carbon sources that impact the growth yield predictions
for both GENREs. Utilizing previously published results for both C. difficile strains in a
high-throughput screen (69), we simulated growth for each carbon source individually in
background minimal medium and calculated the shift in optimal growth rate.
Importantly, C. difficile is auxotrophic for specific amino acids (e.g., proline [Fig. S1C]) that
it is also able to catabolize through Stickland fermentation (70), so the background me-
dium must be supplemented with low concentrations of each. As such, the values are
reported as the ratio of the final optical density for growth with the given metabolite to
low levels of growth observed in the background medium alone. Through correlation of
the results from these two comparisons, we were able to assess how well in silico predic-
tions matched experimental results. Across all the 116 total metabolites that were in
both the in vitro screen and the C. difficile GENREs, we identified significant predictive
correlations in the amount of growth enhancement for iCdG709 and iCdR703 (P
values , 0.001) (Fig. 1A and B). This relationship was even more pronounced for carbo-
hydrates and amino acids, the primary carbon sources for C. difficile. When these predic-
tions were reduced to binary interpretations of either enhancement or nonenhancement
of growth, we found that iCdG709 predicted 92.8% and iCdR703 predicted 96.6% true-
positive enhancement calls (Fig. S1B). This metric is most valuable here as it indicates
that each GENRE possesses the necessary machinery for catabolizing a given metabolite.

FIG 1 Carbon source utilization prediction profiles accurately reflect laboratory measurements.
Results from previous phenotypic screen of 115 metabolites for both str. 630 and str. R20291 were
compared against in silico results for each corresponding GENRE. Ratios of overall in vitro growth
enhancement by each metabolite were correlated with the corresponding results from growth
simulations in the same media for iCdG709 (str. 630) (A) and iCdR703 (str. R20291) (B). Points are
colored by their biochemical grouping, fit, and significance determined by Spearman correlation.
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Collectively, these data strongly indicated that both GENREs were well suited for predic-
tion of growth substrate utilization in either strain of C. difficile.

Finally, we also compared our results against existing C. difficile GENREs. The pri-
mary focus of curated C. difficile metabolic modeling efforts has been on the first fully
sequenced strain of C. difficile, str. 630. The first reconstruction effort (iMLTC806cdf
[71]) and subsequent revision (icdf834 [71, 72]) were followed by a recent de novo crea-
tion following updated genome curation (iCN900 [27, 73). Another GENRE was devel-
oped for str. 630Derm (iHD992 [74]), a strain derived from str. 630 by serial passage
until erythromycin resistance was lost (75). Four additional C. difficile strain GENREs
were generated as a part of an effort to generate numerous new reconstructions for
members of the gut microbiota (76); these reconstructions received only semiauto-
mated curation performed without C. difficile-specific considerations. To establish a
baseline for the metabolic predictions possible with current C. difficile GENREs, we
selected common criteria with large impacts on the quality of subsequent predictions
for model performance (Table S3). The first of these metrics is the level of consistency
in the stoichiometric matrix (57, 77, 78), which reflects proper conservation of mass
and that no metabolites are incorrectly created or destroyed during simulations. The
next metric is a ratio for the quantity of metabolic reactions lacking gene-reaction rules
to those possessing associated genes (79), which may indicate an overall confidence in
the annotation of the reactions. These features reflect the importance of mass conser-
vation and deliberate gene/reaction annotation which each drive confidence in down-
stream metabolic predictions, omics data integration, and likelihood for successful
downstream experimentation. We found unique challenges within each GENRE which
made comparing simulation results across models difficult. Neither iMLTC806cdf nor
iHD994 has any detectable gene annotations associated with the reactions it contains.
A high degree of stoichiometric matrix inconsistency was detected across icdf834,
iHD992, and iCN900; with iHD992 many intracellular metabolites were able to be gen-
erated without acquiring necessary precursors from the environment. We also
detected structural inconsistencies across several GENREs. For example, those GENREs
acquired from the AGORA database possessed several intracellular metabolic products
not adequately accounted for biologically (Table S3), as well as mitochondrial compart-
ments despite being bacteria. Additionally, several key C. difficile metabolic pathways
were either incomplete or absent from the curated models including multistep
Stickland fermentation, membrane-dependent ATP synthase, dipeptide and aminogly-
can utilization, and a variety of saccharide fermentation pathways (23). Considering
each of these factors, the C. difficile GENREs generated here correct numerous mass
and annotation inconsistencies, contain key functional capacities, and phenotypically
mimic C. difficile.

Context-specific modeling to capture virulence-associated metabolism. Following
validation, we sought to utilize each GENRE to predict in situ metabolic phenotypes
that correspond with expression of known virulence traits in C. difficile. As previously
stated, GENREs have provided powerful platforms for the integration of transcriptomic
data, creating greater context for the shifts observed between conditions and captur-
ing the potential influence of pathways not obviously connected (80). With this appli-
cation in mind, we chose to generate context-specific models for both in vitro and in
vivo experimental conditions characterized with transcriptome sequencing (RNA-Seq)
analysis utilizing a recently published unsupervised transcriptomic data integration
method (18). Briefly, the algorithm calculates the most cost-efficient usage of the meta-
bolic network to achieve growth given the pathway investments indicated by the tran-
scriptomic data. This approach is in line with the concept that natural selection gener-
ally selects against wasteful production of cellular machinery (81). The output models
contain only those metabolic reactions that are most likely to be active under the
given conditions, whose ranges of metabolic reaction activity were subsequently
deeply sampled to assess for distinct yet equally optimal combinations of active path-
ways. Analysis of these distributions affords the ability to make much more fine-scale
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predictions of metabolic changes that C. difficile undergoes as it activates pathogenic-
ity. The patterns of active pathways also reveal critical elements within context-specific
metabolism that could lead to targeted strategies for intentional downregulation of
virulence factors through metabolite-focused interventions.

Phase variation in C. difficile str. R20291 is sensitive to carbohydrate availability.
C. difficile is known to utilize phase variation, a reversible mechanism employed by
many bacterial pathogens to generate phenotypic and metabolic heterogeneity to
maximize overall fitness of the population. Phase variation has been shown to also
influence virulence expression in C. difficile str. R20291 (82). One aspect of this phase
variation manifests as a rough- or smooth-edged colony morphology on solid agar; the
morphologies can be propagated via subculture and are associated with distinct motil-
ity behaviors and altered virulence (83). The colony morphology variants are generated
through the phase-variable (on/off) expression of the cmrRST genes. Toward under-
standing this phenotype, we experimentally generated rough and smooth phase var-
iants of C. difficile str. R20291 grown on solid supplemented brain heart infusion (BHIS)
rich medium for 48 h and sequenced transcriptomes from both groups. Utilizing these
data, we generated context-specific versions of iCdR703 under simulated rich medium
conditions and deeply sampled the resultant metabolic flux distributions to assess all
possible forms of metabolism given the new constraints.

While it has been previously shown that mutation of cmr-family genes does not sig-
nificantly alter growth rate in vitro (83), the contextualized models predicted signifi-
cantly increased biomass flux generation (reflective of growth rate) with smooth col-
ony-associated metabolism (Fig. S2A). This result fits with experimental findings as the
rough-edged phenotype emerges only after long periods of incubation on solid agar
when growth rate is measurably lowered (43). We moved on to evaluate structural dif-
ferences between the context-specific models and identified those metabolic reactions
predicted to be active in only the smooth or rough context-specific model. With this
analysis we found 19 reactions that were distinctly active between conditions (Fig. 2A).
We then calculated median absolute activity for each reaction, which indicated the
magnitude at which each reaction contributed to optimal growth in each model. This
investigation revealed that proline or ornithine fermentation was present and active in
either model (Fig. 2A). C. difficile is capable of easily converting ornithine into proline
(52), which is subsequently fermented to 5-aminovalerate for energy. This finding illus-
trated that proline Stickland fermentation was an integral part of C. difficile metabolism
across conditions. The finding that N-acetylglucosamine transport was present only
within the smooth variant context-specific model was striking as this phase has been
previously associated with significantly increased biofilm formation (83), in which N-
acetyl-D-glucosamine is the primary component (84). Observing the predicted reaction
activity, not only was N-acetylglucosamine transport present exclusively in the smooth
variant context-specific model, but this reaction was extremely active under these con-
ditions (Fig. 2C). Furthermore, efflux of the related metabolite D-glucosamine was also
significantly increased in the smooth model (Fig. 2D; P value , 0.001). These results
supported that the differences in context-specific model structure seen between phase
variants likely represented real variation in active metabolism.

To then compare metabolic activity effectively between context-specific models,
we next focused our analysis on shared nonbiomass associated reactions across con-
text-specific models which we referred to as “core” metabolism within each subse-
quent analysis. We first employed unsupervised machine learning for flux samples
from core reactions using nonmetric multidimensional scaling (NMDS) ordination of
Bray-Curtis dissimilarities (Fig. S2B). This analysis revealed significantly different pat-
terns of core metabolic activity between smooth and rough context-specific models (P
value = 0.001). To further explore the specific differences within active metabolism
between phase variants, we utilized a supervised machine learning approach with
Random Forest to discriminate between rough and smooth core metabolic activity
(Fig. 2B). Several of the metabolic reactions with highest mean decrease accuracies are
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involved in alanine transport and utilization. Further examination of alanine transport
reaction fluxes revealed that import and utilization of alanine were predicted only in
the smooth context (Fig. 2E). Alanine has been previously identified as having a strong
impact on C. difficile life cycle physiology (85) and has also been shown to be essential
for proper biofilm formation in other Gram-positive pathogens (86). Our results indi-
cate that utilization of alanine may also play a role in biofilm formation and phase vari-
ation in C. difficile.

Both the network topology and metabolic activity-based analyses indicated that a
large number of transporters and metabolic reactions were differentially active
(Table S4), especially several relating to glycolysis. To more closely investigate the rela-
tive importance of these metabolic pathways between phase variants, we performed
gene essentiality analysis for both models and cross-referenced the results for meta-
bolic reactions associated with the uptake and utilization of glucose (Fig. 3A). Through
this comparison, we found numerous reactions that were essential only in the smooth
context-specific model which included multiple steps in the pentose phosphate pathway

FIG 2 Metabolism significantly varies between phase variants of C. difficile str. R20291. Transcriptomes were collected from rough or smooth colony
morphology clones grown on BHIS agar for 48 h and subsequently used to generate context-specific models of C. difficile str. R20291. Subnetworks of
metabolism that were predicted to be unused in each context were inactivated for subsequent growth simulations. Context-specific metabolic reaction
activity significantly correlated with the associated enzyme transcript abundances (R $ 0.157, P value # 0.023). (A) Metabolic reactions that are uniquely
active in each context-specific model and the associated median absolute reaction activities. (B) Utilizing Random Forest supervised machine learning
sampled activity for shared nonbiomass metabolic reactions between rough and smooth context-specific models (i.e., core metabolism). Shown is the mean
decrease accuracy for the top 15 most differentiating reactions. (C and D) Export exchange reaction flux samples (n = 500) between phase variants for N-
acetylglucosamine and glucosamine (P value , 0.001). (E) Import exchange reaction absolute fluxes between phase variants for alanine (P value , 0.001).
Inactive label denotes reactions pruned during transcriptome contextualization, and all significant differences were determined by Wilcoxon rank sum test.
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(involved in nucleotide synthesis and NADPH balance) as well the reactions bridging glycoly-
sis with fatty acid synthesis. Strikingly, no reactions in either pathway were found to be
uniquely essential in the rough context-specific model. Although some components of gly-
colysis were essential in both contexts, including pyruvate kinase, the penultimate step with
the bulk of the ATP production was detected at the transcriptional level at nearly identical
levels between the rough and smooth isolates (Table S4). These findings together signified
that ATP generation from glycolysis was important in both contexts, but the nucleotide pre-
cursors and redox potential generated from the pentose phosphate pathway were neces-
sary for the smooth variant-specific metabolism. In line with this observation, the rough
context-specific model indeed generated a greater fraction of NADH from Stickland fer-
mentation (Table S4). Based on these data, we hypothesized that this additional dependence
on glucose was critical in the smooth variants and without glucose colony morphology would
transition toward a more rough phenotype.

FIG 3 Glucose utilization through the pentose phosphate pathway is essential in the smooth phase variants of str. R20291. (A) Gene and reaction
essentiality results for glycolysis and the pentose phosphate pathway across both the rough and smooth phase variant context-specific models.
Components were deemed essential if models failed to generate ,1% of optimal biomass flux. (B and C) Colony morphologies resulting from smooth and
rough variants of C. difficile str. R20291 grown on either BHI or BDM 6 glucose (2 mg/ml) after 48 h of growth (phase contrast 20/40, �4 magnification).
Defined medium colonies were then subcultured onto BHI medium for an additional 24 h as indicated. Increased colony perimeter was found to be the
defining characteristic of the rough colony morphology. This feature was quantified for multiple colonies under each permutation of colony variant and
growth medium (n $ 4). (D) Colony perimeter for smooth and rough progenitor colony variants grown on BHIS (P value , 0.001). (E and F) Smooth (E) or
rough (F) colony variant perimeter during subculture onto each of the BDM carbon source medium formulations (P values , 0.05). Significant differences
determined by Wilcoxon rank sum test with Benjamini-Hochberg correction when necessary.

Metabolic Determinants of C. difficile Virulence

September/October 2021 Volume 6 Issue 5 e00919-21 msystems.asm.org 9

https://msystems.asm.org


To test this hypothesis, we generated colonies of either rough or smooth morphology
using C. difficile str. R20291, grown anaerobically for 48 h on BHIS agar (Fig. S3A). We
found that the hallmark metric of rough morphology is a significant increase in colony
perimeter (Fig. 3D) and used this measurement for determining subsequent shifts
between the phenotypes. Both phase variants were subcultured onto BDM agar plates
both with and without 2 mg/ml glucose (Fig. 3B and C). Following anaerobic incubation
for 48 h, we found that rough variants maintained their morphology across both media,
with the rough phenotype even exacerbated on the minimal medium. However, while
the smooth variant largely maintained its colony morphology upon subculture onto
BDM 1 glucose, the colonies became significantly rough when glucose was absent
(Fig. 3E). The inverse was also true in that the rough colonies maintained their morphol-
ogy in the absence of glucose but significantly decreased in perimeter on BDM 1 glu-
cose, appearing more smooth (Fig. 3F). Further subculture of each altered morphology
from minimal medium back onto rich BHI medium also appeared to support consistent
switching between the respective morphologies (Fig. S3B). Our data supported that the
smooth phase variants relied on glucose for more than strictly ATP generation and that
the rough morphology is apparent only after extended incubation when C. difficile may
be locally activating starvation responses and switching toward alternative energy sour-
ces. Additionally, when glucose is available, C. difficile will opt to generate redox poten-
tial more efficiently through the pentose phosphate pathway. Furthermore, these results
are consistent with the hypothesis that carbohydrate availability impacts phase variation
in C. difficile and that environmental stress due to limited nutrients may be a key factor
in driving the shift between phases.

Utilization of N-acetylneuraminic acid and cytidine decreases sporulation in C.
difficile str. 630. While laboratory conditions are highly informative, it is even more
critical to examine metabolism for this pathogen during infection as it can more readily
lead to novel therapeutic interventions. It has been previously shown that different
classes of antibiotics have distinct impacts on the structure of the gut microbiota while
inducing similar sensitivity to colonization by C. difficile (87). Along these lines, one
published study assessed differential transcriptional activity of C. difficile str. 630 in the
gut during infection in a mouse model pretreated with the antibiotic cefoperazone or
clindamycin. Crucially, these treatments resulted in highly dissimilar levels of sporula-
tion (another phenotype linked to C. difficile virulence) where cefoperazone had largely
undetectable spore CFU and clindamycin had significantly higher levels at the same
time point (7). These experiments included paired, untargeted metabolomic analysis of
intestinal content to correlate the transcriptional activity of metabolic pathways with
changes in the abundance of their respective substrates. Included in the analysis were
both mock-infected and C. difficile-colonized groups (both treated by the respective
antibiotics) to extract the specific impact of the infection on the gut environment, mak-
ing this data set extremely valuable.

We first compared predicted biomass objective flux in the sampled context-specific
flux distributions (Fig. S4A), which revealed no significant difference between high-
and low-sporulation conditions. However, ordination analysis, performed as described
above, indeed revealed significant differences in predicted core metabolic activity
(Fig. 4A; P value = 0.001). Comparisons of overall context-specific model flux distribu-
tions highlighted substantial differences in transporter and metabolic reaction network
compositions and associated activities (Table S5). In agreement with these findings,
supervised machine learning analysis indicated numerous differences in reactions asso-
ciated with metabolizing host-derived glycans and nucleotide precursors (Fig. S4B). To
focus this assessment on growth substrates that may be differentially impacting the
observed levels of sporulation, we assessed each context-specific model by sequen-
tially limiting the ability to import or export each extracellular metabolite to 1% of its
optimal rate and measured the impact on overall biomass production (Fig. 4B and C).
Paired metabolomic analyses of each metabolite identified this way were then com-
pared within each condition for relative change in concentration following infection,
represented as colored squares along the right margin of Fig. 4B and C. Many metabolites
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had no effect on biomass when their exchange rates were limited and simply rerouted
metabolism elsewhere to achieve similar levels of growth, which indicated a high degree
of metabolic plasticity remaining in each context-specific model. All metabolites high-
lighted by this analysis that were measured by the metabolomics screen followed the
model-predicted directional change in concentration, supporting the hypothesis that C.
difficile itself is responsible for the observed differences (Fig. 4B and C). The peptides pro-
line, ornithine, and serine were found to have an impact on the ability to grow across
both context-specific models. Of this subset of amino acids, only proline is an auxotrophy
and all are usable by C. difficile in Stickland fermentation. Following the catabolism of pro-
line, its Stickland fermentation by-product 5-aminovalerate was predicted to be an impor-
tant efflux metabolite under both conditions and had concordant significant increases in
concentration following infection in each group (Fig. S4C). Alternatively, isovalerate efflux

FIG 4 Predicted differences in C. difficile str. 630 carbon source usage correspond with lowered rates of sporulation. Transcriptomic integration and
predictions with iCdG709, 18 h after infection with str. 630, across infections with either high or low levels of sporulation were detected in the cecum.
Predicted context-specific metabolism significantly correlated with associated transcript values (R $ 0.188, P value # 0.001). (A) NMDS ordination of Bray-
Curtis dissimilarities for flux distributions of shared reactions following sampling of context-specific models. Significant difference calculated by
PERMANOVA. (B and C) Iterative growth simulations for higher-sporulation context-specific model (B) and in the lower-sporulation context-specific model
(C), displaying metabolites with any impact on biomass production when consumption or production capability was restricted to 1.0% of optimal in a given
context-specific model. Along the right margin is paired liquid chromatography-mass spectrometry (LC-MS) analysis from cecal content of mice with and
without C. difficile str. 630 infection in antibiotic pretreatment groups that resulted in either high or low cecal spore CFU for metabolites highlighted by
growth simulation analysis. Each is colored by mean decrease/increase in concentration between mock and infected groups, and asterisks indicate
significant differences determined by Wilcoxon rank sum test with Benjamini-Hochberg correction for multiple comparisons (P values # 0.05).
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was found to be critical only in the higher-sporulation context (Fig. 4B). This short-chain
fatty acid has been primarily associated with leucine fermentation in C. difficile, supporting
an elevated dependence on Stickland fermentation as sporulation increases. Intestinal
concentrations of leucine have indeed been shown to significantly decrease following
infection by C. difficile in vivo (7), supporting its importance during infection. The most dis-
tinguishing features were the importance of N-acetylneuraminate (Neu5Ac) and cytidine
only in the lower-sporulation context-specific model (Fig. 4C). N-Acetylneuraminate is a
host-derived component of sialic acid that C. difficile readily uses as a carbon source for
growth (7), and cytidine is an integral component of RNA synthesis. However, neither had
been previously associated with directly influencing virulence factor expression in C. diffi-
cile. Furthermore, while N-acetylneuraminate significantly decreases during infection in
the lower-sporulation context (7), cytidine also appears to decrease under these condi-
tions, implying consumption by C. difficile (Fig. S4D and E).

We first sought to measure if C. difficile str. 630 could utilize both N-acetylneurami-
nate and cytidine as carbon sources and if together they exerted a combined effect on
growth. Both N-acetylneuraminate and cytidine were supplemented (10 mg/ml each)
in liquid BDM in parallel with liquid BDM with no additional substrate and BDM 1 D-
glucose (10 mg/ml) controls, into which C. difficile str. 630 was inoculated and incu-
bated for 18 h and optical density at 600 nm (OD600) was measured every 5 min
(Fig. 5A). This assay revealed that C. difficile str. 630 could indeed use N-acetylneurami-
nate and cytidine as carbon sources independently, as each condition allowed for sig-
nificantly more growth than background BDM alone (P values , 0.05). Additionally,
there was no discernible effect on growth when the two substrates were added simul-
taneously. Utilization of the nucleotide precursor cytidine as a carbon source during
infection has never been previously described in C. difficile, which further supported
the utility of our models as a platform for augmenting discovery.

To then assess the effect of N-acetylneuraminate and cytidine on sporulation in C.
difficile str. 630, we performed a growth and sporulation assay targeting these sub-
strates using the same defined medium conditions described previously (Fig. 5B).
Following 18 h of anaerobic growth, cultures were plated on BHIS agar plates lacking a
germination agent to quantify specifically vegetative cell CFU abundance. Remaining
liquid cultures were then treated with a final concentration of 50% ethanol (EtOH) for
60 min to eliminate vegetative cells and then plated on BHIS agar with 1% taurocho-
late added to quantify exclusively spore CFU. The resultant abundances were then con-
verted to an overall spore-to-vegetative-cell ratio to suggest the fraction of the popula-
tion undergoing sporulation. After overnight incubation, the group that received any
combination of N-acetylneuraminate or cytidine had significantly decreased levels of
sporulation ratios relative to the no-additive control (P values , 0.05) but no significant
change compared to the glucose-added control (Fig. 5B). Importantly, there were sig-
nificantly more vegetative cells under all additive conditions relative to BDM alone
(Fig. S5; P values , 0.05). As was the case in the growth curve results, there was no dif-
ference between N-acetylneuraminate and cytidine when added alone versus their
combined effect. Collectively, these results support that both N-acetylneuraminate and
cytidine utilization by C. difficile inhibit progression through its life cycle toward spore
formation. More broadly, our results support these GENREs as an advantageous discov-
ery platform for novel elements of C. difficilemetabolism and physiology.

DISCUSSION

The control for much of C. difficile’s physiology and pathogenicity is subject to a co-
alescence of metabolic signals from both inside and outside the cell. Historically, C. dif-
ficile research has suffered from a shortage of molecular tools and high-quality predic-
tive models for highlighting new potential therapies. Over the previous decade,
GENREs have become powerful tools for connecting genotype with phenotype and
provided platforms for defining novel metabolic targets in biotechnology and improv-
ing interpretability of high-dimensional omics data. These factors make GENRE-based
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analyses extremely promising for directing and accelerating identification of possible
therapeutic targets as well as a deeper understanding of the connections between C.
difficile virulence and metabolism. Furthermore, as much of bacterial pathogenicity is
now being attributed to shifts in metabolism, the analyses described here may provide
large benefits to the identification of possible treatment targets in C. difficile and other
recalcitrant pathogens (88). In the current study, we develop and validate two highly
curated genome-scale metabolic network reconstructions for a well-described labora-
tory strain (str. 630) in addition to a more recently characterized hypervirulent strain
(str. R20291) of C. difficile. Validation results from both models indicated significant
agreement with both gene essentiality and carbon utilization screens, indicating a
high degree of confidence in subsequent predictions for active metabolism.

We next employed a recently published technique for transcriptome contextualiza-
tion with data sets from in vitro and in vivo systems to evaluate potential emergent
metabolic drivers of virulence. These combined analyses revealed differential reliance
on glycolysis-related metabolism during periods of increased virulence expression.
Specifically, in states of elevated biofilm formation by C. difficile str. R20291 we found
that glucose is necessary for nucleotide synthesis and redox balance through the pentose
phosphate pathway, despite still being utilized for ATP under conditions associated with
reduced biofilm. These findings were subsequently supported by direct testing in vitro and

FIG 5 N-Acetylneuraminic acid and cytidine drive changes in str. 630 growth and sporulation. (A)
Eighteen-hour anaerobic C. difficile str. 630 growth measured at OD600 in defined minimal medium
(BDM) formulated with the indicated carbon sources (10 mg/ml each; n = 4). Significant differences
determined using PERMANOVA of Dynamic Time Warping distances (P values , 0.05). (B) Median and
interquartile range (IQR) for the log-transformed C. difficile str. 630 spore-to-vegetative-cell CFU ratio
after 18-h incubation in rich medium or defined minimal medium (BDM) formulated with the indicated
carbon sources (n = 4). Differential plating performed on BHIS agar 6 taurocholate (1.0%). Significance
determined by Wilcoxon rank sum test with Benjamini-Hochberg correction (P values , 0.05).
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agreed with recent work which supports that access to glycolysis intermediates actually
induces C. difficile biofilm formation (89). Alternatively, during infection with str. 630 we
identified patterns of host-derived glycan (N-acetylneuraminate) utilization in combination
with consumption of the nucleotide precursor cytidine that corresponded with lower lev-
els of sporulation. While not typically considered a carbon source for C. difficile, laboratory
testing confirmed that C. difficile can indeed use cytidine for energy and, along with N-ace-
tylneuraminate, decreases in sporulation. Intentional control of sporulation is an exciting
prospect as spores are considered the transmissive form of C. difficile, so these results may
prove valuable for downstream targeted manipulation of C. difficile virulence factor expres-
sion. Our results also supported a role for some level of amino acid fermentation across all
conditions tested. This phenotype is a hallmark of C. difficile physiology and reinforced the
validity of the other predictions. These results indicate a complex relationship with envi-
ronmental nutrient concentrations and likely competition with the gut microbiota that all
inform the regulation of C. difficile virulence expression. Additionally, in vivo context-spe-
cific gene essentiality also predicted proline racemase to be critical for growth during
infection, yet it was previously found to be dispensable in an animal model using a for-
ward genetic screen (90). This result may be attributable to the specific conditions of that
infection and may vary across distinct host gut environments, leading to possible implica-
tions in personalized medicine and novel approaches to curbing the expression of viru-
lence factors by influencing environmental conditions to favor certain forms of metabolism
over others. This study represents the first time that context-specific models of bacterial
metabolism have been generated and used to augment discoveries for metabolic control
over virulence expression in the laboratory.

While the majority of predictions followed experimental results, several areas of
possible expansion and curation are present in both GENREs. First, while the scope of
total genes included in iCdG709 and iCdR703 may be more limited than previous net-
work reconstructions, we elected to focus on those gene sets where the greatest
amount of evidence and annotation data could be found to maximize confidence in
functionality. Consequently, both GENREs consistently underpredict the impact of
some metabolite groups, primarily nucleotides and carboxylic acids, which could be
due to the absence of annotation or overall knowledge of the relevant cellular machin-
ery. Furthermore, more complex regulatory networks ultimately determine final
expression of virulence factors, and these may be needed additions in the future to
truly understand the interplay of metabolism and pathogenicity in C. difficile. Despite
these potential shortcomings, both iCdG709 and iCdR703 produced highly accurate
metabolic predictions for their respective strains as well as novel predictions for me-
tabolism as it relates to C. difficile virulence expression, making both strong candidate
platforms for directing future studies of C. difficilemetabolic pathways.

Systems-biology approaches have enabled the assessment of fine-scale changes to
metabolism of single species within complex environments that may have down-
stream implications on health and disease. Overall, the combined in vitro- and in vivo-
based results demonstrated that our GENREs are effective platforms for gleaning addi-
tional understanding from omics data sets, outside the standard analyses. Both
GENREs were able to accurately predict complex metabolic phenotypes when provided
context-specific omics data and ultimately underscored the metabolic plasticity of C.
difficile. The reciprocal utilization of glycolysis and amino acid fermentation indeed
supports regimes of distinct metabolic programming associated with C. difficile patho-
genicity. Finding core metabolic properties in C. difficile strains may be key in identify-
ing potential probiotic competitor strains or even molecular inhibitors of metabolic
components. The current study is an example of the strength that systems-level analy-
ses have in contributing to more rapid advancements in biological understanding. In
the future, the metabolic network reconstructions presented here will be well suited to
accelerate research efforts toward the discovery of more targeted therapies. Overall,
GENREs have had limited impact to date in real mechanistic understanding of infectious
disease, and the current study represents a significant advance in this application.
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MATERIALS ANDMETHODS
C. difficile GENRE construction. We utilized PATRIC reference genomes from Clostridioides difficile str.

630 and Clostridioides difficile str. R20291 as initial reconstruction templates for the automated ModelSEED
pipeline (28, 91, 92). The ModelSEED draft network reconstruction was converted utilizing the Mackinac pipe-
line (https://github.com/mmundy42/mackinac) into a form more compatible with the COBRA toolbox (93).
Upon removal of GENRE components lacking genetic evidence (i.e., gap-filled), extensive manual curation was
performed in accordance with best practices agreed upon by the community (94). We subsequently per-
formed ensemble gap-filling as previously described, utilizing a stoichiometrically consistent anaerobic, Gram-
positive universal reaction collection curated for this purpose and available alongside code associated with
this study. Next, we corrected reaction inconsistencies and incorrect physiological properties (e.g., ensured
free water diffusion across compartments). Final transport reactions were then validated with TransportDB
(95). All formulas are mass and charge balanced at an assumed pH of 7.0 using the ModelSEED database in
order to maintain a consistent and supported namespace to augment GENRE interpretability and future cura-
tion efforts. We then collected annotation data for all model components (genes, reactions, and metabolites)
from SEED (94, 96), KEGG (97), PATRIC, RefSeq (98), EMBL (99), and BiGG (100) databases and integrated them
into the annotation field dictionary now supported in the most recent SBML version (101). Complete
MEMOTE quality reports for both C. difficile GENREs are also available in the GitHub repository associated with
this study, as well as full pipelines for model generation.

Growth simulations, flux-based analyses, and GENRE quality assessment. All modeling analyses
were carried out using the COBRA toolbox implemented in python (102). The techniques utilized
included flux-balance analysis, flux-variability analysis (103), gapsplit flux-sampler (104), and minimal_
medium on exhaustive search settings. GENRE quality assessment tools were also developed in python
and are fully available in the project GitHub repository. MEMOTE quality reports were generated using
the web-based implementation found at https://memote.io/.

C. difficile str. R20291 in vitro growth and microscopy. C. difficile str. R20291 growth was main-
tained in an anaerobic environment of 85% N2, 5% CO2, and 10% H2. The strain was grown on BHIS agar
(37 g/liter Bacto brain heart infusion, 5 g/liter yeast extract, 1.5% agar) medium at 37°C for 48 h to obtain
isolated colonies. Rough and smooth colonies were chosen for propagation on BHI agar to ensure col-
ony morphology maintenance (83). Basal defined medium (BDM) was formulated as previously pub-
lished (35) with the addition of 1.5% agar for plates and incubated for 48 h at 37°C to generate isolated
colonies. Microscopy images were taken on an EVOS XL Core cell imaging system at �4 magnification.
Colony dimensions were determined using ImageJ (https://imagej.nih.gov/ij/).

C. difficile str. 630 in vitro growth and sporulation assay. C. difficile str. 630 growth was maintained
in an anaerobic environment of 85% N2, 5% CO2, and 10% H2. Liquid BDM was formulated as previously
described with the indicated combinations of D-glucose (10 mg/ml), N-acetylneuraminic acid (10 mg/ml),
and cytidine (10 mg/ml). Overnight BHI liquid cultures of C. difficile str. 630 were back-diluted 1:3 in fresh an-
aerobic BHI and incubated for 1 h at 37°C, at which point 5ml was inoculated into 1 ml of each medium con-
dition. After 18 h anaerobic incubation at 37°C, serial dilutions in anaerobic phosphate-buffered saline of
these cultures were plated on BHIS agar (37 g/liter Bacto brain heart infusion, 5 g/liter yeast extract, 1.5%
agar) plates to quantify vegetative cell abundance and then treated with 50% EtOH for 30 min (105), and se-
rial dilutions in anaerobic phosphate-buffered saline were subsequently plated on BHIS agar 1 1.0% tauro-
cholate plates to measure spore abundance. Plates were incubated for an additional 24 h at 37°C, at which
point CFU were quantified. For anaerobic growth curves, 250ml of each medium was inoculated with 5ml of
the back-dilution and the OD600 was measured every 5 min for 18 h (Tecan Infinite M200 Pro).

RNA isolation and transcriptome sequencing. For RNA isolation, rough and smooth isolates were
subcultured in BHIS broth (37 g/liter Bacto brain heart infusion, 5 g/liter yeast extract) overnight (16 to
18 h) at 37°C, and then 5 ml of the cultures was spotted on BHIS agar (1.5% agar). After 24 h, the growth
was collected and suspended in 1:1 ethanol-acetone for storage at 220°C until subsequent RNA isola-
tion. Cells stored in ethanol-acetone were pelleted by centrifugation and washed in TE (10 mM Tris,
1 mM EDTA, pH 7.6) buffer. Cell pellets were suspended in 1 ml TRIsure reagent. Silica-glass beads
(0.1 mm) were added, and cells were disrupted using bead beating (3,800 rpm) for 1.5 min. Nucleic acids
were extracted using chloroform, purified by precipitation in isopropanol followed by washing with cold
70% ethanol, and suspended in nuclease-free water. Samples were submitted to Genewiz, LLC (South
Plainfield, NJ, USA), for quality control analysis, DNA removal, library preparation, and sequencing. RNA
sample quantification was done using a Qubit 2.0 fluorometer (Life Technologies), and RNA quality was
assessed with a 4200 TapeStation (Agilent Technologies). The Ribo Zero rRNA removal kit (Illumina) was
used to deplete rRNA from the samples. RNA sequencing library preparation was done using the
NEBNext Ultra RNA library prep kit for Illumina (NEB) according to the manufacturer’s protocol.
Sequencing libraries were checked using the Qubit 2.0 fluorometer. The libraries were multiplexed for
clustering on one lane of the Illumina HiSeq flow cell. The samples were sequenced using a 2 � 150
paired-end configuration on an Illumina HiSeq 2500 instrument. Image analyses and base calling were
done using the HiSeq control software. The resulting raw sequence data files (.bcl) were converted to
the FASTQ format and demultiplexed with bcl2fastq 2.17 software (Illumina). One mismatch was permit-
ted for index sequence identification. Data were analyzed using CLC Genomics Workbench v. 20
(Qiagen). Reads were mapped to the C. difficile R20291 genome (FN545816.1) using the software’s
default scoring penalties for mismatch, deletion, and insertion differences. All samples yielded over 22
million total reads, with over 20 million mapped to the reference (.93% of total reads, and .90% reads
in pairs). Transcript reads for each gene were normalized to the total number of reads and gene length
(expressed as reads per kilobase of transcript per million mapped reads [RPKM]).
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Genomic and transcriptomic data processing. Alignment of C. difficile str. 630 and str. R20291 pep-
tide sequences was performed using bidirectional BLASTp. RNA-Seq reads were first quality trimmed
with Sickle with a cutoff $Q30 (Joshi and Fass, 2011 [106]). Mapping curated reads to the respective C.
difficile genome was then performed with Bowtie2 (107). MarkDuplicates then removed optical and PCR
duplicates (broadinstitute.github.io/picard/), and mappings were converted to idxstats format using
SAMtools (108). Abundances were then normalized to both read and target lengths. Transcriptomic inte-
gration and context-specific model generation were performed with RIPTiDe (v3.2.3) using the maxfit_-
contextualize() function on the default settings (18).

Statistical methods. All statistical analysis was performed in R v3.2.0. Nonmetric multidimensional
scaling of Bray-Curtis dissimilarity and permutational multivariate analysis of variance (PERMANOVA)
analyses were accomplished using the vegan R package (109). Significant differences for single reaction
flux distributions, metabolite concentrations, spore CFU, and growth over time were determined by
Wilcoxon signed-rank test. Supervised machine learning was accomplished with the implementation of
AUC-Random Forest also in R (110). Dissimilarity between C. difficile str. 630 growth curves was deter-
mined using Dynamic Time Warping (111).

Data and code availability. Genomic and proteomic data for the strains Clostridioides difficile str.
630 (PATRIC ref. 272563.8) and Clostridioides difficile str. R20291 (PATRIC ref. 645463.3) were downloaded
from the PATRIC database (91). Transcriptomic data were downloaded in raw FASTQ format from the
NCBI Sequence Read Archive (PRJNA415307 and PRJNA354635) and the Gene Expression Omnibus
(GSE158225). The GitHub repository for this study, with all programmatic code and GENREs described
here, can be found at https://github.com/mjenior/Jenior_CdifficileGENRE_2021.
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