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The DNA-dependent protein kinase (DNA-PK) plays an instrumental role in the

overall survival and proliferation of cells. As a member of the phosphatidylinositol

3-kinase-related kinase (PIKK) family, DNA-PK is best known as a mediator of the

cellular response to DNA damage. In this context, DNA-PK has emerged as an intriguing

therapeutic target in the treatment of a variety of cancers, especially when used in

conjunction with genotoxic chemotherapy or ionizing radiation. Beyond the DNA damage

response, DNA-PK activity is necessary for multiple cellular functions, including the

regulation of transcription, progression of the cell cycle, and in the maintenance of

telomeres. Here, we reviewwhat is currently known about DNA-PK regarding its structure

and established roles in DNA repair. We also discuss its lesser-known functions, the

pharmacotherapies inhibiting its function in DNA repair, and its potential as a therapeutic

target in a broader context.
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INTRODUCTION

The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase consisting of
a catalytic subunit (DNA-PKcs) and a Ku heterodimer that is made up of the Ku70 and Ku80
subunits. DNA-PK was accidentally discovered after researchers studying translation found that
double-stranded DNA (dsDNA) contaminated their preparations, leading to the phosphorylation
of specific proteins (1). Early work showed that DNA-PK phosphorylates Sp1 in the formation of
Sp1 transcription complexes (2, 3). It was soon established that DNA-PK was involved in repairing
double-strand breaks (DSBs) through non-homologous end-joining (NHEJ). Since then, DNA-PK’s
role in the DNA damage response (DDR) pathways has been expanded to include pathway choice
between NHEJ and homologous recombination (HR) (4) and in the immune system through V(D)J
and class-switch recombination (5). Given its critical function in DDR pathways, DNA-PK has been
targeted in cancer therapy in concert with DNA-damaging agents (6). More recently, DNA-PK
has been implicated in other cellular processes, including cell cycle progression (7) and telomere
maintenance (Table 1) (33). These findings, combined with the transcriptional targets that associate
with DNA-PK, suggest that DNA-PK is pivotal in pathways outside of the DDR that are critical to
cellular survival and proliferation.

Cloning of the cDNA of DNA-PKcs showed significant homology with the phosphatidylinositol
3-kinase (PI3K) family, however it did not have any activity toward lipids (34). At 460 kDa,
DNA-PKcs is the largest of six serine/threonine kinases in the phosphatidylinositol 3-kinase-related
kinase (PIKK) family, consisting of 4,128 amino acids (35). The PIKK family share significant
homology (Figure 1) (36, 37). Ku heterodimerization is essential to maintain the stability of
both subunits, loss of one subunit leads to decreased levels of the other (38). Although there
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is significant sequence divergence in the subunits in higher
eukaryotes, especially compared to lower organisms, there
is structural homology in both subunits (39). Ku70 and
Ku80 contain three domains: an alpha helix/beta barrel
von Willebrand A (vWA) domain on the N-terminus, a
DNA-binding/dimerization core, and a helical domain at the
C-terminus. The vWA domain functions as a surface for protein
interactions, mediating binding between DNA-PK and factors
involved in DNA repair, telomere regulation, and other functions
(40). The C-terminal domain (CTD), where the majority of
sequence divergence exists, contains the nuclear localization
signal (NLS) on both subunits. Although Ku functions as a
heterodimer, each subunit can independently import into the
nucleus (38). The Ku70 CTD contains the SAP domain that
increases the affinity of DNA-binding, whereas the Ku80 CTD
houses the critical DNA-PKcs binding region (40).

DNA-PK IN DNA REPAIR

The role of DNA-PK in DNA repair has been extensively
reviewed (41), and thus is briefly summarized here. Three
main pathways exist to repair damaged DNA: classical NHEJ
(C-NHEJ), alternative NHEJ (A-NHEJ), and HR. HR repairs
DNA with the greatest fidelity because it uses sister chromatids
to repair DSBs, but can only occur in the S and G2 phases of
the cell cycle. Both NHEJ pathways can occur throughout the
cell cycle, though A-NHEJ is more active during S phase (42).
As opposed to the use of template strands in HR, NHEJ ligates
two strands of DNA across a break. C-NHEJ is the primary
form of DNA repair in higher eukaryotes, due to its simplicity
and presence throughout the cell cycle. If C-NHEJ is unable to
repair a DSB, the error-prone A-NHEJ becomes the dominant
pathway (40, 43). But before a damage pathway is pursued, a cell
must detect the presence of DSBs. H2A histone family member
X (H2AX), is phosphorylated both by DNA-PKcs and ATM at its
Ser139 residue to form γ-H2AX, a marker of DNA damage, that
functions to retain factors involved in DSB repair (12).

DNA-PK in Non-homologous End-Joining
By recruiting specific enzymes, NHEJ can repair DSBs of varying
complexity, like those with incompatible ends or damaged bases
(44). The sequence of NHEJ can be described as: (a) DSB end-
recognition and binding by Ku; (b) assembly of the components
of the NHEJ machinery, such as DNA-PKcs, the XRCC4-DNA
ligase IV complex, and XRCC4-like factor (XLF); (c) activation
of DNA-PKcs kinase activity; (d) bridging and, if necessary, end-
processing of the broken DNA strands; (e) end-ligation by the
XRCC4-DNA ligase IV complex; and (f) dissociation of theNHEJ
machinery (36, 44, 45). The order of events following Ku binding
to DNA is unknown; NHEJ is a dynamic process involving
multiple factors interacting simultaneously.

In the first step of NHEJ, the Ku heterodimer recognizes and
binds to the free ends of the DSB and recruits the canonical
factors involved in NHEJ, including XRCC4-DNA ligase IV
(9), XLF (46), and DNA-PKcs. Caspase-2-mediated cleavage
of Ku80 at Asp726 may allow for DNA-PKcs binding and
formation of the DNA-PK complex (47), causing an inward

TABLE 1 | Protein targets of DNA-PK and their associated cellular functions.

Protein

Target

Function References

DNA DAMAGE RESPONSE

Non-homologous end joining

Artemis Contributes to end-processing of DSB (8)

DNA-PKcs Phosphorylates factors involved in NHEJ (8–11)

H2AX Retains factors involved in DSB repair (12)

Ku70/Ku80 Binds to DNA, recruits components of

NHEJ machinery

(8, 9)

XLF Stabilizes ends of DSBs (8, 9)

XRCC4 Stabilizes ends of DSBs and ligates DSB

with Ligase IV

(8, 9)

Homologous recombination

BRCA1 Inhibits DNA-PKcs-mediated

autophosphorylation

(13)

DNA-PKcs Involved in DDR pathway choice via

differential phosphorylation

(14, 15)

H2AX Retains factors involved in DSB repair (12)

RPA Promotes HR after phosphorylation via

recruitment of Rad51

(16, 17)

NON-DNA DAMAGE RESPONSE

Cell cycle progression

Chk2 Forms complex with BRCA1 to organize

mitotic spindle

DNA-PKcs Localizes to centrosomes and

kinetochores

(18–20)

MDM2/HDM2 Overcomes p53-mediated G1 phase cell

cycle arrest

(21, 22)

p53 Causes cell cycle arrest in G1 phase

PLK1 Regulates mitotic entry (19, 23)

PP6 Regulates mitotic exit (23)

Transcriptional regulation

AR Drives expression of prostate

cancer-associated genes

(24)

NRE Impairs glucocorticoid-induced MMTV

transcription

(25)

OCT1 &

OCT2

Drive expression of genes in multiple

tissues

(26)

RNA Pol I Involved in transcriptional elongation (27)

Sp1 Functions as general transcription factor (2)

TBP Functions as general transcription factor (28)

TFIIB Functions as general transcription factor (28)

TRIM28 Activates RNA Polymerase II to activate

transcriptional elongation

(27)

Telomere maintenance

DNA-PKcs Facilitates telomere end-capping (29–31)

hnRNP-A1 Maintains telomeric overhangs and

activates telomerase

(29)

Ku70/Ku80 Maintains telomere length (32)

translocation of the Ku heterodimer and DNA-PKcs activation
through conformational changes in the FAT and FATC domains
(45). The DNA-PK complex likely tethers broken DNA strands,
thereby preventing their nucleolytic degradation (48). DNA-PKcs
phosphorylates members of the NHEJ machinery, including Ku,
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FIGURE 1 | Structure of DNA-PKcs and related members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family. DNA-PKcs can be subdivided into three

large structural units: a large N-terminal helical domain, followed by the Circular Cradle, which contains multiple HEAT (Huntingtin, Elongation Factor 3, PP2A, and

TOR1) repeats and a number of well-conserved phosphorylation clusters, and a C-terminal Head, which contains the highly conserved catalytic kinase domain. The

kinase domain is flanked on either side by the well-conserved FAT (named for its homology in FRAP, ATM, and TRRAP) and FATC (FAT at the C-terminus) domains.

The FKBP12-rapamycin-binding (FRB) domain, which sits between the FAT and kinase domain, is essential for mTOR kinase activity and subsequent G1 to S cell

cycle progression, however, it may serve a different purpose in DNA-PK. The N-terminus contains HEAT repeats (blue) that make contact with other HEAT repeats

(green). The FAT and FATC domains (purple) help stabilize the catalytic domain (yellow), which is adjacent to the FRB domain (orange). ATM, ataxia-telangiectasia

mutated; ATR, ataxia telangiectasia and Rad3-related protein, mTOR, mammalian target of rapamycin; SMG1, one of the serine/threonine-protein kinases; TRRAP,

transformation/transcription domain-associated protein.

XRCC4, XLF, DNA-PKcs itself, and Artemis, which is involved
in DNA end-processing (8). DNA-PKcs autophosphorylation
at Thr2609 and Thr2647 in the ABCDE cluster mediates a
conformational change in DNA-PKcs allowing for DNA end-
processing (10). Conversely, mutagenesis of Ser2056, another
known autophosphorylation site in the PQR cluster, showed that
it likely limits end-processing (11).

While autophosphorylation appears to be crucial in NHEJ,
the importance of binding interactions and DNA-PKcs-mediated
phosphorylation of components of the NHEJ machinery remains
unclear (49). Ku80 is crucial in immobilizing the broken
ends of chromosomes within the nucleus, allowing for proper
alignment at the site of repair (50). Cells harboring a deletion
of the Ku80 carboxyl terminus showed increased sensitivity
to IR and decreased levels DNA-PKcs autophosphorylation
at Thr2647 when compared with controls, but levels of the
autophosphorylated Ser2056 residue were unchanged (51).
Mutant Ku heterodimers containing alanine instead of serine or
threonine at residues 6, 577, and 580 of Ku70 and 715 of Ku80
were still able to function in DNA-damage repair (52).

DNA-PK in Homologous Recombination
When faced with DNA damage-inducing stress, a cell has a
choice between NHEJ and HR, but the competition between the
two pathways is not fully understood. The availability of sister
chromatids in the S and G2 phases of the cell cycle make HR
a more favorable outcome, but some mechanism must exist to
inhibit NHEJ, which can be activated at any point in the cell
cycle. Breast Cancer 1, early onset (BRCA1), a canonical HR
factor, functions in various capacities during DNA repair. In
the context of pathway choice, BRCA1 prevents NHEJ in the
S and G2 phases by inhibiting DNA-PKcs autophosphorylation

at Ser2056. This interaction, mediated BRCA1’s BRCT domain
binding to DNA-PKcs, occurs in a phosphorylation-independent
manner (13).

Beyond cell cycle considerations, other factors influencing
the decision to pursue one DDR pathway over another
remain unclear. Cells with inactivating mutations in Ku and
DNA-PKcs will preferentially use HR as the primary DDR
mechanism (14). Perhaps DNA repair pathway choice centers
on whether DNA-PKcs is activated via phosphorylation: a
phosphorylated/active form of DNA-PKcs favors NHEJ, while an
unphosphorylated/inactive form favors HR. However, seemingly
contradictory findings indicate a more nuanced mechanism.
While mutagenesis and inactivation of DNA-PKcs that impaired
NHEJ favored HR, pharmacological inhibition of DNA-PKcs
impaired HR (15).

Replication protein A (RPA), a heterodimer that binds to
single-stranded DNA (ssDNA), is an important modulator
of HR. RPA complexes with tumor suppressor protein p53
and is hyperphosphorylated after DNA damage via DNA-
PKcs (16). Coupled with the phosphorylation of p53, this
hyperphosphorylation causes dissociation of the RPA-p53
complex and allows RPA to bind to ssDNA and promote HR
via Rad51. Cells treated with camptothecin, followed by siRNA
knockdown of DNA-PKcs-mediated phosphorylation of residues
of RPA32, showed impaired HR (17).

FUNCTIONS OF DNA-PK OUTSIDE OF
DNA REPAIR

Aside from its well-known role in two of the DDR pathways,
DNA-PK functions in other cellular processes, such as cell cycle
progression, transcription, and telomere maintenance. These
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functions may be involved in tumor progression, highlighting
DNA-PK’s potential as a therapeutic target.

DNA-PK’s Role in Cell Cycle Progression
Upon genotoxic stress, p53 causes cell cycle arrest in G1.
Human/murine double minute 2 (MDM2; HDM2 in humans)
overcome this blockade by complexing with p53. Since its
discovery,MDM2—and its interplay with p53—has been targeted
in cancer therapy (53). DNA-PKcs regulates this interaction by
phosphorylating HDM2 at Ser17 to prevent binding with p53
(21). DNA-PK also acts on p53 by phosphorylating its Ser15 and
Ser37 residues, inducing a conformational change that prevents
HDM2 binding (22).

Cells are susceptible to DNA damage during S phase, which
results in stalling or collapse of the replication fork. Replication
stress leads to the formation of one-ended DSBs that are
bound by RPA. Linked to its role in HR, DNA-PKcs-mediated
phosphorylation of Ser4 and Ser8 of RPA32 causes growth arrest
and delays mitotic entry (54).

DNA-PKcs has been implicated in the regulation of mitosis.
Numerous studies have shown that reduction of DNA-PKcs
enzymatic activity, either by pharmacological inhibition or by
siRNA-mediated knockdown, leads to defects in chromosomal
alignment and in nuclear morphology (7). Phosphorylation
of DNA-PKcs at Ser2056, Thr2609, Thr2647, and Thr3950
causes DNA-PKcs localization to centrosomes. Phosphorylated
Thr2609 is also seen at kinetochores during metaphase and
cytokinesis (18, 19, 23). Phosphorylation at Thr2609 causes
an association with polo-like kinase 1 (PLK1) in the mitotic
phase, which regulates mitotic entry and exit, throughout
mitosis at multiple subcellular structures. This interaction is
essential for chromosomal segregation (19). Ser3205, another
residue on DNA-PKcs that is likely essential for the overall
success of mitosis, is phosphorylated by PLK1, allowing for the
localization of DNA-PKcs to the midbody during cytokinesis.
Dephosphorylation of Ser3205, via protein phosphatase 6
(PP6), occurs when cells exit mitosis (23), indicating that
phosphorylation of this specific residue mediates mitotic entry
and exit. DNA-PKcs also phosphorylates downstream targets
involved in mitotic regulation. The Chk2-BRCA1 signaling
pathway, which organizes the mitotic spindle, depends on
DNA-PKcs activity. Chk2-mediated phosphorylation at Ser988
of BRCA1 ensures proper kinetochore-microtubule attachment.
DNA-PKcs regulates Chk2 activity through the phosphorylation
of its Thr68 residue. Knockdown of DNA-PKcs by siRNA
inhibited phosphorylation of Thr68 on Chk2 and impaired
microtubule growth during mitosis (55).

DNA-PK as a Regulator of Transcription
Once established, the critical role DNA-PK plays in the
DDR pathways became the dominant focus of its study.
However, DNA-PK is critical for efficient gene expression,
both in mediating transcriptional machinery and in modulating
transcription factors. In vitro, Chinese hamster ovarian cells
with a Ku70/Ku80 or DNA-PKcs deficiency showed a 2–7-fold
decrease in transcription with multiple promoters compared to
controls (56). RNA polymerase II activity requires functional

activity of the TRIM28 factor, which is phosphorylated by DNA-
PKcs at Ser824 (27). DNA-PK is involved in the phosphorylation
of the general transcription factors TATA-binding protein
(TBP) and transcription factor IIB (TFIIB), allowing them
to synergistically form complexes with RNA polymerase and
transcription factor IIF to stimulate basal transcription (28).
The earliest defined role of DNA-PKcs in transcription was its
activity on the transcription factor Sp1, which activates cellular
promoters by binding to GC-rich regions. Upon binding to
promoters, multiple residues of Sp1 are phosphorylated by DNA-
PKcs (2). DNA-PKcs is also involved in the phosphorylation and
activation of the POU domains of octamer-binding transcription
factors 1 and 2 (OCT1 and OCT2) (26). Serine residues of c-
MYC, the oncoprotein responsible for transcription of ∼15% of
the human genome (57), are phosphorylated by DNA-PKcs (58).
DNA-PKcs also mediates the transcriptional activation of factors
involved in metabolism. After feeding or in response to insulin,
DNA-PK phosphorylates the upstream stimulatory factor-1
(USF-1) transcription factor at its Ser262 residue. The DNA-PK-
USF complex induce transient breaks in the fatty acid synthase
(FAS) promoter region immediately preceding transcriptional
activation. Once transcribed, FAS can induce lipogenesis. DNA-
PKcs-deficient mice fail to induce lipogenesis and are deficient
in triglyceride levels (59). In 17β-estradiol (E2)-treated Michigan
Cancer Foundation (MCF)-7 cells, topoisomerase IIβ-induced
DSBs of the pS2 promoter appear to be critical component
of signal-dependent activation of gene transcription. These
transient DSBs activate the enzymatic activity of poly(adenosine
diphosphate-ribose) polymerase-1 (PARP-1). DNA-PKcs and the
Ku heterodimer were copurified with PARP-1, suggesting that
DNA-PK may be involved in transcriptional activation at these
transient breaks (60). Recent studies demonstrated that DNA-
PKcs functions in the progression of hormone-driven cancers. In
advanced prostate cancer, DNA-PKcs coactivates the androgen
receptor (AR), promoting metastatic phenotypes. Depletion of
DNA-PKcs reduced expression of AR-regulated genes, delaying
the formation of metastases (24). In breast cancer, DNA-PKcs-
mediated phosphorylation of the estrogen receptor-α (ERα) at
Ser118, leads to its stabilization and transcriptional activation.
Inhibition of DNA-PK, either pharmacologically or via siRNA,
reduced activation of ERα as well as increased its ubiquitination
and subsequent degradation (61).

DNA-PK and Telomere Maintenance
Given that telomeres are essentially endogenously occurring
DSBs, it seems likely that DNA-PK would be intricately involved
in their regulation. Paradoxically, DNA-PK’s role in telomere
maintenance is to protect against the processing and fusion
associated with DSBs. The Ku70/Ku80 heterodimer has been
implicated in several processes involving telomeres, including the
silencing of telomere-proximal genes, tethering of telomeres to
the nuclear periphery, and protecting telomeres from nucleolytic
degradation (32, 62). Ku80 is critical for telomere length;
siRNA-mediated knockdown of Ku80 led to significant telomere
shortening (63). Similar results were produced in mice and
human cells when DNA-PKcs activity was impaired (29, 33).
Telomeric repeat-containing RNA (TERRA), a long non-coding
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RNA transcribed from telomeric DNA, has been implicated
in processes related to telomere maintenance, such as the
formation of heterochromatin (64, 65), replication (65), and
end-capping (66). TERRA activity is thought to be mediated by
the heterogenous nuclear ribonucleoprotein A1 (hnRNP A1).
DNA-PKcs-mediated phosphorylation of hnRNP A1 removes
TERRA from chromatin, allowing for telomere replication.
Inhibition of DNA-PKcs/hnRNP A1 activity resulted in TERRA
accumulation at telomeres, impairing efficient replication (66).
DNA-PKcs is instrumental in facilitating telomere end-capping,
likely through an interaction with the kinase interacting protein
(KIP) and the telomeric repeat-binding factor 2 (TRF2), a subunit
of the shelterin complex (67). Phosphorylation of Ser2056 of
DNA-PKcs mediates end-capping. In its absence, uncapped
telomeres are seen as DSBs and are processed, leading to
inappropriate fusion events (30). Pharmacological inhibition of
DNA-PKcs showed similar results in a concentration-dependent
manner (31).

DNA-PK AND CANCER

Deregulated DNA-PK activity is associated with a number of
cancers. In melanoma, DNA-PKcs acts as a metastatic driver
by stimulating angiogenesis and tumor migration. DNA-PKcs
activity was associated with the secretion of pro-metastatic
proteins through modification of the tumor microenvironment
(68). Increased expression and deregulation of DNA-PKcs
was demonstrated to drive the development of hepatocellular
carcinoma (69, 70). Upregulation of DNA-PKcs has also been
observed in multiple myeloma (71), and, along with increased
expression of the Ku subunits, is associated with radioresistance
in cancers of the thyroid (72), nasopharynx (73), oral cavity (74),
and cervix (75). Coupled with its critical cellular functions, these
findings have made DNA-PK a prime therapeutic candidate in
the treatment of malignancy.

PHARMACOTHERAPIES
TARGETING DNA-PK

The development of DNA-PK inhibitors relied on earlier studies
that synthesized small molecules PI3K inhibitors. Quercetin,
a naturally occurring bioflavonoid, acted as a competitive
antagonist against the kinase domain of PI3K and other
protein and lipid kinases. This non-selectivity proved to be
useful, as quercetin was used as a model compound to
develop targeted inhibitors. 2-(4-Morpholinyl)-8-phenyl-4H-1-
benzopyran-4-one (LY294002), was developed as a selective
and competitive inhibitor of PI3K activity. Unlike quercetin,
LY294002 had zero activity against other kinases and had a
2.7-fold increase in potency (IC50 = 1.5–2.0µM) (76).

The specificity and potency of LY294002 against PI3K
activity made it an ideal structural lead compound to
develop new inhibitors that specifically target DNA-PKcs.
This next generation of inhibitors, the 2,6-disubstituted
pyran-4-one and thiopyran-4-one inhibitors, were more
potent (IC50 = 1.1 and 0.72µM, respectively) and selective

for DNA-PKcs when compared to LY294002 (77). This led
to the development of chromen-4-one derivatives, 2-N-
morpholino-8-dibenzofuranyl-chromen-4-one (NU7427)
and 2-N-morpholino-8-dibenzothiophenyl-chromen-4-one
(NU7441). Compared to previous DNA-PKcs inhibitors,
NU7427, and NU7441 were significantly potent (IC50 = 40
and 13 nM, respectively) and specific. At concentrations of
100µM, NU7441 did not have an effect on ATM or ATR
activity and showed minimal activity against PI3K and mTOR
(78). NU7441 potentiates the effects of DNA damage-inducing
chemotherapy in B-cell chronic lymphocytic leukemia (CLL)
(79), breast (80), non-small cell lung carcinoma (NSCLC)
(81), and nasopharyngeal carcinoma (NPC) (82) cell lines,
as well increasing sensitivity to IR and chemotherapy in
colorectal carcinoma cell lines (83). In an attempt to optimize
the pharmacologic profile of NU7441, focused libraries were
used to identify the biological activity of substitutions at the
dibenzothiophene-1 position. The addition of water-soluble
groups at this position proved to be effective, leading to the
development of a new chromen-four-one derivative that has an
even greater potency (IC50 = 6 nM). Unfortunately, this novel
inhibitor may have some undesirable off-target effects (84).
However, these findings highlight the ability to further modify
known DNA-PKcs inhibitors, specifically with water-soluble
groups, to develop more potent therapies. Another strategy to
develop novel inhibitors was to use a homology model of the
ATP-binding site of DNA-PK, based on the crystal structure
of PI3Kγ. KU-0060648, a dual DNA-PKcs and PI3K inhibitor,
has better bioavailability and a more favorable pharmacokinetic
profile compared to NU7441 and also has limited activity against
other PIKK family members. KU-0060648 is also more potent,
with a 500-fold increase in solubility compared to NU7441
(85). DNA-PK inhibitors have also been demonstrated as
effective single agents, taking advantage of synthetic lethality in
ATM-deficient lymphoma models (86).

Another strategy taken to target DNA-PKcs activity in cancer
is through the use of non-coding microRNAs (miRNAs). One
study identified miR-101 as targeting both DNA-PKcs and
ATM. Upregulation of miR-101 sensitized glioblastoma and non-
small cell lung cancer cell lines to IR (87). Another study
demonstrated that transfection with has-miR-96-5p and has-
miR-874-3p combined with IR decreased survival of non-small
cell lung cancer cell lines when compared to IR alone, and had a
similar effect when compared to a DNA-PK inhibitor (NU7026)
plus IR (88).

DNA-PK has been targeted with antibodies and inhibitors
specific to the Ku heterodimer. Though antibodies are
generally ineffective against intracellular targets, there
has been success with ScFv 18-2, which conjugates with
folate via a scissile disulfide linker and enters cells through
folate receptor-mediated endocytosis. Lung cancer cell lines
treated with ScFv 18-2 showed increased levels of γ-H2AX
and decreased phosphorylation of Ser2056. Compared
to controls, treated cell lines were more radiosensitive
(89). Based on the crystal structure of the Ku70/Ku80
heterodimer (7-{[2-(3,4-dimethoxyphenyl)ethyl]amino}-3-
(3-fluorophenyl)pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione
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(Compound L), was developed as an inhibitor that disrupts
the Ku heterodimer binding to DNA. Compound L decreased
phosphorylation of Ser2056 and downstream DNA-PK targets in
glioblastoma cell lines (90).

The promising effects of DNA-PK inhibitors to sensitize
tumors to chemotherapy and radiation has led to their
implementation in clinical trials. M3814 is being tested with
radiotherapy in advanced solid tumors (NCT02516813).
CC-122, a pleiotropic pathway modulator with activity
against DNA-PK, is in Phase 1 trials studying its effects in
multiple myeloma, advanced solid tumors, and non-Hodgkin’s
lymphoma (NCT01421524). CC-115, a dual DNA-PK and
mTOR inhibitor, is in Phase 2 studies to determine its efficacy in
glioblastoma (NCT02977780).

CONCLUSIONS

Since its discovery, DNA-PK has proven to be an intriguing
modulator of many cellular functions. Its instrumental role
in regulating how cells respond to genotoxic insult has been
the dominant focus of research. Though much has been
discovered, key questions remain that will help elucidate DNA-
PK’s role in cancer. Are there other substrates of DNA-
PK that are yet to be discovered? How does the activity of
the Ku heterodimer and DNA-PKcs change in malignancy?
Finally, can the specific interactions between DNA-PK and its
many substrates be targeted? Thus, far, DNA-PK inhibitors

have focused on potentiating DNA damage through inhibition
of its kinase function, thereby blocking phosphorylation of
key enzymes involved in DNA repair. But these therapies
represent a small portion of the therapeutic strategies that
may be implemented to target DNA-PK. Novel inhibitors that
impair the protein-protein interactions between DNA-PK and
its many substrates have the potential to be more targeted and

potent. In order to develop this next generation of inhibitors,
further study on the regions of DNA-PK that are crucial for
substrate binding is warranted. Given the recent findings on
its structural properties, the many functions and pathways it
regulates, and its therapeutic potential, DNA-PK remains a
subject of great importance that may contribute greatly to
our overall understanding of cancer and to the discovery of
novel therapeutics.
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