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Abstract

Antibiotic resistance is an important public health problem. One potential solution is the

development of synergistic antibiotic combinations, in which the combination is more effec-

tive than the component drugs. However, experimental progress in this direction is severely

limited by the number of samples required to exhaustively test for synergy, which grows

exponentially with the number of drugs combined. We introduce a new metric for antibiotic

synergy, motivated by the popular Fractional Inhibitory Concentration Index and the Highest

Single Agent model. We also propose a new experimental design that samples along all

appropriately normalized diagonals in concentration space, and prove that this design identi-

fies all synergies among a set of drugs while only sampling a small fraction of the possible

combinations. We applied our method to screen two- through eight-way combinations of

eight antibiotics at 10 concentrations each, which requires sampling only 2,560 unique com-

binations of antibiotic concentrations.

Author summary

Antibiotic resistance is a growing public health concern, and there is an increasing need

for methods to combat it. One potential approach is the development of synergistic antibi-

otic combinations, in which a mixture of drugs is more effective than any individual com-

ponent. Unfortunately, the search for clinically beneficial drug combinations is severely

restricted by the pace at which drugs can be screened. To date, most studies of combina-

tion therapies have been limited to testing only pairs or triples of drugs. These studies

have identified primarily antagonistic drug interactions, in which the combination is less

effective than the individual components. There is an acute need for methodologies that

enable screening of higher-order drug combinations, both to identify synergies among

many drugs and to understand the behavior of higher-order combinations. In this work

we introduce a new paradigm for combination testing, the normalized diagonal sampling
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design, that makes identifying interactions among eight or more drugs feasible for the

first time. Screening d drugs at m different combinations requires m � 2d samples under

our design as opposed to md under exhaustive screening, while provably identifying all

synergies under mild assumptions about antibiotic behavior. Scientists can use our design

to quickly screen for antibiotic interactions, accelerating the pace of combination therapy

development.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Antibiotic resistance poses a clinical problem for which there are few available solutions. One

promising strategy is the use of synergistic antibiotic pairings whose collective potency is

greater than expected [1]. Commercially available examples include the antibiotics trimetho-

prim and sulfamethoxazole, which inhibit separate steps in the folate biosynthesis pathway [2],

and quinupristin and dalfopristin, which both inhibit the ribosome [3]. Very few examples of

synergistic combinations exceed two antibiotics [4], partly because the number of measure-

ments required to detect multi-antibiotic synergy increases exponentially with the number of

antibiotics tested. Exhaustively testing 10 concentrations of five antibiotics would require on

the order of 105 experiments, which limits the search space even when employing robotics to

facilitate experimentation [5]. Scaling beyond five antibiotics is therefore impractical, and

another approach is needed to explore the space of possible synergies.

Many methods have been developed to search this space. Much of the existing work focuses

on identifying combinations with performance exceeding their “expected performance” under

some null model, i.e., a prior belief about the effectiveness of antibiotics in combination. Mea-

sures of antibiotic performance include the absolute amount of cells (e.g., optical density after

18 hours) [6, 7], the rate at which cells grow [8], or the energy released by the cells [9]. The

three most popular null models are Bliss [10], Highest Single Agent (HSA) [11], and Loewe

[12]. Under the Bliss model, antibiotic effects combine probabilistically, so that combining

antibiotic A at a concentration that yields a 50% reduction in growth with antibiotic B at a con-

centration that yields an 80% reduction in growth should result in a 90% reduction in growth

(the probability of A or B independently killing the bacteria); if the combination has an efficacy

greater than 90%, then it is called synergistic. In contrast, the HSA model posits that the effect

of a drug combination is equivalent to the maximum of the effects of each drug used by itself.

In the preceding example, B is the highest single agent, with an 80% individual reduction in

growth, so any combined effect above 80% is considered synergy. Under the Loewe model,

antibiotic doses combine linearly, so that combining antibiotic A at half of its minimum inhibi-

tory concentration (MIC) and antibiotic B at half of its MIC should result in an inhibitory

drug (this is consistent with the “sham combinations” principle, i.e., that half a unit of A plus

half a unit of A makes a whole unit of A). If the combination is inhibitory at a lower concentra-

tion, it is considered synergistic under the Loewe model. We direct the reader to Foucquier

and Guedj [13] for a comprehensive review of Bliss, Loewe, HSA, and other notions of

synergy.

A complementary approach is to define an appropriate combination index (CI) on the

space of antibiotic combinations at specific concentrations [11, 13, 14]. The CI of a dose
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combination measures a deviation from the null model, so that CI = 1 implies the combination

follows the null model, and CI< 1 implies synergy. For effect-based null models, such as Bliss

or HSA, the CI is naturally defined as the ratio of the prediction of the null model on a combi-

nation of drugs to the true effect of that combination. For dose-effect models, such as Loewe,

the CI is defined relative to underlying isoboles of the same growth level. The Fractional Inhib-

itory Concentration Index (FICI) is the CI associated with Loewe synergy; an FICI of 1 means

the drugs interact according to the Loewe Model [13]. For example, if a combination of drug A
at 1

4
of its MIC and drug B at 1

2
of its MIC is inhibitory, then the FIC for this combination is

1

4
þ 1

2
¼ 3

4
, and the FICI of A + B is therefore no greater than 3

4
. The FICI is interpreted against a

standard scale, where values below 1 indicate synergy, while values between 1

2
and 1 indicate

“weak” synergy [15]. The FICI can also be viewed through a more clinically relevant lens as the

minimum fractional concentration among all effective combinations. This perspective leads to

a natural optimization problem: find the combination with the lowest normalized dose that is

still effective.

Recent research has focused on identifying synergy among more than two drugs. When

moving to higher order interactions, a distinction emerges between total synergy, which cap-

tures the combination’s performance relative to its individual components, and emergent syn-
ergy, which captures the incremental benefit over any subset of the combination; these notions

have been defined relative to both the Bliss [5, 6, 16, 17] and Loewe [18] null models. However,

a major challenge with identifying higher order interactions is the mounting evidence suggest-

ing that the null models predicted by Loewe and Bliss poorly fit experimental data [7, 19]. In

response, some authors have proposed data-driven predictive models trained only on pairs of

drugs and then evaluated on three or more drugs, such as the dose model [7, 20], pairs model

[8, 21], and the static λ score [18, 22, 23]. Given that they have no access to data from higher

order combinations, predictive models effectively become null models for interactions

between more than two drugs. This lets us characterize deviations from the predictive model

as “emergent” antagonisms and synergies that arise from higher order effects not predictable

by pairs.

Given a specific definition of synergy, a second major challenge is the high measurement

burden of identifying synergistic combinations. For example, 108 measurements are required

to exhaustively test eight drugs at 10 concentrations each. Strategies to overcome exhaustive

sampling fall into two categories: parametric modeling and experimental design. The former

approach applies concepts from machine learning to build parametric models that can poten-

tially predict all possible drug combinations accurately but can be learned using only a fixed

number of parameters. Models of this form include the previously mentioned dose [20] and

pairs [21] models, which explicitly assume no higher order interactions beyond pairs of drugs;

mechanistic models, which use knowledge of the underlying drug targets [24] or gene expres-

sion data [25]; and the MAGENTA model [26], which leverages phenotypic information about

the cell’s response to antibiotics.

The experimental design approach is a complementary strategy that reduces the amount of

data to be collected, sometimes at the cost of data fidelity. For example, some studies severely

restrict the number of doses per antibiotic combination [5] in order to exhaustively sample the

space of possible combinations. Other studies employ diagonal sampling, where the relative

proportions of the antibiotics remain fixed but the absolute quantities vary [7, 18, 27]. The

diagonal sampling method has been proposed as a way to feasibly sample in higher dimensions

and has been justified with the claim that the diagonal “provides the most information about

the shape of the contour [phenotype isobole]” [18]. While the validity of diagonal sampling for

Loewe synergy has received experimental support in some studies [22, 23], to date no work has

PLOS COMPUTATIONAL BIOLOGY High-dimensional antibiotic synergy screening

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010311 July 18, 2022 3 / 16

https://doi.org/10.1371/journal.pcbi.1010311


rigorously justified its use or provided any guarantee about what kinds of synergies a diagonal

design may or may not uncover. Absent such a rigorous justification, any study that fails to

find synergy leaves open the possibility that synergy may still exist.

This work makes three major contributions: (1) we develop a novel CI, the Minimax

Effective Concentration Index (MECI), which naturally extends the FICI and HSA models;

(2) we present a theoretical framework for determining total and emergent synergies based

on the MECI; and (3) we propose a new experimental design for provably identifying the

MECI, called normalized diagonal sampling (NDS). The MECI has dual advantages over pre-

viously proposed metrics. It can be efficiently identified in high dimensions using the NDS

design; under realistic assumptions about the behavior of antibiotics in combination, we

prove that the NDS design finds the MECI with exponentially fewer samples than the full fac-

torial experiment that samples all drugs at all combinations of concentrations. Finding the

MECI of an 8-drug combination using 10 concentrations requires only 10 � 28� 2500 sam-

ples, whereas finding the FICI in the same setting via the full factorial design would require

an infeasible 108 samples. The second advantage of the MECI is the flexibility it gives the

experimentalist to capture clinically relevant drug combinations. The definition of the MECI

includes a normalization factor for each drug, and the choice of normalization can be tailored

to the goals of the synergy study at hand. We present two examples of the normalization fac-

tor in Section 2.3.

2 Methods

2.1 The Minimax Effective Concentration Index

In clinical practice the goal is to administer antibiotic combinations that are effective while

avoiding high doses, which may cause adverse effects. Antibiotic doses are measured relative

to various metrics, such as the strain-specific MIC or species-specific breakpoints, determined

by bodies such as the European Committee on Antimicrobial Susceptibility Testing (EUCAST)

[28]. In this section, we define the MECI, which captures the idea of avoiding high doses by

minimizing the highest single antibiotic’s concentration (appropriately normalized) among

antibiotic combinations that are “effective” at inhibiting growth. The precise definition

of an “effective combination” is specified by the practitioner but could, for example,

represent whether or not growth at a predefined time point remains below a pre-specified

threshold.

Given a definition of an effective drug combination, we can now define the MECI. Let

Ω = {1, 2, 3, . . ., d} index a set of d drugs, where drug i will be tested at m − 1 concentrations

χi = {xi,1, xi,2, . . ., xi,m−1}. The concentrations of drug i are normalized to concentration Ni for

analysis purposes so all drugs can be compared on a similar scale. In our experiments, we

chose to test each drug at the same set of normalized ratios
xi;j
Ni

.

Define XðOÞ :¼
Q

i2Oðwi [ 0Þ, the set of all possible combinations of all subsets of the d
drugs in Ω at their m − 1 concentrations. A single x 2 XðOÞ represents a single experimental

condition, with xi encoding the concentration of drug i (or xi = 0 if drug i is absent). The set

XðOÞ represents all md experimental conditions that would be tested in the full-factorial exper-

imental design.

We define the minimax concentration of any x 2 XðOÞ as the maximum normalized con-

centration among all drugs in the set Ω, i.e., maxi2O
xi
Ni

. The Minimax Effective Concentration

Index (MECI) is the smallest minimax concentration among all effective combinations

x 2 XðOÞ. Specifically, the MECI of a set of drugs Ω can be expressed succinctly as the solution
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to an optimization problem:

MECIðOÞ ¼ min
x2XðOÞ

max
i2O

xi
Ni

such that x is effective ð1Þ

The MECI({i}) of a single antibiotic i is the normalized concentration at which i is individually

effective. For example, if Ni is the MIC of drug i and a drug is considered “effective” if it

completely inhibits growth, then MECI({i}) = 1.

When screening for synergy, it is important to identify combinations where each antibiot-

ic’s inclusion is justified by the effectiveness it brings to the combination. Indeed, synergies

among lower order antibiotic combinations are likely to be detected in higher order combina-

tions that include those same drugs; therefore, finding clinically useful combinations requires

determining whether all antibiotics in a combination are necessary to achieve a synergistic

effect. To this end, we develop two scores for interpreting whether a drug combination pro-

vides a meaningful improvement over its components: the Total Synergy Score (TSS) and the

Emergent Synergy Score (ESS). The TSS measures the reduction in maximum concentration

attainable by the combination as compared to each individual drug. For any combination of

drugs Ω, it can be expressed mathematically as

TSSðOÞ ¼
MECIðOÞ

mini2OMECIðfigÞ
: ð2Þ

If the normalization Ni is the MIC of each drug, then the denominator mini 2 Ω MECI({i}) = 1,

and the TSS is identical to the MECI. However, if the normalization can potentially be very far

from the MIC, reporting the TSS ensures that a combination must improve upon its best single

ingredient in order to be considered synergistic.

We further define the ESS to capture the improvement offered by the combination when

compared to any of its subsets, following the intuition that the combination must significantly

improve upon any subset of its ingredients to justify the use of additional drugs. The ESS is

defined as

ESSðOÞ ¼
MECIðOÞ

minO0�OMECIðO0Þ
: ð3Þ

We observe that TSS(Ω)� ESS(Ω)� 1. An ESS score of 1 indicates that some proper subset of

Ω has an MECI at least as small as Ω itself; this can occur in instances of indifference or antag-

onism. The TSS and ESS scores identify only synergy, not antagonism; for a discussion of

antagonism, see Section 4.

While any ESS less than 1 indicates emergent synergy, we suggest as interpretive criteria

that conclusions of synergy be restricted to combinations with an ESS of 0.25 or below, while

combinations with an ESS between 0.25 and 1 should be interpreted as evidence of weak syn-

ergy. These interpretive criteria are consistent with the FICI interpretation of weak synergy

when two drugs are tested according to the NDS design, since the cutoff FICI of 0.5 and the

cutoff ESS of 0.25 both occur when two drugs are combined at 1

4
of their MICs to yield an effec-

tive combination. Fig 1 illustrates the calculation of the MECI, TSS and ESS for a three-drug

experiment.
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2.2 Relationship to other metrics

For comparison to an established metric, we note that the FICI, like the MECI, can be written

as the solution to an optimization problem. The FICI of combination Ω is given by

FICIðOÞ ¼ min
x2XðOÞ

X

i2O

xi
MICi

 !

such that x is effective: ð4Þ

Note that the FICI differs from the MECI in two important ways. First, the FICI measures the

amount of drug in each combination using its summed fractional concentration
P

i2O
xi

MICi
,

whereas the MECI uses the maximum fractional concentration maxi2O
xi
Ni

. Second, the FICI

exclusively normalizes to the MIC of each drug, while the MECI allows flexibility in the choice

of normalization.

We conclude by observing that the MECI corresponds to a dose-effect interpretation of the

HSA model. Intuitively, the MECI minimizes the minimax concentration among effective

combinations, where the minimax concentration is exactly the highest (normalized) concen-

tration of a single agent. This connection is made precise in S2 Appendix.

Fig 1. Calculation of the MECI, TSS, and ESS for a three-drug experiment. (A) Testing three drugs at four concentrations each could be performed

exhaustively using a three-dimensional checkerboard assay, as depicted here. When the effectiveness measure is taken to be the absence of visible

growth, the MEC can be calculated for each effective measurement in the checkerboard assay. (B) Computation of select MEC values from the

checkerboard assay. The MECI of a drug combination is the minimum MEC among tested combinations. The MECI, TSS, and ESS of all subsets are

computed according to their definitions, with normalization Ni = 1 μg/mL for all drugs. The well in the upper-left corner of each combination’s

calculated values witnesses the MECI of that combination; we see that the wells tested by the NDS design (shown with bold edges) are sufficient to

identify the MECI. (C) If the behavior of the antibiotics satisfies Definition 3.1, we prove that the NDS design always identifies the MECI for every

combination tested. We illustrate some examples of allowed and disallowed behavior of the measured response as a function of increasing some

antibiotic (combination) A as the concentration of antibiotic (combination) B remains fixed.

https://doi.org/10.1371/journal.pcbi.1010311.g001
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2.3 Choice of normalization

The MECI provides flexibility in the choice of normalizing metric Ni, which allows the experi-

mentalist to tailor the choice of Ni to the goals of the investigation. In particular, different

choices of Ni lead to different interpretations of synergy. For example, a natural choice of nor-

malization Ni is the MIC for each drug i. With this choice, a low ESS or TSS indicates that the

combination is effective at concentrations far below the individual drugs’ MICs, which aligns

with the Loewe (and, to a lesser extent, Bliss) conceptions of synergy.

Another meaningful choice of Ni could be a strain-independent metric like the EUCAST

breakpoint, which is the highest concentration at which the organism is considered sensitive

to the antibiotic [28]. For example, when testing for synergy in a multi-drug-resistant strain, a

clinically important goal could be to find a combination in which each drug is present below

its breakpoint concentration, so that MECI� 1.

We observe that it is possible for a drug combination to be synergistic with respect to one

normalization Ni but not another, or for the strength of the interaction to depend upon the

choice of normalization. As a result, it is important for the choice of Ni to reflect the scientific

or clinical goal of the experiment and for this choice to be reported along with the synergy

scores.

2.4 The normalized diagonal sampling design

We introduce the NDS design, an experimental design that samples all combinations of

drugs in Ω at equal concentrations relative to the normalization Ni. We begin with a set of

ratios at which each drug will be tested,
xi
Ni
2 fc1; c2; . . . ; cm� 1g. For example, the ratios may be

powers of two, cj = 2−j, in which case the drugs are tested on a two-fold dilution gradient.

The spacing and number of concentrations should be chosen to balance the resolution of the

synergies detected with the number of experiments required, while testing a sufficient range

of concentrations so that all drug combinations can be observed at both effective and ineffec-
tive concentrations. For all subsets Ω0 �Ω, the NDS design evaluates the combination Ω0 at

all m − 1 normalized concentrations {c1 1, c2 1, . . ., cm−1 1}, where 1 represents a vector of all

ones of size |Ω0|. In Section 3.1 we prove that, under mild assumptions about the behavior of

antibiotic combinations, NDS provides strong theoretical guarantees on the detection of syn-

ergy. In particular, the design provably identifies the MECI from a collection Ω of d antibiot-

ics without having to sample all jXðOÞj ¼ md possible combinations. Since the NDS design

provably finds the MECI, high-dimensional antibiotic combination screens can be run with

the confidence that if no synergies are identified, then none exist.

Exhaustive tests for synergy are conducted with checkerboard assays (see Fig 1) requiring

md wells to screen d drugs at m concentrations each. The NDS design significantly reduces the

required number of wells by testing along the “diagonal” − testing each combination with all

drugs present at the highest concentration, then at the second-highest concentration, and so

on. Under the NDS design, each of the 2d drug combinations requires only m wells, for a total

requirement of m � 2d wells. For eight drugs and 10 concentrations per drug, this requires m �
2d = 10 � 28 = 2, 560 wells, or about twenty six 96-well plates. This is experimentally feasible,

whereas md = 108 wells (requiring approximately 106 plates) is not.

2.5 Quantification of bacterial growth

Computing the MECI requires the analyst to specify an effectiveness metric that specifies

whether the antibiotics tested were effective or ineffective at the given concentrations x. For our

experiments, we considered an antibiotic combination effective in inhibiting bacterial growth
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if the area under the growth curve (AUGC) was less than a predefined threshold. The AUGC

measures the area under the curve of optical density (at 600nm) over time after subtracting the

background optical density reading. The area was approximated using a trapezoidal Riemann

sum, taken in 15 minute increments over the 24 hours following inoculation. We also consid-

ered quantifying effectiveness using the maximum growth rate, computed as the maximum

slope of a five-point moving average of the log optical density versus time curve; since this

technique agreed with the AUGC, we did not include it in our results. Any measurement that

captures the notion of antibiotic effectiveness could be used to compute the MECI.

2.6 Experimental conditions

Experiments were performed using the wild-type E. coli strain MG-1655 (NR-2653; BEI

Resources, Manasses, VA, USA) in BBL Mueller Hinton II Broth (Cation-Adjusted) (BD

Diagnostics, Spark, MD, USA). All experiments were performed in duplicate in 96 well plates

and were fully randomized across well, plate and day of experimentation with the use of the

OT-2 liquid handling robot (Opentrons, Brooklyn, NY, USA). In each well, antibiotics were

diluted into 200 μL of media, then 50 μL of a 10−4 dilution of E. coli overnight culture, incu-

bated at 37˚C in BBL Mueller Hinton II Broth (Cation-Adjusted), was added. A fresh prepa-

ration of overnight culture was used for each day of experimentation. Plates were sealed with

a gas-permeable sealing membrane (Breathe-Easy, Sigma-Aldrich, St. Louis, MO, USA) and

incubated at 37˚C for 24 hours, during which time optical density readings (600nm) were

taken at 15 minute increments using a Biotek BioStack II coupled to a Biotek Epoch II

Microplate Spectrophotometer. Plates were orbitally shaken for 15 seconds prior to each

reading.

Eight antibiotics were chosen for their diversity of class and mechanism of action: ampicil-

lin, aztreonam, ceftazidime, chloramphenicol, ciprofloxacin, gentamicin, trimethoprim, and

tobramycin. Antibiotics were dissolved in water with the exception of aztreonam, ceftazidime

and trimethoprim, which were dissolved in DMSO, and chloramphenicol, which was dissolved

in ethanol. Table 1 identifies the classes of each antibiotic used, EUCAST susceptible break-

points [28], American Society for Microbiology Abbreviation (ASM code; https://journals.

asm.org/journal/aac/abbreviations), and MICs determined experimentally.

3 Results

The full-factorial sampling design is intractable beyond a small number of antibiotics, which

motivates the need for a more efficient design. We begin with a proof of correctness for the

Table 1. The eight antibiotics chosen for our studies, including EUCAST susceptible breakpoints [28] and experimentally determined MICs for E. coli strain MG-

1655.

Antibiotic ASM Code Product Number Antibiotic Class EUCAST Susceptible Breakpoint (μg/mL) MIC (μg/mL)

Ampicillin AMP BP1760 (Fisher Scientific) β-lactam (penicillin) 8 16

Aztreonam ATM 15151 (Chem-Impex) β-lactam (monobactam) 1 0.25

Ceftazidime CAZ AC461730050 (Acros Organics) β-lactam (cephalosporin) 1 0.25

Chloramphenicol CHL C0378 (Sigma-Aldrich) Amphenicol 8 8

Ciprofloxacin CIP 199020 (MP Biomedicals) Quinolone 0.25 0.015625

Gentamicin GEN 00149 (Chem-Impex) Aminoglycoside 2 0.5

Trimethoprim TMP 92131 (Sigma-Aldrich) Antifolate 4 0.25

Tobramycin TOB 455430010 (Acros Organics) Aminoglycoside 2 0.5

https://doi.org/10.1371/journal.pcbi.1010311.t001
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NDS design, showing that it identifies the MECI using significantly fewer measurements than

the full factorial design. The NDS design samples along the diagonal in multi-antibiotic con-

centration space, letting us find all synergies among combinations of up to eight antibiotics at

10 concentrations with only 2,560 samples. This scale of experiment can be effectively pipetted

by hand or using robotics, as we did here. Using robotics enabled us to perform complete

pipetting randomization, minimizing plate position effects. In combination, the NDS design

and robotics let us confidently identify synergies while mitigating the influence of experimen-

tal artifacts that complicate large-scale experiments.

3.1 The NDS design provably finds the MECI

We now show that the NDS design provably identifies the MECI of a set of drugs using signifi-

cantly fewer samples than the full factorial design. Since the NDS design for a set of drugs Ω
also involves performing the NDS design for all sets Ω0 �Ω, it correctly identifies the MECI,

TSS, and ESS for each Ω0 �Ω.

The proof begins with an assumption that adding an antibiotic A to a fixed concentration

of antibiotic B does not exhibit paradoxical growth, that is, once increasing the amount of A
reduces the level of the measured response (e.g., growth), further increasing A cannot increase

the response. Next, we observe that a fixed-ratio combination of drugs itself behaves like an

antibiotic, with its own dose response curve and its own interactions with other (combination)

antibiotics. This perspective lets us extend the assumption to the general case where A and B
are themselves antibiotic combinations, stated formally in Definition 3.1. When the effective-

ness measure in the definition of MECI behaves according to Definition 3.1, we can declare

many combinations ineffective without ever measuring them because they lie between points

already measured to be ineffective. Without such an assumption, we would have no way to

know whether a point x is effective without testing it. The formal theorem statement is pro-

vided in Theorem 3.2; the proof is available in S1 Appendix.

Definition 3.1 (Absence of paradoxical growth). Let Ω be a set of antibiotics. Let the vector
x0 2 R

jOj

�0
represent a fixed background concentration of antibiotics to which we add increasing

amounts of another antibiotic combination x 2 RjOj
�0

. We say the set of drugs Ω does not exhibit
paradoxical growth if, for all c3 > c2 > c1� 0, the response r : RjOj

�0
! R satisfies

rðx0 þ c2xÞ < rðx0 þ c1xÞ ) rðx0 þ c3xÞ � rðx0 þ c2xÞ: ð5Þ

Fig 1C illustrates our assumption by showing several allowed and disallowed shapes of the

dose-response curve as some combination A is added to the base combination B. We specifi-

cally note that this assumption does not preclude so-called “hyper-antagonism,” where the

addition of A to B yields a less effective response than B alone. Such behavior is allowed under

our assumption as long as the following condition holds: once increasing concentration of A
starts reducing the response r, further increasing the concentration continues to reduce the

response.

How plausible is the assumption of non-paradoxical growth? When antibiotic effectiveness

is measured in a broth dilution assay, as in our experiments, we are aware of no published evi-

dence of paradoxical growth. When effectiveness is measured using a survival assay, in which

bacteria are first treated with antibiotics for a specified time and then the culture is grown in

the absence of antibiotics, paradoxical growth is known as the Eagle effect, first observed by

Eagle and Musselman [29] and reviewed in [30]. If any antibiotic or combination in an experi-

ment displayed the Eagle effect, then the NDS design could fail to identify synergies if drug

effectiveness were quantified using a survival assay. To further support our assumption of
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non-paradoxical growth, we tested 100 randomly chosen ratios of antibiotics against fixed

background combinations of antibiotics, the precise setting in Definition 3.1. S3 Appendix

shows the results of these experiments, in which no paradoxical growth was observed.

Suppose we define a combination of drugs at a given concentration x as effective whenever

the response falls below some threshold (r(x)� t). Then, as long as the response behaves

according to Definition 3.1, we can identify entire regions of the antibiotic combination space

as ineffective using only measurements on the boundary of the space. This leads to our main

result: the correctness of the NDS design in the absence of paradoxical growth.

Theorem 3.2 Assume the set of drugs Ω does not exhibit paradoxical growth (Definition 3.1).
Then, the NDS design applied to Ω identifies MECI(Ω0) for all Ω0 �Ω.

The proof of Theorem 3.2 is deferred to S1 Appendix. We observe that the NDS design

provably identifies MECI(Ω) with significantly fewer samples than the naive full factorial

design: the full factorial design requires md samples, while the NDS design requires only m � 2d.

3.2 Experimental results

3.2.1 Identification of emergent effects relative to breakpoint. Using the NDS design,

we performed experiments to screen all 28 combinations of the 8 drugs shown in Table 1. The

set of drugs was chosen to cover a wide range of mechanisms among drugs with defined

EUCAST breakpoints for Enterobacterales.
Effectiveness was specified as complete inhibition of growth, measured by AUGC (as

described in Section 2.5). The normalization constant Ni for the first experiment, used for both

the NDS design and for calculating the TSS and ESS, was the EUCAST susceptible breakpoint

[28] for Enterobacterales. As motivated in Section 2.3, normalization relative to the breakpoint

provides a strain-independent measure of antibiotic interactions, which may be more relevant

to how drugs are prescribed in combination clinically. We tested concentrations across 10

steps of a two-fold dilution gradient so that any interactions could be identified within a power

of two.

We computed MECI, ESS and TSS for each combination of two through eight antibiotics.

Histograms of the ESS and TSS scores across all combinations, plotted by the number of drugs

combined, are shown in Fig 2A (recall that a lower ESS score indicates greater synergy, and a

log2 ESS score of 0 indicates the absence of synergy). Among all 28 combinations tested, no

combination met our synergy threshold of a log2 ESS of −2 or lower (4-fold synergies),

although several combinations exhibited weak synergy with a log2 ESS of −1. This indicates

only weak synergy among all combinations of these eight antibiotics, consistent with previous

studies that found synergy to be rare [5, 22, 23, 31]. As anticipated, the most commonly

reported log2 emergent effect was zero. Fig 2B shows the makeup of the combinations exhibit-

ing weak synergy. Full data, including the ESS and TSS of each of the 28 combinations and a

Loewe analysis showing the absence of strong Loewe synergy along the diagonals tested, is

available in S4 Appendix.

We emphasize that our results come with strong guarantees under the assumption that the

drugs do not exhibit paradoxical growth. Since our experiments were conducted according to

the NDS design, Theorem 3.2 guarantees that, among these eight drugs, no combination has a

log2 ESS score of −2 or less when ESS measures synergy relative to the EUCAST breakpoint. In

particular, the result guarantees that performing the full factorial experiment would result in

the same ESS and TSS scores that we found with the NDS design. If the goal is to minimize the

maximum amount of drug applied relative to the EUCAST breakpoint, we therefore conclude

that no significant gains are possible by combining this set of drugs against the strain we tested

and under our experimental conditions.
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3.2.2 Identification of emergent effects relative to MIC. When compared to earlier

methods such as the FICI, an important advantage of our synergy screening method is the flex-

ibility provided by the choice of the normalizing constant Ni. To demonstrate the utility of

normalization, we repeated the preceding experiment but with all concentrations normalized

to the MIC of the individual drugs (listed in Table 1). Normalizing to the MIC means that all

drugs are combined at similar points along their dose-response curves, which we might expect

to result in larger interactions. It also has the benefit of mirroring the FICI synergy screen,

where the “fractional concentration” of a combination is always measured relative to the MICs

of the individual antibiotics. For this reason, the MIC-normalized experiment is more directly

comparable to previous synergy screening techniques.

We computed the MECI, TSS and ESS for each combination of antibiotics and show the

results in Fig 3. We see that the most common log2 ESS score is again 0, and that the lowest

observed log2 ESS score is −1. The lack of strong synergy remains consistent with previous lit-

erature showing that synergy is rare [5, 22, 23, 31]. Again, we emphasize that the NDS design

provides a strong guarantee in the absence of paradoxical growth: not only did we not find any

combinations with log2 ESS of −2 or lower, we also know that there is no ratio at which the

drugs can be combined that will exhibit an ESS of this magnitude. Fig 3B shows the combina-

tions exhibiting weak synergy.

Fig 2. Results from the breakpoint-normalized experiment. (a) Distribution of TSS and ESS scores across all 28 different breakpoint-normalized

combinations of the eight antibiotics in Table 1, separated by the number of drugs in the combination. (b) Representations of the 17 drug combinations

exhibiting weak synergy. Each row represents one combination; dark shades (black and blue) indicate presence of the drug, while light gray indicates

absence. Black represents combinations that are weakly synergistic according to the breakpoint normalization but not the MIC normalization (next

section), while blue shows the five combinations that exhibited weak synergy according to both normalizations.

https://doi.org/10.1371/journal.pcbi.1010311.g002
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Compared to the breakpoint-normalized experiment, we observe that the results of the

MIC-normalized experiment show more weak synergies and more negative log2 TSS scores.

One possible explanation is that the breakpoint-normalized experiment combined drugs at

concentrations with very different individual effectiveness. For example, ciprofloxacin has a

breakpoint that is four steps above its MIC for this strain. As a result, combinations of cipro-

floxacin and any other drug at concentrations several steps below the breakpoint may behave

like ciprofloxacin alone, resulting in a log2 TSS of zero.

4 Discussion

We developed a novel scoring function to identify antibiotic interactions, the MECI, which

applies the principles of the HSA model to determine whether an antibiotic combination is

synergistic. We extend the HSA model into higher dimensions from both a theoretical per-

spective, developing a framework for identifying total and emergent synergies, and from a

practical perspective, introducing a novel experimental design that provably identifies all total

and emergent synergies. Applying our methodology to study combinations of eight antibiotics

yielded no clinically relevant synergies, which we define as emergent synergies with a four-fold

decrease or more in concentration when compared to their best subset. The strong theoretical

guarantees of our sampling scheme allow us to conclude that there is no clinically relevant

Fig 3. Results of the MIC-normalized experiment. (a) Distribution of TSS and ESS scores across all 28 different MIC-normalized combinations of the

eight antibiotics in Table 1, separated by the number of drugs in the combination. (b) Representations of the 44 drug combinations exhibiting weak

synergy; combinations that were also weakly synergistic under the breakpoint normalization are shown in blue. Each row represents one combination;

black/blue indicates presence of the drug, while gray indicates absence.

https://doi.org/10.1371/journal.pcbi.1010311.g003
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synergy among these eight drugs under the experimental conditions and normalization meth-

ods we considered, even though we sampled only a small fraction of the possible space of

concentrations.

The MECI also has clinical relevance aside from the classification of synergistic combina-

tions. When drug combinations are prescribed in clinical practice, each individual drug is typi-

cally administered at its standard dose. If the MECI is normalized relative to that standard

dose, then an MECI <1 indicates that the drugs can each be administered at doses less than

their standard dose while still remaining effective. In addition, if NDS is used to identify the

MECI and paradoxical growth is absent, then there is no effective combination at doses less

than the experimentally determined MECI.

We emphasize that the theoretical guarantees of our method apply only when the set of

antibiotics exhibits non-paradoxical growth, which we define as the display of unimodal dose-

response curves along any constant-ratio drug combination in the presence of any fixed back-

ground drug combination. Our assumption of non-paradoxical growth may be violated when

the antibiotics exhibit the Eagle effect and the response is measured using a survival assay, or if

higher order combinations of drugs behave very differently from our intuition based on the

one- and two-drug settings. We further emphasize that these guarantees only apply to synergy

as determined by the MECI, and that our design is not guaranteed to identify Loewe or Bliss

synergies.

While the NDS design provably identifies all synergies relative to a given normalization, it

is limited in that it cannot provably identify all antagonisms. Recall that the MECI quantifies

the smallest minimax concentration among drug combinations measured to be effective.

Another perspective on this optimization problem is to consider multiple rays representing

different concentration ratios (see Fig 4A of [13]), which could be considered different “diago-

nals,” in the language of diagonal sampling. The MECI minimizes the minimax effective con-

centration along each of those rays. An analogous definition of antagonism from this

perspective would be a new CI that maximizes the minimax concentration of ineffective combi-

nations among these rays. Total and emergent antagonism could then be defined analogously

to their definitions for synergy. Unfortunately, the NDS design’s theoretical guarantees extend

only to minimizing the minimax effective concentration (identifying the greatest synergy), not

to maximizing the minimax ineffective concentration (identifying the greatest antagonism).

The difference is due to an asymmetry in Definition 3.1; it is possible for the response to

increase and then decrease as antibiotic B is added to a fixed concentration of A (so-called

hyperantagonism), but it is not possible for the response to decrease and then increase (para-

doxical growth). Consequently, while an ESS of 1 indicates a lack of synergy, an ESS of less

than 1 does not rule out the existence of antagonism in some part of the antibiotic combina-

tion space. Notwithstanding this limitation, we believe synergies are typically the most clini-

cally relevant, so the inability to find antagonisms is therefore not too limiting in practice.

The NDS design makes provably identifying high-order interactions experimentally feasible

for the first time. With this new method, it is now possible to screen for interactions among

more antibiotics, across additional strains, and on multiple media, providing information on

whether synergies are conserved across these variables. The NDS design is simple to imple-

ment: given a definition of antibiotic normalization (e.g., MIC), it samples along the diagonals

in multi-antibiotic space. We conclude by noting that the interaction among biologically active

agents is not only of interest for antibiotics, but also for many other biologically active agents,

such as immunosuppressants [27], environmental toxins [32], anesthetics [33], and anticancer

drugs [20, 34–36]. Whenever the absence of paradoxical growth can be assumed, the NDS

design can be applied to identify synergy in high dimensions.
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