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Abstract: Due to the large quantity of expired and unused drugs worldwide, pharmaceutical disposal
has become a serious problem that requires increased attention. In the present paper, the study on
recycling ceftazidime (CZ) as an additive in copper and nickel electrodeposition from acid baths is
highlighted. CZ is the active substance from expired commercial drug Ceftamil®. Its electrochemical
behavior was studied by cyclic voltammetry. As well, kinetic parameters for copper and nickel
electrodeposition were determined using Tafel plots method at different temperatures and CZ
concentrations in these acid baths. The activation energy was calculated from Arrhenius plots.
Electrochemical impedance spectroscopy was used to investigate the charge transfer resistance and
coverage degree in the electrolyte solutions at several potential values. Gibbs free energy values,
calculated from Langmuir adsorption isotherms, revealed the chemical nature of CZ–electrode surface
interactions. The favorable effect of the organic molecules added in copper and nickel electroplating
baths was emphasized by optical microscope images. The morphology of the obtained deposits
without and with 10−4 mol L−1 CZ was compared. The experimental results revealed that expired
Ceftamil® is suitable as additive in copper and nickel electroplating processes from acid baths.

Keywords: expired drug; drug recycling; electroplating additive; levelling agent; galvanotechnics;
Tafel method; electrochemical impedance spectroscopy

1. Introduction

Every year, a great amount of pharmaceutical products expires around the world,
making them unusable for the treatment of patients or other medical purposes [1–9]. Most
of them are incinerated in order to avoid environment contamination [10–13], but some of
them, as in the household area, are difficult to track and commonly end up in the residual
water due to improper disposal techniques [14–17]. Unfortunately, a large number of
unused drugs have become hazardous contaminants in soil, surface and ground water,
endangering ecosystem and human health [18,19].

Certain products from a large number of drugs contain only active substances, without
excipients. These are usually organic molecules with a complex chemical structure and
large molecular area, which can find other utilities in various electrochemical processes,
like levelling or brightening agents in galvanotechnics [20–22], anodes for lithium-ion bat-
teries [23], as well as corrosion inhibitors for metals in different aggressive media [24–26].

In terms of environmental impact, the possibility to reuse expired drugs as additives
in galvanic baths is the most advantageous, because only a very small fraction of them is
embedded in the final cathodic deposit. Electroplating bath composition remains constant
for a long time, requiring corrections only at appreciable intervals [27–29]. Additives
are very important due to their influence on physical and mechanical properties of the
deposited metallic layer. Generally, they act by adsorption onto the metal surface, inhibiting
the electrodeposition process, thus reducing the grain size of the metallic deposit [30–32].

CZ is an antibiotic from third generation cephalosporins group with a large activity
spectrum, but enhanced activity against Pseudomonas spp. The IUPAC name of CZ
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is: (Z)-(7R)-7-[2-(2-Aminothiazol-4-yl)-2-(l-carboxy-l-methylethoxyimino)acetamido]-3-(l-
pyridiniomethyl)-3-cephem-4-carboxylate pentahydrate. Its chemical structure is presented
in Figure 1.
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CZ contains several structures, such as double bounds, aromatic rings, and het-
eroatoms with lone pair electrons which confer its inhibitive properties in the electrode
processes [33].

In this paper, the possibility to use CZ active substance from expired Ceftamil®

drug as additive in copper and nickel electroplating is studied. A similar galvanic baths
composition was used by Badarulzaman et al. [34] and Pasquale et al. [35] for nickel and
copper electrodeposition, respectively.

2. Materials and Methods

Electrochemical measurements were performed using a PARSTAT 2273 potentio-
stat/galvanostat in a 150 mL thermostatted glass cell. Pt, Cu, and Ni electrodes, having
0.5 cm2 exposed area, were used as working electrodes, two graphite rods as counter elec-
trodes and saturated Ag/AgCl as reference. All further potentials from the experimental
work are referred to this electrode (EAg/AgCl = +0.197 V vs. normal hydrogen electrode).

CZ electrochemical behavior has been studied by cyclic voltammetry. Cyclic voltam-
mograms (CVs) have been recorded on Pt electrode in 0.5 mol L−1 H2SO4 as well in
0.5 mol L−1 Na2SO4 + 30 g L−1 H3BO3 electrolyte solution (BS) in the absence and pres-
ence of different CZ concentrations, with scan rates between 5 and 500 mV s−1, at 25 ◦C
temperature.

Kinetic parameters for copper and nickel electrodeposition have been calculated from
Tafel plots. Linear voltammograms (LVs) have been drawn with low scan rate (2 mV s−1)
in 25–65 ◦C temperature range on copper electrode in 5 g L−1 Cu2+ solution (0.5 mol L−1

H2SO4 + 5 g L−1 Cu2+ from CuSO4·5H2O) and on nickel electrode in 5 g L−1 Ni2+ solution
(30 g L−1 H3BO3 + 5 g L−1 Ni2+ from 20.32 g L−1 NiSO4·7H2O and 3.05 g L−1 NiCl2·6H2O)
in the absence and presence of different concentrations of CZ. For both processes, the
activation energy has been calculated from Arrhenius plots.

Based on the dependence between the CZ concentration added in the electrolyte
solutions and surface coverage degree, using Langmuir adsorption isotherms, drawn at
different deposition potentials, Gibbs free energy values were calculated. From its values,
the nature of interaction between CZ and the metal substrate can be appreciated.

Electrochemical impedance spectroscopy (EIS) studies were recorded on a BioLogic
SP150 potentiostat/galvanostat equipped with an EIS module, in the frequency range
between 10 mHz and 100 kHz, the amplitude of the alternating voltage was 10 mV. For
each measurement 60 points with a logarithmic distribution of 10 points per decade were
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recorded. The experimental data were fitted using the ZView–Scribner Associates Inc.
software and equivalent electrical circuits by applying the Levenberg–Marquardt least
squares complex non-linear fitting algorithm. The EIS results are given in Supplementary
Materials (Figures S3–S5, Tables S1 and S2).

Further, copper discs were used as substrate for copper and nickel electrodeposition.
Copper was plated in a bath containing 0.5 mol L−1 H2SO4 and 250 g L−1 CuSO4·5H2O,
while for nickel a Watts bath (300 g L−1 NiSO4·7H2O, 45 g L−1 NiCl2·6H2O and 30 g L−1

H3BO3) was used. Both depositions were performed at 25 ◦C from baths without and
with 10−4 mol L−1 CZ. The morphology and roughness of the surfaces was evaluated
using a laser microscope (Lext OLS 4000, 3D measuring laser microscope, Olympus). The
results from the analysis gained by using the roughness measurement module from the
microscope software were compared. The measured values were calculated on surfaces
collected on micrographs taken at 100× magnification.

All test solutions were prepared from high purity reagents: H2SO4 Merck p.a. 95–
97%, Na2SO4 anhydrous Sigma-Aldrich p.a. ≥99%, H3BO3 Sigma-Aldrich p.a. ≥99.5%,
CuSO4·5H2O Merck p.a. ≥98%, NiSO4·7H2O Sigma-Aldrich p.a. ≥99%, NiCl2·6H2O
Merck p.a. ≥97%. In the experimental studies, different concentrations of CZ, between
10−6 and 10−3 mol L−1, from expired Ceftamil® commercial drug (expiration date: January
2013) were used as additive in the electrolyte solutions. A vial of Ceftamil® contains
1.16 g pentahydrate form of CZ along with 0.2 g sodium carbonate as powder for injection
solution.

3. Results and Discussion
3.1. Electrochemical Behavior of CZ

Studies on the possibility to use CZ as additive (levelling agent) in copper and nickel
electrodeposition started with its electrochemical behavior, characterized by cyclic voltam-
metry recorded on platinum electrode in 0.5 mol L−1 H2SO4 and BS, in a wide potential
range. Concerning the nature of acids and their concentrations, as well as the pH, both
of the electrolyte solutions used are similar with those used at industrial level in galvan-
otechnics: 0.5 mol L−1 H2SO4 for copper electrodeposition from acid baths (pH = 0–1),
respectively 30 g L−1 H3BO3 for nickel electrodeposition from Watts baths (pH = 3.5–4.5).

Figure 2 illustrates the CVs drawn on platinum electrode with 500 mV s−1 scan rate in
0.5 mol L−1 H2SO4 (Figure 2a) and BS (Figure 2b).
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Analyzing the curves from Figure 2a, it is observed that in strong acid media (H2SO4),
CZ does not undergo electrochemical reactions at either the anode or cathode. At high
scan rate, peaks and waves assigned to the superficial oxidation of platinum substrate A
(about +0.75 V) and oxygen evolution B (about +1.50 V) can be distinguished (at anodic
polarization), as well as its reduction peak C (approx. +0.40 V), followed by the generation
of adsorbed hydrogen atoms (Hads) D (about 0 V), adsorbed hydrogen molecules (H2ads) E
(approx. −0.15 V), and H2 evolution F (about −0.25 V), and their oxidation correspondents
(G, H, I), when the potential is shifted towards positive values.

However, in weak acid media (H3BO3), the electrochemical behavior of CZ is different
than in strong acid solution, most probably due to the change of the protonation degree
of the active substance of the drug. On the curve drawn in BS (Figure 2b), an oxidation
plateau (B) is observed around +0.75–+1.25 V, associated with CZ oxidation to various
products.

At low scan rate (5 mV s−1) (Figure 3) on the CVs recorded in H2SO4, only O2
evolution, O2ads reduction, H2 evolution and H2ads oxidation peaks and waves can be
observed. In BS, in addition to these, the CZ oxidation wave can be seen.
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Figure 3. CVs (cycle 3) on platinum electrode 0.5 mol L−1 H2SO4 (a) and 0.5 mol L−1 Na2SO4 + 30 g L−1 H3BO3 (BS) (b)
without and with 10−3 mol L−1 CZ, at 5 mV s−1 scan rate.

Each wave’s intensity of oxygen and hydrogen evolution reaction diminishes, simul-
taneously with the increase of the overpotentials, due to the inhibitory effect of CZ and its
oxidation products, which are adsorbed onto the electrode surface.

Based on the above presented CVs, it can be stated that in copper acid baths, CZ
will not undergo any transformation at the electrodes; consequently, its concentration will
remain almost constant during copper electroplating for long periods. In addition, CZ will
not degrade, even in BS, since during anodic ionization of nickel the polarization is not
pronounced enough to oxidize the organic compound.

3.2. Inhibitory Effect of CZ on Copper and Nickel Electrodeposition

In order to determine the kinetic parameters of copper and nickel electrodeposition,
LVs have been recorded with low scan rate (2 mV s−1) on copper and nickel electrodes
in solutions containing 5 g L−1 metal ions in 0.5 mol L−1 H2SO4 for copper bath and in
30 g L−1 H3BO3 for nickel bath. Both the influence of CZ added in the electrolyte solution
and the temperature effect on these processes have been studied.

LVs (Figures 4 and 5) and correspondent Tafel plots [36] (Figures S1 and S2 presented
in Supplementary Materials) have been drawn for Cu and for Ni electrode respectively in
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electrolyte solutions without and with different concentrations of CZ (between 10−6 and
10−3 mol L−1).

Knowing the beneficial effect of temperature on the electrodeposition mechanisms of
both metals, as well as on the quality of the obtained metallic deposits, LVs were recorded in
25–55 ◦C temperature range for copper and 25–65 ◦C for nickel electrodeposition. Figure 4b
presents the LVs plotted in 5 g L−1 Cu2+ and Figure 5b the ones in 5 g L−1 Ni2+, both of
them with addition of 10−3 mol L−1 CZ as additive.
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Figure 5. LVs recorded for nickel electrodeposition without and with different concentrations of CZ at 25 ◦C (a) and with
10−3 mol L−1 CZ at different temperatures (b), 2 mV s−1 scan rate.

The LVs show that there are not additional peaks and waves in the presence of CZ,
indicating the organic molecules are not implicated in any reduction processes; they are
stable and the only phenomenon occurring at the interface is their adsorption onto the
metal surface, thus inhibiting the metal deposition. This is also supported by the negative
shift of about 100 mV for copper electrodeposition potential and 300 mV for nickel.

The kinetic parameters for copper electrodeposition are shown in Table 1 and for
nickel electrodeposition in Table 2.
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Table 1. Kinetic parameters for copper deposition from 5 g L−1 Cu2+ without and with different
concentrations of CZ, in 25–55 ◦C temperature range.

CZ Conc. (mol L−1) t (◦C) 1 − α io (A m−2)

0

25 0.75 0.32
35 0.82 0.34
45 0.88 0.36
55 0.91 0.40

10−6

25 0.73 0.29
35 0.78 0.30
45 0.86 0.34
55 0.89 0.38

10−5

25 0.67 0.24
35 0.74 0.27
45 0.82 0.31
55 0.87 0.34

10−4

25 0.64 0.17
35 0.75 0.22
45 0.78 0.27
55 0.83 0.29

10−3

25 0.39 0.08
35 0.47 0.11
45 0.53 0.16
55 0.55 0.19

Table 2. Kinetic parameters for nickel deposition from 5 g L−1 Ni2+ without and with different
concentrations of CZ, in 25–65 ◦C temperature range.

CZ Conc. (mol L−1) t (◦C) 1 − α io (A m−2)

0

25 0.53 7.14·10−4

35 0.57 2.72·10−3

45 0.61 1.37·10−2

55 0.67 1.11·10−1

65 0.74 4.60·10−1

10−6

25 0.52 1.04·10−4

35 0.56 7.42·10−4

45 0.60 5.87·10−3

55 0.65 5.49·10−2

65 0.69 2.15·10−1

10−5

25 0.50 1.93·10−5

35 0.54 6.90·10−4

45 0.58 5.44·10−3

55 0.63 2.67·10−2

65 0.67 1.92·10−1

10−4

25 0.46 2.08·10−6

35 0.51 5.52·10−5

45 0.57 1.01·10−3

55 0.62 9.91·10−3

65 0.65 1.10·10−1

25 0.44 1.07·10−8

35 0.49 1.84·10−7

10−3 45 0.54 5.27·10−6

55 0.60 4.98·10−5

65 0.63 9.20·10−4
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The cathodic charge transfer coefficient 1 − α is strongly influenced by the concentra-
tion of CZ in the electrolyte solution. It can be observed that increasing CZ concentration
in the solution leads to 1 − α decrease because, according to Bockris et al.’s [37] considera-
tions, the organic molecules are adsorbed at the metal/electrolyte solution interface, which
means the reaction plane is shifted towards the bulk of the electrolyte solution. As can be
observed from the LVs, this is equivalent with the decrease of the reaction rate, respective
of the net density current passing through the electrode.

If temperature rises, the reverse phenomenon is observed; 1 − α increases since the
thermal movement is enhanced and consequently Cu2+ ions can move closer to the metal
surface, resulting in the intensification of the deposition process.

For the exchange current density io, appreciable values are obtained in accordance
with literature data reported by Farndon et al. [38] and Wan et al. [39]. The addition
of CZ in the electrolyte solution leads to a small diminution of the exchange current
density, which demonstrates the slight inhibitory effect of the organic compound on copper
electrodeposition. It is worth noting that according with Butler–Volmer relation, the
addition of CZ produces an inhibition phenomenon, modifying the kinetic parameters
of this process in the direction in which the net current density through the interface is
diminished. As expected, the temperature rise involves the increase of exchange current
density because the activation energy of the cathodic process decreases.

CZ addition in the electrolyte solution has similar effect in nickel electrodeposition,
but it is far more sensitive. Thus, at 25 ◦C, the exchange current density decreases more
than 104 times when 10−3 mol L−1 CZ is added in the electrolyte solution. However, the
exchange current density values are smaller for nickel than copper deposition and nickel
electrodeposition overpotential is higher than for copper. Furthermore, activation energy
for nickel deposition is also larger.

In the case of copper electrodeposition, unusually high values are obtained for 1 − α

since the Cu2+ reduction process occurs at high speed, and it is not controlled by the charge
transfer process alone. On the other hand, because it is a fast process, the stationary state is
not reached even at very low scan rates.

In the ideal case, when the electron transfer is the limiting process, the charge transfer
resistance is expressed by Equation (1) [40]:

Rct =
RT

(1 − α)Fio
e
(1−α)F

RT η (1)

where R is gas constant, T–thermodynamic temperature, (1 − α)–cathodic transfer coeffi-
cient, F–Faraday’s number, η–overpotential.

Knowing the exchange current density values within a limited temperature range, the
activation energy for both copper and nickel electrodeposition processes has been calculated
based on lg |io| = f (T−1) dependence [Arrhenius plot given by Equation (2)] [41]:

Ea = −2.303
(

∂io
∂T−1

)
(2)

Analyzing Figure 6, it can be observed that the two electrochemical processes are
more sensitive to CZ addition at low temperatures (25, 35 ◦C). At higher temperatures, the
thermal movement increases, diminishing the organic compound inhibitory effect. The
calculated values of activation energy are depicted in Table 3.
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Table 3. Activation energy values for copper and nickel electrodeposition without and with different
concentrations of CZ.

CZ Conc. (mol L−1)
Cu/Cu2+ Ni/Ni2+

Ea (kJ mol−1)

0 5.87 139
10−6 7.59 164
10−5 9.64 186
10−4 14.8 225
10−3 24.2 238

Conclusions obtained from the linear voltammetry data are confirmed by the activa-
tion energy values. When CZ is added in the copper and nickel baths, the activation energy
increases proportionally with its concentration, therefore CZ exhibits an inhibitory effect
for both electrochemical processes. Generally, it can be stated that copper electrodeposition
occurs at a lower overpotential than for nickel, regardless of CZ addition in the electrolyte
solutions.

Information about how the inhibitor acts on the electrodeposition processes has been
found based on the adsorption isotherms drawn using the data provided by EIS (Figure 7).
Given the chemical structure of CZ, Langmuir isotherm–Equation (3)–is the best approach,
according to Koryta et al. [42].

Cinh
θ

=
1

Kads
+ Cinh (3)

where Cinh–CZ concentration added in the electrolyte solution (mol L−1); θ–coverage
degree of the electrode; Kads–adsorption constant.

Representing the linear dependence between Cinh/θ and Cinh (Figure 7), from abscissa
values the adsorption constant Kads is determined. Further, standard Gibbs energy ∆Go

ads
is calculated using the Equation (4) [43]:

∆Go
ads = −RT ln(55.5Kads) (4)

It is well known that the value of Gibbs free energy gives information about the nature
of interactions between the substrate and the adsorbed compound. Amin and Ibrahim [44]
suggested that values close to −20 kJ mol−1 show a physical bound between the substrate
and the organic compound, while −40 kJ mol−1 indicates a chemical one (chemisorption).
Values obtained for copper and nickel electrodeposition are presented in Table 4.
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Table 4. Gibbs free energy for nickel and copper deposition at different potentials.

Process E (V) ∆Go
ads (kJ mol−1)

Nickel electrodeposition

−0.6 −35.0
−0.7 −35.3
−0.8 −36.6
−0.9 −38.0
−1.0 −38.9
−1.1 −39.7

Copper electrodeposition

−0.05 −37.1
−0.10 −36.2
−0.15 −35.4
−0.20 −34.2

Both in nickel and copper cases, ∆Go
ads values are close to −40 kJ mol−1 which indicates

that during the electrodeposition, CZ is chemically adsorbed onto the metal surface.

3.3. Morphological Characterization

To highlight CZ influence on the morphology of the metallic layers obtained by
electrodeposition, copper and nickel industrial bath were used. In those baths, CZ was
added, and the morphologies of the layers deposited without and with CZ were compared.
The layers have been deposited using the following parameters (Table 5):

Table 5. Electrodeposition parameters.

Copper deposition

Substrate Cu

Electrodeposition bath
250 g L−1 CuSO4·5H2O
0.5 mol L−1 H2SO4
without/with 10−4 mol L−1 CZ

Current density 100 A m−2

Time 15 min

Temperature 25 ◦C

Nickel deposition

Substrate Cu

Electrodeposition bath

300 g L−1 NiSO4·7H2O
45 g L−1 NiCl2·6H2O
30 g L−1 H3BO3
without/with 10−4 mol L−1 CZ

Current density 200 A m−2

Time 10 min

Temperature 25 ◦C
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Figure 8 illustrates the images obtained by optical microscopy for copper layers, and
for nickel respectively. For both metals, there are presented comparatively the deposits
obtained without and with CZ addition.
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Figure 8. Images for copper (a,b) and nickel electrodeposition (c,d) without/with 10−4 mol L−1 CZ, magnification: 50×.

It can be seen that in the absence of CZ a rough structure is obtained, while when a
small amount (10−4 mol L−1) of CZ is added in the electrodeposition bath, the layers have
a bright aspect in both copper and nickel cases. For all samples, 5 different areas were
investigated on each sample and the average values for the mean roughness parameters
(Ra) were: for copper deposition (without CZ–10.3 µm and with CZ–1.84 µm) and for
nickel deposition (without CZ–1.02 µm and with CZ–0.128 µm). If a higher concentration
of CZ is added, the layers are qualitative inadequate, having a matte look.

4. Conclusions

In this paper, the possibility of using CZ, the active substance from Ceftamil® pharma-
ceutical drug as an additive in copper and nickel acid baths was studied.

Cyclic voltammetry was conducted in order to emphasize the electrochemical behav-
ior and stability of CZ in acid media, similar to the galvanic baths used at commercial level.
It was found that in strong acid media (H2SO4), CZ does not undergo electrochemical trans-
formations, while in weak acid media (H3BO3), at advanced anodic polarization, it oxidizes
to different compounds. However, CZ can be used in both baths since the polarization is
not pronounced enough during the metal deposition to oxidize the compound.

LV studies proved that CZ acts as an inhibitor on the studied processes, the copper and
nickel characteristic overpotentials being shifted towards more negative values, propor-
tional with the amount of CZ added in the electrolyte solution. Based on the LVs, from Tafel
plots, kinetic parameters (charge transfer coefficient 1-α and the exchange current density
io) for copper and nickel deposition have been calculated. In nickel case, the increase
of 1-α and the advanced decrease of io (104 times) are observed with the increase of CZ
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concentration in the electrolyte solution, meaning the reaction plane is shifted toward the
solution bulk due to the partially block of the electrode surface with CZ large molecules,
inhibiting thus the deposition process. In copper case, a similar but not as advanced effect
as for nickel is noticed. With the increase of temperature from 25 to 65 ◦C, the reverse phe-
nomenon is observed, the processes being accelerated as a result of the thermal movement
intensification.

As well, the activation energy values, obtained from Arrhenius plots, confirm the
inhibitory effect of CZ, Ea increasing with the increase of CZ amount added in the electrolyte
solution.

Forwards, from Langmuir isotherms, Gibbs free energy was approximated. The
values are close to −40 kJ mol−1, suggesting a chemical adsorption of CZ onto the metallic
electrode surface.

The morphology of the copper and nickel deposited layers showed CZ has a levelling
effect when it is used as additive in small concentration; the proper amount to be used is
about 10−4 mol L−1, at higher concentrations, the layers are qualitatively inadequate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph18189476/s1, Figure S1: Tafel plots for copper electrodeposition without and with
different concentrations of CZ at 25 ◦C (a) and with 10−3 mol L−1 CZ at different temperatures (b),
2 mV s−1 scan rate, Figure S2: Tafel plots for nickel electrodeposition without and with different
concentrations of CZ at 25 ◦C (a) and with 10−3 mol L−1 CZ at different temperatures (b), 2 mV s−1

scan rate, Figure S3: Nyquist (a) and Bode plots (b) recorded on nickel electrode in 5 g L−1 Ni2+

different CZ concentrations at E = −0.80 V, Figure S4: Nyquist (a) and Bode plots (b) recorded on
nickel electrode in 5 g L−1 Ni2+ different CZ concentrations at E = −0.80 V, Figure S5: Equivalent
electrical circuit for modelling nickel (a) and copper (b) electrodeposition, Table S1: Calculated data
of the circuit elements and experimental errors (between brackets, %) for nickel electrodeposition,
Table S2: Calculated data of the circuit elements and experimental errors (between brackets, %) for
copper electrodeposition.
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