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Abstract

Serum hepcidin concentration is regulated by iron status, inflammation, erythropoiesis and

numerous other factors, but underlying processes are incompletely understood. We studied the

association of common and rare single nucleotide variants (SNVs) with serum hepcidin in one

Italian study and two large Dutch population-based studies. We genotyped common SNVs with

genome-wide association study (GWAS) arrays and subsequently performed imputation using

the 1000 Genomes reference panel. Cohort-specific GWAS were performed for log-transformed

serum hepcidin, adjusted for age and gender, and results were combined in a fixed-effects

meta-analysis (total N 6,096). Six top SNVs (p<5x10-6) were genotyped in 3,821 additional sam-

ples, but associations were not replicated. Furthermore, we meta-analyzed cohort-specific

exome array association results of rare SNVs with serum hepcidin that were available for two of

the three cohorts (total N 3,226), but no exome-wide significant signal (p<1.4x10-6) was identi-

fied. Gene-based meta-analyses revealed 19 genes that showed significant association with

hepcidin. Our results suggest the absence of common SNVs and rare exonic SNVs explaining a

large proportion of phenotypic variation in serum hepcidin. We recommend extension of our

study once additional substantial cohorts with hepcidin measurements, GWAS and/or exome

array data become available in order to increase power to identify variants that explain a smaller

proportion of hepcidin variation. In addition, we encourage follow-up of the potentially interesting

genes that resulted from the gene-based analysis of low-frequency and rare variants.
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Introduction

Iron is an essential trace element for fundamental metabolic processes in humans [1, 2]. Iron

deficiency limits hemoglobin synthesis and leads to anemia, whereas an excess of free iron is

toxic because it catalyzes the production of free radicals resulting in tissue damage [1, 2]. In

addition, iron imbalances have been associated with other diseases, e.g. diabetes mellitus [3, 4],

inflammation [5] and diseases of aging [6]. Hence, the iron balance in the human body is

tightly controlled, with the peptide hormone hepcidin as key regulator of systemic iron

homeostasis [7]. Hepcidin controls the absorption, storage and tissue distribution of iron by

binding to the cellular iron exporter ferroportin and inducing its internalization and degrada-

tion [8]. In this way, hepcidin regulates the uptake of dietary iron from the intestine and the

release of iron from macrophages involved in recycling of iron from senescent erythrocytes

[7].

In the last few years, several genome-wide association studies (GWAS) have revealed

genetic variants associated with iron status in the general population, including common vari-

ants in the hereditary hemochromatosis gene (HFE), transferrin gene (TF), transferrin recep-

tor and transferrin receptor 2 gene (TFRC, TFR2), solute carrier family 40 member 1 gene

(SLC40A1), and transmembrane serine protease 6 gene (TMPRSS6) [9–14]. On the contrary,

little is known about genetic determinants of hepcidin. Mutations in hepcidin antimicrobial

peptide (HAMP), the hepcidin encoding gene, lead to strongly decreased hepcidin levels and a

severe juvenile form of the iron storage disorder hereditary hemochromatosis (HH), but

HAMP mutations are very rare [15]. In addition, mutations in HFE, TFR2 and TMPRSS6 have

been related to hepcidin expression [15–20]. Furthermore, a single GWAS for serum hepcidin

has been published [21]. This study among 1,657 family members from the Val Borbera

genetic isolate was however underpowered to identify genome-wide significant associations

[21]. Here, we aimed to identify genetic determinants of serum hepcidin in a larger set of indi-

viduals from three large cohorts in order to unravel potential new pathways involved in hepci-

din regulation. We also studied the ratios of hepcidin to ferritin (hepcidin/ferritin) and

hepcidin to transferrin saturation (TS) (hepcidin/TS) given the known dependence of hepcidin

on stored iron and circulating iron, respectively [1, 2].

Materials and Methods

Study populations

We included three cohorts in our study: the Nijmegen Biomedical Study (NBS) (Nijmegen,

The Netherlands) [22], Prevention of REnal and Vascular ENd-stage Disease (PREVEND)

(Groningen, The Netherlands) [23] and Val Borbera (VB) (Milan, Italy) [24, 25] (S1 Table).

Blood samples for DNA isolation and biochemical measurements were obtained fasting in the

morning for PREVEND and VB, whereas blood samples were not fasting and sampled

throughout the day between 8 AM and 9 PM for NBS. All three studies were approved by

appropriate ethical committees (PREVEND: local medical ethics committee; NBS: Radboud

university medical center Institutional Review Board; VB: institutional review boards of San

Raffaele Hospital in Milan and by the Regione Piemonte ethical committee), and all partici-

pants gave informed consent.

Laboratory methods

Serum hepcidin concentration was measured with a competitive enzyme-linked immunosor-

bent assay in NBS and PREVEND samples as described before [26, 27]. In VB samples, serum

hepcidin was measured with a validated mass spectrometry based method as described before
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[21]. Serum ferritin, iron, transferrin, TS and C-reactive protein (CRP) were measured accord-

ing to standard methods. See S2 Table for details. Phenotype information (median and 5th-95th

percentiles) is presented in S3 Table.

Genotyping

All three cohorts were genotyped with a GWAS-chip: PREVEND with the Illumina Cyto

SNP12 v2, NBS with the Illumina HumanHap370CNV-Duo BeadChip, and VB with the Illu-

mina HumanHap370CNV-Quad BeadChip v3. Standard quality checks were performed (fil-

ters for sample yield, SNV yield, MAF and HWE) and data were imputed to increase SNV

density and harmonize SNV data over the cohorts using 1000 Genomes phase 1 version 3 as

reference panel (S4 Table). Quality control also included evaluation of population stratifica-

tion. For PREVEND, principal component analysis was used and samples with a Z-score>3

for the first five principal components were excluded. For NBS, Structure analysis was used

and samples with less than 89% Caucasian ancestry were excluded. For VB, principal compo-

nents were used in the analysis to adjust for potential population stratification.

Genome-wide association analysis

GWAS were performed in each cohort separately according to a set protocol. Analyses were

performed for all individuals (PREVEND: N = 2,902; NBS: N = 1,819; VB: N = 1,480), and also

for a subset (PREVEND: N = 2,695; NBS: N = 1,495; VB: N = 1,206) from which individuals

with ferritin <30 ng/mL and CRP�10 mg/L were excluded as to remove individuals with iron

deficiency and clinical inflammation [28], respectively, since both of these acquired conditions

are associated with altered iron stores and altered iron transport [1,2]. Hepcidin and the ratios

hepcidin/ferritin and hepcidin/TS were log-transformed and thereafter adjusted for age and

squared age, independent determinants of serum hepcidin [21, 26], separately for males and

females. For NBS, blood sampling was performed throughout the day, and therefore time of

blood sampling was used as an additional covariate to account for the circadian rhythm of hep-

cidin [29] (three categories: before 12 PM, between 12 and 5 PM and after 5 PM in line with

previously reported hepcidin concentration patterns throughout the day [30, 31]). Sex-specific

residuals were calculated and merged into one variable. Outliers, defined as values that differed

more than four times the SD from the mean, were excluded (Nmax = 12). For PREVEND and

NBS, the association between the single nucleotide variants and the trait was tested by linear

regression using genotype probabilities and an additive model on the standardized residuals

(Z score). For VB, a linear mixed model was used with a kinship (relatedness) matrix to

account for the relatedness in this sample [32], also using genotype probabilities and an addi-

tive model on the standardized residuals (Z score).

Meta-analysis

The GWAS results from the three cohorts were combined in a fixed-effects meta-analysis

using the software package METAL [33]. The standard-error based approach was used, which

weighs effect size estimates using the inverse of the corresponding standard errors. Variants

with a minor allele frequency<1% and a poor imputation quality (SNPtest info value or

MACH RSQR <0.4) were excluded prior to the meta-analysis. To adjust for potential residual

population stratification, we applied genomic control correction to the individual cohorts

(genomic inflation factors [lambdas] for GWAS results ranged from 0.989 to 1.015 in the three

cohorts, indicating a negligible amount of population stratification) [34]. A heterogeneity anal-

ysis was performed to test whether observed effect sizes were homogeneous across cohorts.
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Resulting betas express the change in log-transformed hepcidin (or the ratios) that can be

attributed to each copy of the effect allele (additive model).

Replication

Our financial budget allowed us to genotype six SNVs with single SNP assays in all additional

independent samples that were available for PREVEND (N = 2,876) and NBS (N = 1018). For

the VB cohort, no additional samples were available. Single-SNP genotyping in PREVEND

samples was performed by KBiosciences (KBiosciences, Herts, UK) utilizing the SNPline sys-

tem. Single-SNP genotyping in NBS samples was carried out by deCODE Genetics using the

Centaurus (Nanogen) platform [35]. The quality of each Centaurus SNP assay was evaluated

by genotyping HapMap CEU samples with each assay and comparing the results with the Hap-

Map data. All assays were reliable, as the mismatch rates were all<0.5%. Association analyses

were performed using the same strategy as for the discovery meta-GWAS: cohort-specific asso-

ciation analyses and subsequent combination of summary statistics in a fixed-effects meta-

analysis. We also meta-analyzed these replication results together with the discovery meta-

analysis results.

Gene-based analysis

We performed gene-based analysis on SNV association P-values from the meta-analysis of dis-

covery samples using VEGAS2 [36, 37]. Statistical significance of gene-based analysis results

was based on Bonferroni correction of testing ~21,000 genes (P<2.4x10-6).

DEPICT

Data-driven Expression Prioritized Integration for Complex Traits (DEPICT, “v1 beta version

rel194 for 1KG imputed”) was applied to the meta-GWAS discovery results to highlight

enriched pathways and identify tissues/cell types in which genes from associated loci are highly

expressed [38]. Meta-GWAS association results with p<1x10-5 were pruned using PLINK

v1.09 to obtain independent SNVs (‘—clump-kb 500—clump-p1 1e-05—clump-r2 0.1’) using

the CEU (Utah Residents [CEPH] with Northern and Western Ancestry), GBR (British in

England and Scotland) and TSI (Toscani in Italy) 1000 Genomes populations as reference to

obtain the correlation structure of the SNVs. These pruned data were used as input for the

DEPICT analysis using default settings. Details of the DEPICT analysis can be found in S1

File.

Exome array association analysis

Exome array data measured with the Illumina HumanExome BeadChip were available for

both NBS and VB. Genotype data were called with the default genotype caller in Genome Stu-

dio and uncalled genotypes were recalled using the zCall algorithm, which is specifically

designed for calling rare variants [39]. Filters for sample yield, SNV yield, and HWE were

applied, resulting in a total N of1,753 for NBS and 1,473 for VB after QC (S5 Table). Phenotype

information for the exome array samples is given in S6 Table. Analyses were performed using

the phenotypes as described under ‘Genome-wide association analysis’. Single variant analyses

were performed to obtain cohort specific score statistics and their covariance matrix (RvTests

software version 20150629 [http://zhanxw.github.io/rvtests/]). For VB, a kinship matrix was

included in the analyses to account for relatedness. Cohort specific results were meta-analyzed

in RareMETAL software version 4.13.8 (http://genome.sph.umich.edu/wiki/RAREMETAL_

Documentation) on single variant level and in a gene-level test [sequence kernel association
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test (SKAT)] [40]; only non-synonymous, splice site and stop variants with a MAF�5% were

included in the gene-level test.

Single variant results were filtered for a pooled minor allele frequency between 0.001 and

0.05 to prevent repeated analysis of the common variants and at the same time reduce the

number of statistical tests. The lower bound frequency of 0.001 corresponds to a minor allele

count of 6 for the whole cohort with exome array data (N up to 3,226), and 5 for the subset (N

up to 2,623).

SKAT meta-analysis in RareMETAL presents an exact and approximate p-value in the output.

We used the exact test called “Davies”, which computes the p-value by inverting the characteristic

function of the mixture chisq, which is often used as the default in statistical analysis packages.

The statistical significance of single variant and gene-based exome array meta-analysis

results was based on Bonferroni correction of testing ~37,000 variants (p< 1.4 x10-6) and

~14,000 genes (p< 3.6 x10-6), respectively.

Power calculation

Power analysis were performed using GWAPower Detection V1.1 [41]. Effective sample size of

the VB cohort to take into account relatedness was determined using Greffa software [42] based

on a pairwise kinship coefficient<0.0625, resulting in an effective sample size of N = 714.

Results

Meta-analysis of GWAS (total N 6,096) revealed two loci that were genome-wide significantly

associated (p<5x10-8) with serum hepcidin (Table 1): one on chromosome 10 in all individuals

(rs118031191, nearest gene FOXI2) and one on chromosome 2 in the subset (four SNVs in

EML6 with lead SNV rs354202). S1 and S2 Figs show Manhattan and QQ plots for the meta-

GWAS for hepcidin in all individuals and in the subset, respectively. S3 and S4 Figs show the

regional association plots for rs118031191 and rs354202, respectively. We also performed con-

ditional analysis for the chromosome 2 locus in NBS data by adjusting for lead SNV rs354202

to investigate whether the additional signals at this locus identified in the discovery analysis

were independent from rs354202. Associations disappeared upon adjustment for this SNV,

revealing that all other signals at the chromosome 2 locus were driven by rs354202 (S5 and S6

Figs). No novel significant loci were found for the ratios hepcidin/ferritin and hepcidin/TS

(Manhattan and QQ plots in S7–S10 Figs), but previously identified associations were con-

firmed: for the hepcidin/ferritin ratio we observed genome-wide significant associations with

variation in HFE and TMPRSS6 (S7 Table), and for hepcidin/TS with variation in TMPRSS6,

but not with HFE (S8 Table).

Gene-based analysis (S9 Table for results with p<1x10-2) did only show significant associa-

tion for hepcidin/ferritin with HFE (all p = 7.2x10-7; subset p = 8.2x10-7). No significant

enriched gene sets or tissues were identified for all traits (S10 and S11 Tables).

Six SNVs were brought forward to replication: rs354202, rs118031191, rs56281245 and

rs12289793 were selected based on p<1x10-6 for association with hepcidin, and rs1835473 and

rs12441903 were additionally selected based on hepcidin association p-values close to 1x10-6,

location inside genes, and MAF >10%. All SNVs selected for replication had a non-significant

p-value for the heterogeneity test (p>0.05). Replication analysis (N 3,821) revealed no signifi-

cant associations at p = 0.05 (Table 2).

Meta-analysis on single variant level of exome array variants (total N 3,226) revealed no sig-

nificantly associated SNVs for hepcidin (S12 Table presents results with p<1x10-3). The most

significant signal was located in PCDHB1 (exm485355, p = 4.4x10-5) for all individuals and in

PTPN13 for the subset (exm411306, p = 2.1x10-5). Also for hepcidin/TS no significant signals
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were observed, but for hepcidin/ferritin we identified two signals that reached exome-wide sig-

nificance: exm470499 in WDR36 (all; p = 9.9x10-7) and exm162358 in MTR (subset;

p = 2.7x10-8); variants close to and in these genes have previously been associated with allergy

[43] and homocysteine levels [44], respectively. Gene-based meta-analyses (S13 Table)

revealed eight genes that showed significant association with hepcidin in all individuals, and

11 in the subset, but none of these genes overlapped. For hepcidin/ferritin, 10 and nine genes

showed significant association in all individuals and in the subset, respectively, with one over-

lapping gene, namely PAPSS1. This gene was described as a candidate gene for telomere length

based on a GWAS [45]. Previously, elevated iron phenotype was associated with shortened

telomeres [46], indicating a potential link between this gene and systemic iron homeostasis.

For hepcidin/TS, nine and 16 genes were significant in all individuals and in the subset, respec-

tively, but none overlapped.

Table 2. Results of the replication analyses and discovery and replication combined.

Replication Discovery + Replication

SNV Population A1* A2 Freq A1

PREVEND

Freq A1

NBS

Beta SE p Direction# N Beta SE p Direction† N

rs12289793 All A G 0.78 0.72 0.02 0.03 0.38 ++ 3770 0.06 0.02 7.01E-

04

+++ 9866

Subset A G 0.78 0.74 0.03 0.03 0.31 ++ 3072 0.09 0.02 1.49E-

05

+++ 8123

rs1835473 All A G 0.68 0.70 0.03 0.02 0.32 ++ 3754 0.07 0.02 1.48E-

05

+++ 9850

Subset A G 0.68 0.70 0.02 0.03 0.49 +- 3059 0.05 0.02 2.27E-

03

++- 8110

rs56281245 All T C 0.95 0.95 0.06 0.05 0.24 ++ 3798 0.12 0.04 8.40E-

04

+++ 9894

Subset T C 0.95 0.96 0.04 0.06 0.56 ++ 3092 0.16 0.04 3.83E-

05

+++ 8143

rs118031191 All A G 0.03 0.03 0.00 0.07 1.00 -+ 3821 -0.18 0.05 9.12E-

05

- -+ 9917

Subset A G 0.03 0.03 0.00 0.07 0.96 -+ 3115 -0.16 0.05 2.60E-

03

- -+ 8166

rs12441903 All A G 0.89 0.87 -0.04 0.04 0.33 - - 3816 -0.10 0.02 3.13E-

05

- - - 9912

Subset A G 0.89 0.87 -0.03 0.04 0.41 - - 3108 -0.10 0.03 6.29E-

05

- - - 8159

rs354202‡ All A G 0.89 0.89 -0.03 0.04 0.39 +- 3810 -0.11 0.02 3.32E-

06

-+- 9906

Subset A G 0.90 0.89 0.00 0.04 0.92 -+ 3109 -0.12 0.03 9.24E-

06

—+ 8160

A indicates allele; BP, base pair position; Freq, frequency; N, number; SE, standard error; SNV, single nucleotide variant. Association analysis were

performed using the same strategy as for the discover meta-GWAS: cohort-specific association analyses and subsequent combination of summary

statistics in a meta-analysis using only replication samples (Replication) and the discovery meta-analysis and replication samples combined (Discovery

+ Replication). The betas express the change in log-transformed hepcidin that can be attributed to each copy of allele 1 (additive model). HWE p-values in

PREVEND and NBS, respectively, were for rs12289793: p = 0.71 and 0.89; for rs1835473 p = 0.001 and 0.90; for rs56281245 p = 0.12 and 0.90; for

rs118031191 p = 0.04 and 0.29; for rs12441903 p = 0.04 and 0.95; and for rs354202 p = 0.051 and 0.45.

*A1 is the effect allele in the association analysis.
#Order of direction: NBS, PREVEND.

†Order of direction: discovery meta-analysis, NBS, PREVEND.

‡In PREVEND, a proxy of rs354202 was measured (rs76949049; r2 with rs354202 = 1).

doi:10.1371/journal.pone.0166628.t002
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Discussion

This is the first meta-analysis of GWAS and exome array results for serum hepcidin. The fact

that our meta-analysis revealed no SNVs that were significantly associated with serum hepci-

din suggests that there are no common, low-frequency or rare variants that explain a large pro-

portion of phenotypic variation in serum hepcidin. Indeed, with our meta-analysis of

common variants (N 6,096, effective sample size N 5,331) we had 80.0% and 97.8% chance of

detecting (at alpha 5x10-8) a SNV that explains 0.71% and 1.00% of hepcidin variance, respec-

tively. For our meta-analysis of exome array results (N 3,226, effective N 2,467) we had 80.0%

and 99.2% chance of detecting (at alpha 1.4x10-6) a SNV explaining 1.22% and 2.00% of hepci-

din variance, respectively. For comparison, the well-known iron-related SNVs rs1800562 in

HFE and rs855791 in TMPRSS6 explain ~1% of serum iron variation. In addition, (narrow-

sense) heritability of hepcidin was previously estimated to be 9.8% but non-significant

(p>0.05) in the VB population and genome-wide SNP explained variance adjusted for age and

gender was estimated at ~37% (SE~20%) in the NBS (data not shown). Overall, this suggests

that a large part of hepcidin variability is caused by variation in environmental factors, e.g.

inflammation, body-mass index and body iron stores (dietary intake and blood losses).

Serum hepcidin was not associated with common variants in HFE and TMPRSS6, as we

have previously shown in independent studies both in the VB and NBS population [21, 47].

Now, we have also shown that low-frequency or rare variants in these genes do not seem to

contribute, neither at single variant level nor at gene level. We confirmed previously reported

associations for rs1800562 in HFE and rs855791 in TMPRSS6 with the ratio hepcidin/ferritin

for the VB and NBS population [21, 47]. As expected, we further substantiated these associa-

tions here and found an even stronger signal. The association signal of the ratio hepcidin/TS

with common variants in HFE and TMPRSS6 was less strong. Of note, the association of

rs1800562 in HFE with the ratio hepcidin/TS, previously found in the NBS [47], disappeared

upon meta-analysis of results of NBS, PREVEND and VB in all individuals (p = 0.13), but still

showed a weak signal in the subset (p = 3.7Ex10-4). Also rs855791 in TMPRSS6 showed a stron-

ger signal for association with the ratio hepcidin/TS in the subset compared to analysis based

on all individuals. The stronger signal of rs1800562 and rs855791 with the ratio hepcidin/ferri-

tin compared to the ratio hepcidin/TS indicates that these SNVs have a larger influence on

hepcidin response to body iron stores than on hepcidin response to circulating iron.

There are several reasons that can cause failure of identifying a true association signal [48,

49], e.g. issues of heterogeneity between studies, such as variability in outcome measurement

or statistical analysis, or bias due to population stratification. We took those issues into

account by using a set analysis protocol for cohort-specific analysis, testing for heterogeneity

for the top hits, and adjusting for population stratification in each cohort next to application of

genomic control adjustment. Two different hepcidin assays were applied in this study, but cor-

relation between these assays was high as measured in international round robins (sample

send-out studies) for hepcidin assay harmonization (DWS and DG, unpublished findings). In

addition, we prevented bias in SNV-hepcidin associations due to differences in hepcidin assays

by first performing cohort-specific GWAS and thereafter combining results in a meta-analysis.

However, it is important to realize that there are additional reasons that may have masked true

association results in our study, e.g. residual confounding due to population stratification,

presence of comorbidities that associate with serum hepcidin levels, incomplete adjustment

for relatedness in the VB cohort, genetic or environmental interactions [48, 49], or high bio-

logical variation in serum hepcidin levels [29, 30, 31, 50].

In conclusion, our results indicate that there are no common SNVs that explain more than

1% and no low-frequency and rare SNVs that explain more than 2% of phenotypic hepcidin

Genetic Variation and Serum Hepcidin
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variation. We recommend extension of our study once additional substantial cohorts with

hepcidin measurements, GWAS and/or exome array data become available in order to

increase power to identify variants that explain a smaller proportion of hepcidin variation. In

addition, we encourage follow-up of the potentially interesting genes that resulted from the

gene-based analysis of low-frequency and rare variants with candidate gene, fine mapping and

functional studies to increase the level of evidence for association and obtain insight into the

underlying mechanism of action.

Supporting Information

S1 Table. Cohort information and acknowledgments.

(DOCX)

S2 Table. Laboratory measurements.

(DOCX)

S3 Table. Phenotype information [median (P5-P95)] of the samples included in the meta-

GWAS.

(DOCX)

S4 Table. Information about genotyping, imputation and quality control of the cohort-

specific GWAS.

(DOCX)

S5 Table. Information about genotyping and quality control of the cohort-specific exome

array analysis.

(DOCX)

S6 Table. Phenotype information of the samples included in the exome array analyses

[median (5th percentile-95th percentile)].

(DOCX)

S7 Table. Top hits (p-value < 1E-06) for hepcidin/ferritin in all individuals and in the sub-

set.

(XLSX)

S8 Table. Top hits (p-value < 1E-06) for hepcidin/TS in all individuals and in the subset.

(XLSX)

S9 Table. VEGAS results.

(XLSX)

S10 Table. DEPICT results tissue enrichment.

(XLS)

S11 Table. DEPICT results gene set enrichment.

(XLS)

S12 Table. Exome array single variants results.

(XLSX)

S13 Table. Exome array gene-based (SKAT) results.

(XLSX)

Genetic Variation and Serum Hepcidin

PLOS ONE | DOI:10.1371/journal.pone.0166628 November 15, 2016 9 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s013


S1 Fig. Manhattan plot and QQ plot for the meta-analysis results for hepcidin in all indi-

viduals.

(DOCX)

S2 Fig. Manhattan plot and QQ plot for the meta-analysis results for hepcidin in the sub-

set.

(DOCX)

S3 Fig. Regional association plot for rs118031191 with serum hepcidin in all individuals.

(DOCX)

S4 Fig. Regional association plot for rs354202 with serum hepcidin in the subset.

(DOCX)

S5 Fig. Regional association plot for the chromosome 2 locus with serum hepcidin condi-

tioned on rs354202 in all individuals (NBS data only).

(DOCX)

S6 Fig. Regional association plot for the chromosome 2 locus with serum hepcidin condi-

tioned on rs354202 in the subset (NBS data only).

(DOCX)

S7 Fig. Manhattan plot and QQ plot for the meta-analysis results for the ratio hepcidin/

ferritin in all individuals.

(DOCX)

S8 Fig. Manhattan plot and QQ plot for the meta-analysis results for the ratio hepcidin/

ferritin in the subset.

(DOCX)

S9 Fig. Manhattan plot and QQ plot for the meta-analysis results for the ratio hepcidin/TS

in all individuals.

(DOCX)

S10 Fig. Manhattan plot and QQ plot for the meta-analysis results for the ratio hepcidin/

TS in the subset.

(DOCX)

S1 File. Supplemental Methods.

(DOCX)

Author Contributions

Conceptualization: TEG NV MT CB PM CC DT SHV PH DWS.

Formal analysis: TEG NV MT CB.

Funding acquisition: PM CC DT SHV PH DWS.

Investigation: TEG NV MT CB PM CC DT SHV PH DWS.

Methodology: TEG NV MT CB PM CC DT SHV PH DWS.

Project administration: TEG SHV DWS.

Resources: FD AJG DG LALMK FCGJS MAS PM CC DT PH DWS.

Software: MAS FD.

Genetic Variation and Serum Hepcidin

PLOS ONE | DOI:10.1371/journal.pone.0166628 November 15, 2016 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s023
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166628.s024


Supervision: PM CC DT SHV PH DWS.

Validation: TEG NV MT AJG.

Visualization: TEG NV.

Writing – original draft: TEG.

Writing – review & editing: NV MT CB FD AJG DG LALMK FCGJS MAS PM CC DT SHV

PH DWS.

References
1. Hentze MW, Muckenthaler MU, Galy B, Camaschella C. Two to tango: regulation of Mammalian iron

metabolism. Cell. 2010; 142(1):24–38. doi: 10.1016/j.cell.2010.06.028 PMID: 20603012

2. Ganz T. Systemic iron homeostasis. Physiological reviews. 2013; 93(4):1721–41. doi: 10.1152/

physrev.00008.2013 PMID: 24137020

3. Montonen J, Boeing H, Steffen A, Lehmann R, Fritsche A, Joost HG, et al. Body iron stores and risk of

type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-

Potsdam study. Diabetologia. 2012; 55(10):2613–21. doi: 10.1007/s00125-012-2633-y PMID:

22752055

4. Jiang R, Manson JE, Meigs JB, Ma J, Rifai N, Hu FB. Body iron stores in relation to risk of type 2 diabe-

tes in apparently healthy women. Journal of the American Medical Association. 2004; 291(6):711–7.

doi: 10.1001/jama.291.6.711 PMID: 14871914

5. Cherayil BJ. Iron and immunity: immunological consequences of iron deficiency and overload. Archivum

immunologiae et therapiae experimentalis. 2010; 58(6):407–15. doi: 10.1007/s00005-010-0095-9

PMID: 20878249

6. Altamura S, Muckenthaler MU. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s dis-

ease and atherosclerosis. Journal of Alzheimer’s disease: JAD. 2009; 16(4):879–95. doi: 10.3233/JAD-

2009-1010 PMID: 19387120

7. Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood. 2016;9; 127

(23):2809–13. doi: 10.1182/blood-2015-12-639112 PMID: 27044621

8. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular

iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306(5704):2090–3.

doi: 10.1126/science.1104742 PMID: 15514116

9. Benyamin B, Ferreira MA, Willemsen G, Gordon S, Middelberg RP, McEvoy BP, et al. Common vari-

ants in TMPRSS6 are associated with iron status and erythrocyte volume. Nature genetics. 2009; 41

(11):1173–5. doi: 10.1038/ng.456 PMID: 19820699

10. Benyamin B, McRae AF, Zhu G, Gordon S, Henders AK, Palotie A, et al. Variants in TF and HFE

explain approximately 40% of genetic variation in serum-transferrin levels. American journal of human

genetics. 2009; 84(1):60–5. doi: 10.1016/j.ajhg.2008.11.011 PMID: 19084217

11. Tanaka T, Roy CN, Yao W, Matteini A, Semba RD, Arking D, et al. A genome-wide association analysis

of serum iron concentrations. Blood. 2010; 115(1):94–6. doi: 10.1182/blood-2009-07-232496 PMID:

19880490

12. Pichler I, Minelli C, Sanna S, Tanaka T, Schwienbacher C, Naitza S, et al. Identification of a common

variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Human molecu-

lar genetics. 2011; 20(6):1232–40. doi: 10.1093/hmg/ddq552 PMID: 21208937

13. Benyamin B, Esko T, Ried JS, Radhakrishnan A, Vermeulen SH, Traglia M, et al. Novel loci affecting

iron homeostasis and their effects in individuals at risk for hemochromatosis. Nature communications.

2014; 5:4926. doi: 10.1038/ncomms5926 PMID: 25352340

14. Middelberg RP, Ferreira MA, Henders AK, Heath AC, Madden PA, Montgomery GW, et al. Genetic vari-

ants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-

related traits. BMC medical genetics. 2011; 12:123. doi: 10.1186/1471-2350-12-123 PMID: 21943158

15. Swinkels DW, Janssen MC, Bergmans J, Marx JJ. Hereditary hemochromatosis: genetic complexity

and new diagnostic approaches. Clinical chemistry. 2006; 52(6):950–68. doi: 10.1373/clinchem.2006.

068684 PMID: 16627556

16. Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochro-

matosis. Blood. 2005; 105(4):1803–6. doi: 10.1182/blood-2004-08-3042 PMID: 15486069

Genetic Variation and Serum Hepcidin

PLOS ONE | DOI:10.1371/journal.pone.0166628 November 15, 2016 11 / 13

http://dx.doi.org/10.1016/j.cell.2010.06.028
http://www.ncbi.nlm.nih.gov/pubmed/20603012
http://dx.doi.org/10.1152/physrev.00008.2013
http://dx.doi.org/10.1152/physrev.00008.2013
http://www.ncbi.nlm.nih.gov/pubmed/24137020
http://dx.doi.org/10.1007/s00125-012-2633-y
http://www.ncbi.nlm.nih.gov/pubmed/22752055
http://dx.doi.org/10.1001/jama.291.6.711
http://www.ncbi.nlm.nih.gov/pubmed/14871914
http://dx.doi.org/10.1007/s00005-010-0095-9
http://www.ncbi.nlm.nih.gov/pubmed/20878249
http://dx.doi.org/10.3233/JAD-2009-1010
http://dx.doi.org/10.3233/JAD-2009-1010
http://www.ncbi.nlm.nih.gov/pubmed/19387120
http://dx.doi.org/10.1182/blood-2015-12-639112
http://www.ncbi.nlm.nih.gov/pubmed/27044621
http://dx.doi.org/10.1126/science.1104742
http://www.ncbi.nlm.nih.gov/pubmed/15514116
http://dx.doi.org/10.1038/ng.456
http://www.ncbi.nlm.nih.gov/pubmed/19820699
http://dx.doi.org/10.1016/j.ajhg.2008.11.011
http://www.ncbi.nlm.nih.gov/pubmed/19084217
http://dx.doi.org/10.1182/blood-2009-07-232496
http://www.ncbi.nlm.nih.gov/pubmed/19880490
http://dx.doi.org/10.1093/hmg/ddq552
http://www.ncbi.nlm.nih.gov/pubmed/21208937
http://dx.doi.org/10.1038/ncomms5926
http://www.ncbi.nlm.nih.gov/pubmed/25352340
http://dx.doi.org/10.1186/1471-2350-12-123
http://www.ncbi.nlm.nih.gov/pubmed/21943158
http://dx.doi.org/10.1373/clinchem.2006.068684
http://dx.doi.org/10.1373/clinchem.2006.068684
http://www.ncbi.nlm.nih.gov/pubmed/16627556
http://dx.doi.org/10.1182/blood-2004-08-3042
http://www.ncbi.nlm.nih.gov/pubmed/15486069


17. van Dijk BA, Laarakkers CM, Klaver SM, Jacobs EM, van Tits LJ, Janssen MC, et al. Serum hepcidin

levels are innately low in HFE-related haemochromatosis but differ between C282Y-homozygotes with

elevated and normal ferritin levels. British journal of haematology. 2008; 142(6):979–85. doi: 10.1111/j.

1365-2141.2008.07273.x PMID: 18557745

18. Bridle KR, Frazer DM, Wilkins SJ, Dixon JL, Purdie DM, Crawford DH, et al. Disrupted hepcidin regula-

tion in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lan-

cet. 2003; 361(9358):669–73. doi: 10.1016/S0140-6736(03)12602-5 PMID: 12606179

19. Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR, et al. Mutations in

TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nature genetics. 2008; 40(5):569–71.

doi: 10.1038/ng.130 PMID: 18408718

20. Ahmad KA, Ahmann JR, Migas MC, Waheed A, Britton RS, Bacon BR, et al. Decreased liver hepcidin

expression in the Hfe knockout mouse. Blood cells, molecules & diseases. 2002; 29(3):361–6.

21. Traglia M, Girelli D, Biino G, Campostrini N, Corbella M, Sala C, et al. Association of HFE and

TMPRSS6 genetic variants with iron and erythrocyte parameters is only in part dependent on serum

hepcidin concentrations. Journal of medical genetics. 2011; 48(9):629–34. doi: 10.1136/jmedgenet-

2011-100061 PMID: 21785125

22. Hoogendoorn EH, Hermus AR, de Vegt F, Ross HA, Verbeek AL, Kiemeney LA, et al. Thyroid function

and prevalence of anti-thyroperoxidase antibodies in a population with borderline sufficient iodine

intake: influences of age and sex. Clinical chemistry. 2006; 52(1):104–11. doi: 10.1373/clinchem.2005.

055194 PMID: 16254196

23. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin

excretion predicts cardiovascular and noncardiovascular mortality in general population. Prevention of

Renal and Vascular End Stage Disease (PREVEND) Study Group. Circulation. 2002; 106(14):1777–

82. PMID: 12356629

24. Traglia M, Sala C, Masciullo C, Cverhova V, Lori F, Pistis G, et al. Heritability and demographic analy-

ses in the large isolated population of Val Borbera suggest advantages in mapping complex traits

genes. PLoS ONE. 2009; 4(10):e7554. doi: 10.1371/journal.pone.0007554 PMID: 19847309

25. Colonna V, Pistis G, Bomba L, Mona S, Matullo G, Boano R, et al. Small effective population size and

genetic homogeneity in the Val Borbera isolate. European journal of human genetics. 2013; 21(1):89–

94. doi: 10.1038/ejhg.2012.113 PMID: 22713810

26. Galesloot TE, Vermeulen SH, Geurts-Moespot AJ, Klaver SM, Kroot JJ, van Tienoven D, et al. Serum

hepcidin: reference ranges and biochemical correlates in the general population. Blood. 2011; 117(25):

e218–25. doi: 10.1182/blood-2011-02-337907 PMID: 21527524

27. Kroot JJ, Laarakkers CM, Geurts-Moespot AJ, Grebenchtchikov N, Pickkers P, van Ede AE, et al.

Immunochemical and mass-spectrometry-based serum hepcidin assays for iron metabolism disorders.

Clinical chemistry. 2010; 56(10):1570–9. doi: 10.1373/clinchem.2010.149187 PMID: 20739637

28. Nai A, Pagani A, Silvestri L, Campostrini N, Corbella M, Girelli D, et al. TMPRSS6 rs855791 modulates

hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood. 2011; 118

(16):4459–62. doi: 10.1182/blood-2011-06-364034 PMID: 21873547

29. Schaap CC1, Hendriks JC, Kortman GA, Klaver SM, Kroot JJ, Laarakkers CM, et al. Diurnal rhythm

rather than dietary iron mediates daily hepcidin variations. Clinical chemistry. 2013; 59(3):527–35. doi:

10.1373/clinchem.2012.194977 PMID: 23232066

30. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood.

2008; 112(10):4292–7. doi: 10.1182/blood-2008-02-139915 PMID: 18689548

31. Kroot JJ, Hendriks JC, Laarakkers CM, Klaver SM, Kemna EH, Tjalsma H, et al. (Pre)analytical impreci-

sion, between-subject variability, and daily variations in serum and urine hepcidin: implications for clini-

cal studies. Analytical biochemistry. 2009; 389(2):124–9. doi: 10.1016/j.ab.2009.03.039 PMID:

19341701

32. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nature

genetics. 2012; 44(7):821–4. doi: 10.1038/ng.2310 PMID: 22706312

33. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association

scans. Bioinformatics. 2010; 26(17):2190–1. doi: 10.1093/bioinformatics/btq340 PMID: 20616382

34. Devlin B, Roeder K, Wasserman L. Genomic control, a new approach to genetic-based association

studies. Theoretical population biology. 2001; 60(3):155–66. doi: 10.1006/tpbi.2001.1542 PMID:

11855950

35. Kutyavin IV, Milesi D, Belousov Y, Podyminogin M, Vorobiev A, Gorn V, et al. A novel endonuclease IV

post-PCR genotyping system. Nucleic acids research. 2006; 34(19):e128. doi: 10.1093/nar/gkl679

PMID: 17012270

Genetic Variation and Serum Hepcidin

PLOS ONE | DOI:10.1371/journal.pone.0166628 November 15, 2016 12 / 13

http://dx.doi.org/10.1111/j.1365-2141.2008.07273.x
http://dx.doi.org/10.1111/j.1365-2141.2008.07273.x
http://www.ncbi.nlm.nih.gov/pubmed/18557745
http://dx.doi.org/10.1016/S0140-6736(03)12602-5
http://www.ncbi.nlm.nih.gov/pubmed/12606179
http://dx.doi.org/10.1038/ng.130
http://www.ncbi.nlm.nih.gov/pubmed/18408718
http://dx.doi.org/10.1136/jmedgenet-2011-100061
http://dx.doi.org/10.1136/jmedgenet-2011-100061
http://www.ncbi.nlm.nih.gov/pubmed/21785125
http://dx.doi.org/10.1373/clinchem.2005.055194
http://dx.doi.org/10.1373/clinchem.2005.055194
http://www.ncbi.nlm.nih.gov/pubmed/16254196
http://www.ncbi.nlm.nih.gov/pubmed/12356629
http://dx.doi.org/10.1371/journal.pone.0007554
http://www.ncbi.nlm.nih.gov/pubmed/19847309
http://dx.doi.org/10.1038/ejhg.2012.113
http://www.ncbi.nlm.nih.gov/pubmed/22713810
http://dx.doi.org/10.1182/blood-2011-02-337907
http://www.ncbi.nlm.nih.gov/pubmed/21527524
http://dx.doi.org/10.1373/clinchem.2010.149187
http://www.ncbi.nlm.nih.gov/pubmed/20739637
http://dx.doi.org/10.1182/blood-2011-06-364034
http://www.ncbi.nlm.nih.gov/pubmed/21873547
http://dx.doi.org/10.1373/clinchem.2012.194977
http://www.ncbi.nlm.nih.gov/pubmed/23232066
http://dx.doi.org/10.1182/blood-2008-02-139915
http://www.ncbi.nlm.nih.gov/pubmed/18689548
http://dx.doi.org/10.1016/j.ab.2009.03.039
http://www.ncbi.nlm.nih.gov/pubmed/19341701
http://dx.doi.org/10.1038/ng.2310
http://www.ncbi.nlm.nih.gov/pubmed/22706312
http://dx.doi.org/10.1093/bioinformatics/btq340
http://www.ncbi.nlm.nih.gov/pubmed/20616382
http://dx.doi.org/10.1006/tpbi.2001.1542
http://www.ncbi.nlm.nih.gov/pubmed/11855950
http://dx.doi.org/10.1093/nar/gkl679
http://www.ncbi.nlm.nih.gov/pubmed/17012270


36. Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for

genome-wide association studies. American journal of human genetics. 2010; 87(1):139–45. doi: 10.

1016/j.ajhg.2010.06.009 PMID: 20598278

37. Mishra A, Macgregor S. VEGAS2: Software for More Flexible Gene-Based Testing. Twin research and

human genetics: the official journal of the International Society for Twin Studies. 2015; 18(1):86–91.

38. Pers TH, Karjalainen JM, Chan Y, Westra HJ, Wood AR, Yang J, et al. Biological interpretation of

genome-wide association studies using predicted gene functions. Nature communications. 2015;

6:5890. doi: 10.1038/ncomms6890 PMID: 25597830

39. Goldstein JI1, Crenshaw A, Carey J, Grant GB, Maguire J, Fromer M, et al. zCall: a rare variant caller

for array-based genotyping: genetics and population analysis. Bioinformatics. 2012; 28(19):2543–5.

doi: 10.1093/bioinformatics/bts479 PMID: 22843986

40. Liu DJ, Peloso GM, Zhan X, Holmen OL, Zawistowski M, Feng S, et al. Meta-analysis of gene-level

tests for rare variant association. Nature genetics. 2014; 46(2):200–4. doi: 10.1038/ng.2852 PMID:

24336170

41. Feng S, Wang S, Chen CC, Lan L. GWAPower: a statistical power calculation software for genome-

wide association studies with quantitative traits. BMC genetics. 2011; 12:12. doi: 10.1186/1471-2156-

12-12 PMID: 21255436

42. Falchi M, Forabosco P, Mocci E, Borlino CC, Picciau A, Virdis E, et al. A genomewide search using an

original pairwise sampling approach for large genealogies identifies a new locus for total and low-den-

sity lipoprotein cholesterol in two genetically differentiated isolates of Sardinia. American journal of

human genetics. 2004; 75: 1015–31. doi: 10.1086/426155 PMID: 15478097

43. Hinds DA, McMahon G, Kiefer AK, Do CB, Eriksson N, Evans DM, et al. A genome-wide association

meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nature

genetics. 2013; 45(8):907–11. doi: 10.1038/ng.2686 PMID: 23817569

44. van Meurs JB, Pare G, Schwartz SM, Hazra A, Tanaka T, Vermeulen SH, et al. Common genetic loci

influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. The

American journal of clinical nutrition. 2013; 98(3):668–76. doi: 10.3945/ajcn.112.044545 PMID:

23824729

45. Lee JH, Cheng R, Honig LS, Feitosa M, Kammerer CM, Kang MS, et al. Genome wide association and

linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leuko-

cyte telomere length: the Long Life Family Study. Frontiers in genetics. 2013; 4:310. doi: 10.3389/

fgene.2013.00310 PMID: 24478790

46. Mainous AG 3rd, Wright RU, Hulihan MM, Twal WO, McLaren CE, Diaz VA, et al. Telomere length and

elevated iron: the influence of phenotype and HFE genotype. American journal of hematology. 2013; 88

(6):492–6. doi: 10.1002/ajh.23438 PMID: 23512844

47. Galesloot TE, Geurts-Moespot AJ, den Heijer M, Sweep FC, Fleming RE, Kiemeney LA, et al. Associa-

tions of common variants in HFE and TMPRSS6 with iron parameters are independent of serum hepci-

din in a general population: a replication study. Journal of medical genetics. 2013; 50(9):593–8. doi: 10.

1136/jmedgenet-2013-101673 PMID: 23794717

48. Greene CS, Penrod NM, Williams SM, Moore JH. Failure to replicate a genetic association may provide

important clues about genetic architecture. PLoS ONE. 2009; 4(6):e5639. doi: 10.1371/journal.pone.

0005639 PMID: 19503614

49. Kraft P, Zeggini E, Ioannidis JP. Replication in genome-wide association studies. Statistical science.

2009; 24(4):561–73. doi: 10.1214/09-STS290 PMID: 20454541

50. Murphy AT1, Witcher DR, Luan P, Wroblewski VJ. Quantitation of hepcidin from human and mouse

serum using liquid chromatography tandem mass spectrometry. Blood. 2007; 110(3):1048–54. doi: 10.

1182/blood-2006-11-057471 PMID: 17435114

Genetic Variation and Serum Hepcidin

PLOS ONE | DOI:10.1371/journal.pone.0166628 November 15, 2016 13 / 13

http://dx.doi.org/10.1016/j.ajhg.2010.06.009
http://dx.doi.org/10.1016/j.ajhg.2010.06.009
http://www.ncbi.nlm.nih.gov/pubmed/20598278
http://dx.doi.org/10.1038/ncomms6890
http://www.ncbi.nlm.nih.gov/pubmed/25597830
http://dx.doi.org/10.1093/bioinformatics/bts479
http://www.ncbi.nlm.nih.gov/pubmed/22843986
http://dx.doi.org/10.1038/ng.2852
http://www.ncbi.nlm.nih.gov/pubmed/24336170
http://dx.doi.org/10.1186/1471-2156-12-12
http://dx.doi.org/10.1186/1471-2156-12-12
http://www.ncbi.nlm.nih.gov/pubmed/21255436
http://dx.doi.org/10.1086/426155
http://www.ncbi.nlm.nih.gov/pubmed/15478097
http://dx.doi.org/10.1038/ng.2686
http://www.ncbi.nlm.nih.gov/pubmed/23817569
http://dx.doi.org/10.3945/ajcn.112.044545
http://www.ncbi.nlm.nih.gov/pubmed/23824729
http://dx.doi.org/10.3389/fgene.2013.00310
http://dx.doi.org/10.3389/fgene.2013.00310
http://www.ncbi.nlm.nih.gov/pubmed/24478790
http://dx.doi.org/10.1002/ajh.23438
http://www.ncbi.nlm.nih.gov/pubmed/23512844
http://dx.doi.org/10.1136/jmedgenet-2013-101673
http://dx.doi.org/10.1136/jmedgenet-2013-101673
http://www.ncbi.nlm.nih.gov/pubmed/23794717
http://dx.doi.org/10.1371/journal.pone.0005639
http://dx.doi.org/10.1371/journal.pone.0005639
http://www.ncbi.nlm.nih.gov/pubmed/19503614
http://dx.doi.org/10.1214/09-STS290
http://www.ncbi.nlm.nih.gov/pubmed/20454541
http://dx.doi.org/10.1182/blood-2006-11-057471
http://dx.doi.org/10.1182/blood-2006-11-057471
http://www.ncbi.nlm.nih.gov/pubmed/17435114

