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Effects of copy number variable regions on local gene
expression in white blood cells of Mexican Americans

August Blackburn*,1,2, Marcio Almeida1, Angela Dean3, Joanne E Curran1, Matthew P Johnson1, Eric K Moses4,
Lawrence J Abraham4, Melanie A Carless1, Thomas D Dyer1, Satish Kumar1, Laura Almasy1, Michael C Mahaney1,
Anthony Comuzzie1, Sarah Williams-Blangero1,5, John Blangero1, Donna M Lehman6 and Harald HH Göring1

Only few systematic studies on the contribution of copy number variation to gene expression variation have been published to

date. Here we identify effects of copy number variable regions (CNVRs) on nearby gene expression by investigating 909

CNVRs and expression levels of 12059 nearby genes in white blood cells from Mexican-American participants of the San

Antonio Family Heart Study. We empirically evaluate our ability to detect the contribution of CNVs to proximal gene

expression (presumably in cis) at various window sizes (up to a 10 Mb distance) between the gene and CNV. We found

a ~ 1-Mb window size to be optimal for capturing cis effects of CNVs. Up to 10% of the CNVs in this study were found to be

significantly associated with the expression of at least one gene within their vicinity. As expected, we find that CNVs that

directly overlap gene sequences have the largest effects on gene expression (compared with non-overlapping CNVRs located

nearby), with positive correlation (except for a few exceptions) between estimated genomic dosage and expression level.

We find that genes whose expression level is significantly influenced by nearby CNVRs are enriched for immunity and

autoimmunity related genes. These findings add to the currently limited catalog of CNVRs that are recognized as expression

quantitative trait loci, and have implications for future study designs as well as for prioritizing candidate causal variants in

genomic regions associated with disease.
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INTRODUCTION

Inter-individual variation in transcript abundance is known to be
significantly heritable for many genes. Transcript level can be
considered as a quantitative endophenotype whose genetic regulatory
machinery can be mapped to the genome.1 The expression quantita-
tive trait loci (eQTL) with the strongest effects on gene expression act
primarily in cis.1 A critical bottleneck in the search for disease genes is
the identification of the underlying causal variants, which are often
initially localized in genome-wide association studies (GWAS).
A promising hypothesis now being explored for complex traits and
diseases is that functional alleles may be regulatory in nature and exert
their effect by altering gene expression2 (and thus making them
detectable by genetic investigations of expression levels). This general
hypothesis is supported by various observations, including the fact that
most of the identified common disease-associated SNPs are not in
protein coding regions and often are located far away from exons of
known genes. Recent studies have shown that GWAS SNPs are
enriched among eQTL.3,4 Further, GWAS SNPs, that are known
eQTL, often affect gene expression in the disease tissue.3 Given these
observations, gene transcript levels have received a high level of
interest as endophenotypes that can be correlated with disease status,
and whose genetic regulatory mechanisms can be mapped with
considerable power.2

Copy number variation reported in the Database of Genomic
Variants covers roughly 70% of the genome,5 although this estimate is
likely upward biased by inaccurate breakpoint identification.6 None-
theless, in an individual, copy number variants (CNVs) make up more
variation than SNPs on a per nucleotide basis.7 Thus, the potential
effects of CNVs as eQTL are likely large. Effects caused by gene dosage
should be less tissue specific than variation in gene expression caused
by genetic variation in distant regulatory regions, which is important
as we are often limited to studying surrogate tissues to identify eQTL.
Only a few recent studies have sought to systematically identify CNVs
which act as eQTL.8,9 Stranger et al9 identified 238 genes with
expression levels that were significantly associated with copy number
variation. More recently, Schlattl et al8 identified 110 genes with
expression affected by CNVs. Both studies investigated the relative
proportions of eQTL attributable to CNVs and SNPs, but the effects
by both variants are difficult to disentangle because of the linkage
disequilibrium between CNVs and SNPs. This correlation among
genetic variants located in genomic proximity to one another also
suggests that some eQTL previously identified in SNP-based studies
may be attributable to CNVs. Gamazon et al10 found that SNPs
tagging CNVs were enriched for cis-eQTL, and that these SNPs are
overrepresented in the National Human Genome Research Institute’s
(NHGRI) catalog of GWAS SNPs.
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In this study we seek to add to the growing catalog of eQTL by
identifying genes whose expression level in white blood cells (mainly
lymphocytes) is affected by CNVs in the San Antonio Family Heart
Study (SAFHS).

SUBJECTS AND METHODS

Study design
Participants in the SAFHS11 are members of extended, multigenerational
families of Mexican-American descent. SAFHS is a family study where the
subjects were not ascertained on disease status. The Institutional Review Board
at the University of Texas Health Science Center San Antonio approved the
current study, and informed consent was obtained from all participants. All
study related clinical exams were conducted in San Antonio, TX, USA. Gene
expression and copy number variation data were available for 1104 participants.

Copy number variable regions
We recently identified 2937 copy number variable regions (CNVRs) in
participants of the SAFHS using various Illumina (San Diego, CA, USA)
Infinium Beadchips.12 Our ability to characterize these CNVRs is limited in the
absence of sequencing data. Some CNVRs fall within known complex regions,
or fall within regions of the genome that are predisposed to recurrent copy-
number-altering mutational events.13,14 However, we reason that the majority
are diallelic CNVs as we previously observed reasonable concordance in size
and location between these CNVRs and those identified to be polymorphisms
by HapMap3.12,15

Using Log R ratios for probes within each CNVR, we generated quantitative
values representative of copy number using the principal components function
implemented within CNVtools.16 As described by Barnes et al,16 this approach
has the advantages of creating a single representative value for each region, as
well as generally improving cluster separation when compared with using the
mean or median of all probe intensities. Using this approach, cluster separation
was only sufficient to allow us to ‘bin’ a relatively poor percentage of the
CNVRs (186 CNVRs, 6.3%) into defined copy number states. However, the
underlying quantitative values (from principal components analysis), which are
representatives of copy number, are overwhelmingly heritable (95% have
statistically significant heritability estimates). Further, a subset of these CNVRs
(920 CNVRs, 31.3%) show evidence of linkage to their own genomic location.
Taken together, these observations strongly support the assertion by Barnes
et al16 that this approach captures features representative of copy number, and
provides support for using these quantitative measurements in the place of
discrete copy number in this study.12

In the absence of accurately binned copy number states, testing of underlying
quantitative measures as representations of copy number has been shown to be
effective and often a more accurate strategy than binning.17 This strategy was
applied to study the effects of CNVs on gene expression by Stranger et al.9

Quantitative values representative of copy number have previously been used in
a variance component framework accounting for relatedness of individuals
within pedigrees and applied to study variation in gene transcript expression.18

With this established precedent, we chose to leverage the available quantitative
copy number measurements to identify CNVs that act as eQTL. We chose to
work with the subset of CNVRs for which these quantitative values show
evidence of linkage to their own genomic location (920 CNVRs), as we
reasoned that this subset is likely more robustly measured. The annotation for
these 920 CNVRs was updated to hg19 using the liftOver utility from the UCSC
genome browser.19 Eleven CNVRs do not map uniquely to hg19, resulting in a
total of 909 CNVRs for this study.
The quantitative measurements which are used in this study are based on the

R function prcomp,16 for which numerical sign is arbitrary. Thus, a positive
correlation between these values and copy number is not obligatory. Accord-
ingly, to accurately model the direction of effect of copy number on gene
expression, the sign of β from our statistical genetic analysis (which represents
the direction of effect) was adjusted according the correlation between the
values produced by CNVtools (using prcomp) and the mean of Log R ratios
(which are positively correlated with copy number) for the probes in each
region.

Gene expression
For this study, we used gene expression values from Goring et al.1 The
ascertainment of transcript abundance measurements has been previously
described in detail.1 Briefly, genome-wide transcription profiles were created
using Illumina Sentrix Human Whole Genome (WG-6) Series I BeadChips,
and are archived under ArrayExpress accession number E-TABM-305. How-
ever, these data were re-processed using the following approach. Based on the
number of probes with detectable expression (at ‘detection P-value’ ≤ 0.05), the
average of the raw expression levels across probes, and the average correlation
across all probes between each sample and all others, 1244 samples were
determined to yield expression profile data of acceptable quality. Among these
samples, we tested whether there was an enrichment of samples with a
detection P-value ≤ 0.05 for each probe (the ‘detection P-value’ is a quantity
provided by Illumina software for each probe in each sample, generated by
comparing the expression level of a given probe to null control probes on the
array) to determine which probes detected significant expression. We did this
using a binomial test of the number of samples with ‘detection P-value’ ≤ 0.05
(5% of the samples would be expected to have a P-value at this level by chance).
To correct for multiple testing (as there are many probes being tested) we kept
probes at a false discovery rate of 0.05. Subsequently, we performed background
noise correction, log2 transformation, and quantile normalization. We have
used this procedure previously and it is also described here.20 For the sake of
simplicity, tests were performed at the probe level, although in some cases genes
were represented by more than one probe. illuminaHumanv1.db available
through the Bioconductor website was used for probe annotation.

Statistical genetic analysis
The relationship between copy number variation and probe-level gene
expression was examined using a variance components model, as implemented
in the software package SOLAR.21,22 An additive autosomal polygenic model
was used to allow for the non-independence of relatives attributable to their
expected genome-wide genetic similarity because of kinship. Gene expression
was the trait of interest whose expected value depends on several measured
variables (‘covariates’). Additional covariates used in all models were sex, age,
sex × age interaction, age,2 and sex× age2 interaction. Before analysis, probe-
level expression values and quantitative values representative of copy number
were rank normalized to assure that the assumption of normality during
maximum likelihood estimation was met. False discovery rate was controlled
using the procedures defined by Storey and Tibshirani.23

Additional analyses
Functional annotation clustering was performed using David bioinformatics
resources24 using a background gene set of the genes used in this study to
correct for potential tissue-specific effects, an approach that has been used
previously.8 Briefly, the annotation used for this analysis were all RefSeq
annotations available for the 13 546 probes in this study. David Bioinformatics
Gene ID Conversion Tool, available at the DAVID bioinformatics website, was
used to convert this list into DAVID gene ids and also to remove redundancy
from this list. The background gene set is provided in the Supplementary
Material. Clustering was performed using medium classification stringency and
clusters with an Enrichment score (as defined by DAVID bioinformatics
resources24) 42.5 (which corresponds to a P-value of 0.003) were considered
significant.

RESULTS

Background information and terminology
In a previous study,12 we identified 2937 CNVRs among participants
of the SAFHS genotyped using various Illumina Infinium Beadchips.
For most CNVRs, poor cluster separation did not allow for precise
copy number determination. However, quantitative values representa-
tive of copy number (generated using Log R ratios for probes within
each CNVR and the principal components function implemented
within CNVtools12,16) were significantly heritable for an overwhelming
percentage (95%) of these regions. Furthermore, 920 of the more
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common heritable CNVRs showed linkage to their own genomic
location, providing additional evidence that these CNVRs are real. In
this study, we use the quantitative values for these 920 variants as
substitutes to integer copy numbers, to identify CNVs that are eQTL.
We compared the results of association with all gene expression values
using these quantitative values and using binned copy number
genotypes for 149 CNVRs for which binned copy number genotypes
are available. The proportions of variance accounted for by the
CNVRs were very consistent, especially for the tail end of the
distribution with higher proportions of variance. The estimated
proportions of variance accounted for by the 250 most significant
results were highly correlated between quantitative values and binned
copy number (R240.99, Supplementary Figure 1).
The annotation for these 920 CNVRs was updated to hg19 using the

liftOver utility from the UCSC genome browser.19 Eleven CNVRs do
not map uniquely to hg19, resulting in a total of 909 CNVRs for use in
this study. Figure 1 provides an example of the relationship between
these quantitative values, their underlying discrete copy number state,
and gene expression. A portion of these CNVRs represents known
complex regions. However, most represent diallelic copy number
polymorphisms (presence or absence of a deletion/duplication) as we
previously observed reasonable concordance in size and location
between these CNVRs and those identified to be polymorphisms by

HapMap3.12,15 We will refer to the total set as CNVs for the ease of
communication.

Identification of cis-eQTL
In order to identify which CNVs are putative cis-eQTL, we tested the
aforementioned 909 CNVs for association with transcript levels of
genes within a symmetrical 10Mb window of each CNV (a total
window size of 20Mb+CNV length). In total, we analyzed 89 893
CNV-expression probe pairs. As expected, we detected a substantial
number of significant eQTL, after adjusting for multiple testing. As
shown in Figure 2, significant findings were enriched for proximity
between CNVs and genes. The most highly-associated CNV-gene pair
was between GSTM1 and an overlapping duplication, and was
detected using two separate gene expression probes. This duplication
was estimated to account for ~ 52% of the variance in GSTM1
expression by both probes (Figure 1).
At a symmetrical window size of 10Mb, 118 tests were significant

(qo0.1) representing 97 genes and 75 CNVs (Supplementary
Material). Some genes were affected by multiple non-overlapping
CNVs, and some CNVs had an effect on multiple genes. Fifteen
(~15%) of these 97 genes were previously identified by Schlattl et al.
(10 genes) or Stranger et al. (10 genes), which is certainly a greater
proportion than would be expected by chance. Five genes (HLA-
DRB5, HLA-DQA1, NAIP, RRP7B, and PDPR) were found in all three
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Figure 1 CNVR111 and GSTM1 expression. Quantitative values representative of copy number (horizontal axis of the main panel) for CNVR111
(a duplication) are significantly associated with mRNA expression of GSTM1 (vertical axis of the main panel). A density plot shows that these quantitative
values cluster in two overlapping distributions, which represent underlying discrete genotypes. A density plot of the gene expression values reveals that
expression closely mirrors the underlying genotypes.
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studies. Most of the identified genes are novel, and given the
limitations of this and previous studies (either in sample size or in
methodology for identifying and genotyping CNVs) it is likely that we
are only scratching the surface of the influence of CNVs on gene
expression levels.
Interestingly, 33 and 15 significant CNV-gene pairs were separated

by at least 1 and 5Mb, respectively. Despite identifying these more
distant effects, in general the closer the distance between CNV and
gene, the higher the average proportion of variation in gene expression
attributable to the CNV. There was, however, a notable exception, in
which 28% of the variance in NUPR1L expression was accounted for
by a ~ 50 kb duplication located ~ 9.1Mb upstream from the
transcription start site. It is important to note that with the available
data we are not able to determine the insertion location of the
duplicated sequence, which may be much closer to the NUPR1L gene,
and could potentially explain its strong effect.

Influence of CNVs on directly overlapping genes’ expression levels
Among CNVs, those directly overlapping genes are expected to have
the most direct and largest (average) effects on variation in gene
expression a priori. We sought to interpret the results at this more
restricted window size. Only considering genes that overlap with

CNVs, 45 of 350 (12.9%) tests were significant (qo0.1), representing
43 genes and 38 CNVs. When only considering genes entirely
contained within CNVs, 32 of 157 (20.4%) tests were significant
(qo0.1), representing 31 genes and 27 CNVs.
Among the 32 significant results, 29 were positively correlated

indicating that the effects on gene expression are presumably due to a
direct dosage effect due to increase or decrease in gene copy number.
The three genes with apparent negative correlations, DGCR6L,
LRRC14, and PCGF3, all appear to fall within complex regions of
the genome, an observation that is corroborated by the complexity of
the CNV calls from the 1000 genomes project in this region.25 Schlattl
et al8 previously observed counterintuitive negative correlations
between copy number and gene expression, and therefore these
observations are unlikely due to chance, although significant negative
correlations may be a result of the intrinsic difficulty of accurately
genotyping in complex regions of the genome. Overall, we have
replicated the observations by Schlattl et al8 that gene expression is
generally positively correlated with copy number.
Many genes appeared to be clinically relevant among the 45

significant findings (when considering genes overlapped by CNVRs).
For example, point mutations in the HBG2 gene, such as a G to A
point mutation at position 202 (which causes a valine to methionine
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substitution at codon 68), can cause neonatal cyanosis and anemia26

by inhibiting or preventing binding of oxygen to hemoglobin.
Deletions of the HBG2 gene can cause complications during prenatal
diagnosis of β-thalassemia27 due to the absence of the potential
compensatory effect of persistent fetal hemoglobin expression into
adulthood, which often offsets effects of β-thalassemia. Conversely,
duplications of the HBG2 gene appear to be benign.28 GSTM1 and
GSTT1, both glutathione S-transferases, which are commonly over-
expressed in multiple cancers, may aid in chemotherapeutic drug
resistance through their role in drug metabolism,29 and thus altered
baseline expression may also have a similar role. TBXAS1 is involved
in the conversion of prostaglandin endoperoxide into thromboxane
A2, which is a potent vasoconstrictor and inducer of platelet
aggregation,30 and is thought to be responsible for the rare autosomal
recessive bone density disorder, Ghosal hematodiaphyseal dysplasia.31

Additionally, 15 genes appear under the Gene Ontology term ‘immune
response’.24,32 Thus, indications are that copy number variable genes
are major players in determining genetic risk for clinically relevant
phenotypes.

Optimization of window size
We sought to establish an optimal window size for this study that
maximizes the number of statistically significant findings. To do this,
we subset the data based on symmetrical window sizes incrementally
increased by 100 kb. With each set of data, we calculated the number
of findings that would be called statistically significant at qo0.1. As
shown in Figure 2, the number of statistically significant tests increases
until around ~ 1.2Mb, after which the number of statistically
significant tests slowly declines due to more stringent significance
criteria necessary due to increased hypothesis testing. The results at
this window size are not dissimilar to the results at a 1Mb symmetrical
window, which interestingly is commonly used in SNP-based eQTL
studies.
At a symmetrical window size of 1.2Mb, 147 tests were statistically

significant, representing 88 CNVs and 117 genes. At this window size,
32 (~22%) significant tests represent cases in which genes overlap
CNVs. A summary of the results at different window sizes described in
this manuscript is provided in Table 1. Among the significant findings
that were excluded at the smallest window size were clinically relevant
genes such as GSTM2 and GSTM4, which are also glutathione
S-transferases. Additionally, clinically relevant genes were excluded
due to severe multiple testing correction necessitated when using the
10Mb symmetrical window, including HBG1, which is a hemoglobin
subunit very closely related to HBG2. It is important to note that the
overall effect on HBG1 expression (and other genes not detected at the
10Mb window size) appears to be small.

Identification of trans-eQTL
We tested the aforementioned 909 CNVs for association with
transcript levels of all genes. In total, we analyzed 12 364 146 CNV-
expression probe pairs (including the aforementioned 89 893 cis-
eQTL). We detected two significant (Po4.04× 10− 9, Bonferroni)
trans-eQTL (not previously detected in our cis-eQTL analysis), a stark
difference compared with the 44 cis-eQTL that are significant at this
same threshold. Expression of MAPK8IP1 (on chromosome 11) is
affected by copy number variation on chromosome 17, and EPB41L4A
(on chromosome 5) is affected by copy number variation on
chromosome 6. These observations support previous reports1 that
the effect sizes of putative trans-eQTL tend to be smaller than those
typically observed for cis-eQTL.

Ontology and pathway analysis of eQTL genes
We examined whether the genes whose expression levels were
significantly impacted by nearby CNVs fall into specific categories
using the results at a 10Mb window. Using David Bioinformatics,24

we found a cluster of genes enriched among KEGG pathways,33 Gene
Ontology32 terms, and the Uniprot tissues34 related to immunity and
autoimmunity (Supplementary Information). A similar observation
was made by Schlattl et al.,8 and is in line with the known enrichment
of immunity related genes in CNVRs.25,35 Although it is possible that
this observation is a result of working with blood cells, our results
appear to be consistent with a growing body of evidence that supports
a biological relationship between heritable copy number variation and
the immune system. We also observed significant clusters enriched in
KEGG pathways and Gene Ontology terms related to glutathione
transferase activity and Gene Ontology terms related to the plasma
membrane.

Effect of expression level on experimental power to detect cis effects
We postulated that the power to detect true associations will be
positively correlated with expression level, as the signal-to-noise ratio
increases with increased expression level. This suggests that the power
to detect true associations may be improved by limiting transcripts to
those with higher expression levels. With this rationale, we subset the
tests performed based on gene expression and calculated q-values23 for
each subset. Despite our expectation of an improvement, limiting the
tests performed to more highly expressed genes did not improve the
overall number of significant findings (results not shown). It is worth
noting that the rate of positive findings did change, as there is a trade-
off between power per test and the number of tests performed. With
all transcripts included, 0.13% of the tests (at symmetrical window size
10Mb) were statistically significant; this rate rose to 0.40% when tests
were limited to the top 5% of transcript expression levels.

Table 1 Summary of tests performed and statistically significant findings at various window sizes

Tests performed Number of significant tests (number positive correlations in parentheses)

Distance between CNVR

and gene TSS

Number

of tests

Number of genes

represented

Number of

CNVRs

represented qo0.01 qo0.1

Number of genes

significant (qo0.1)

Number of CNVRs

significant (qo0.1)

Percent of tests

significant (qo0.1)

Gene entirely contained by CNVR 157 140 88 24 (23) 32 (29) 31 27 20.4%

CNVR overlaps gene 350 301 234 33 (31) 45 (36) 43 38 12.9%

1Mb 11106 5837 803 78 (65) 141 (98) 115 83 1.3%

1.2Mb 13320 6621 824 79 (65) 147 (103) 117 88 1.1%

10Mb 89893 12059 909 71 (61) 118 (89) 97 75 0.13%

Abbreviations: CNVR, copy number variable region; Mb, megabase; TSS, transcription start site.
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DISCUSSION

One of the potential mechanisms through which CNVs may exert a
causal effect on human health and disease is by altering gene
transcription. There is now a large and growing list of CNVs (both
recurrent and non-recurrent) associated with human diseases. By
cataloging CNVs that are themselves cis-acting eQTL, the results of
this study will aid in the design and interpretation of future studies.
The current study is subjected to two primary limitations. First, in

order to increase the number of regions that could be examined in this
study, and for technical reasons, we used a quantitative value
representative of copy number instead of (estimated) integer copy
number values. Second, we limited the study to 909 CNVs represent-
ing ~ 1.5% of the autosomal genome. A quick look at the Database of
Genomic Variants5 indicates that the portion of the autosomal
genome which is likely to be copy number variable is much higher
than 1.5%.
In addition to identifying CNVs that affect mRNA expression of

nearby genes, we empirically evaluated the effect of expression levels
and window size selection on power to detect CNVs that are eQTL.
The effect of expression level on power to detect association was
moderate compared with what we expected to observe, namely a more
pronounced skew toward more highly expressed genes among the
significant results. During our enrichment analysis using David
Bioinformatics we corrected for potential tissue-specific effects as well
as we could. This is an incomplete correction as some genes will be
measured with a higher signal-to-noise ratio than others. It is possible
that this could cause tissue-specific effects if more highly expressed
genes are significant more often. This appears to be the case, but only
slightly, and certainly not enough to skew the results of our
enrichment analysis to the observed levels of enrichment in immunity
and blood related traits.
Significant findings in which genes are themselves copy number

variable lend themselves to the most straightforward interpretation.
However, nearby cis-eQTL are also of interest and can be identified
with considerable power. Indeed many researchers are aware of the
effect of window size on power to detect eQTL, however the trade-offs
involved are not clearly defined in the literature. There is a clear trade-
off between newly discoverable cis-eQTL and increased multiple
testing burden with increasing window sizes. This is not simply a
statistical problem, in that there is a real enrichment of eQTL proximal
to genes being investigated, and thus there are also truly fewer eQTL
with large effects at further distances regardless of multiple testing
burden. The sharp increase in the number of eQTL discovered up to
1.2Mb in this dataset indicates that up to this window size, multiple
testing correction is outweighed by newly discovered cis-eQTL.
Conversely, at larger window sizes multiple testing burden begins to
outweigh newly discovered cis-eQTL. The optimal window size may
vary between studies due to their relative power, but the underlying
biology is likely fairly consistent. The shape of the curve in Figure 2
indicates that for the purpose of identifying as many relationships as
possible, choosing an overly broad window size is preferable to overly
constraining a window size a priori. Although the power of individual
studies may alter what can be detected, our empirical results indicate
that there is a considerable amount of meaningful information to be
found by looking at a symmetrical window size up to about 1Mb
from each gene. This also indicates that causal variants for clinically
relevant traits may exert their effects on the trait through genes that
are fairly distant from their location. Although straightforward, our
empirical evaluation of window size selection will serve as a useful
guide for future studies.

We discovered up to 117 genes for which transcript expression is
significantly associated with copy number variation. The overwhelm-
ing majority of these findings is novel, and in many cases involves
clinically relevant genes. Up to ~ 10% of the CNVRs examined in this
study were found to be significantly associated with the expression of
at least one nearby gene. This suggests a high overall functional role of
CNVs in variation of gene expression and, by proxy, trait variation.
Most of the significant findings account for moderate (o5%)
proportions of variance in gene expression. This is at least partially
an effect of allele frequency, which tends to be lower for larger CNVs
(presumably because these tend to be deleterious and, hence, will be
selected against). These variants tended to account for moderate
proportion of gene expression variation is consistent with our
expectation that most variants that affect trait variation are either
rare or have low-to-moderate effect per allele.
Our results indicate that future studies investigating more compre-

hensive sets of CNVs with higher resolution data are likely to identify
many more CNVs that are eQTL. These findings provide valuable
information that will aid in the interpretation of future studies focused
on investigating the genetic architecture of human disease.
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