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Abstract: A proteomic approach was used to characterize potential mediators involved in the
improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant
MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat;
HFD) and treated with vehicle or MitoQ (200 µM) in drinking water for 7 weeks. Obesity modulated
the expression of 33 proteins as compared with controls of the more than 1000 proteins identified.
These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic
analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein
levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by
plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin
protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in
cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the
results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial
effects of treatment with mitochondrial antioxidants.

Keywords: endoplasmic reticulum stress; fibrosis; mitochondrial oxidative stress; obesity; transthyretin

1. Introduction

Obesity is defined as abnormal or excessive fat accumulation and is considered a major
risk to health. A body mass index over 30 kg/m2 is considered to be obese. The preva-
lence of obesity has increased drastically in recent years not only in adults but also in
children, manifesting itself as a global health problem. Obesity has a considerable impact
on metabolism, affecting the entire organism [1] and predisposing to comorbidities such as
cancer [2], hypertension [3], insulin resistance and diabetes [4], neurological disorders [5]
and cardiovascular diseases, including heart failure [1]. At the cardiac level, obesity expo-
nentially increases the risk of heart failure development due to the impact of obesity on the
heart [6]. An excessive body weight generates higher metabolic demands with consequent
increases in cardiac output and workload [7]. Obesity has been described to promote left
ventricular hypertrophy and diastolic dysfunction, in which the development of cardiac
fibrosis plays a central role [8].

Fibrosis is defined as excessive extracellular matrix accumulation, which could be due
to an increase in extracellular matrix protein synthesis and/or a decrease in its degradation.

Int. J. Mol. Sci. 2022, 23, 8080. https://doi.org/10.3390/ijms23158080 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23158080
https://doi.org/10.3390/ijms23158080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3011-2041
https://orcid.org/0000-0001-5072-4099
https://orcid.org/0000-0001-8046-8102
https://orcid.org/0000-0001-6959-6293
https://doi.org/10.3390/ijms23158080
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23158080?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 8080 2 of 12

It is a well-recognized cause of high morbidity and mortality, increasing myocardial stiffness
and, therefore, promotion of diastolic dysfunction [9,10]. Furthermore, its evaluation has
been suggested as a useful indicator of long-term mortality in heart failure patients [11].
Different treatments have been recommended by the official guidelines to improve clinical
symptoms in heart failure patients, showing promising results; however, it is important to
mention that these strategies are not effective in reversing cardiac fibrosis [12]. Therefore,
it is important to understand the mechanisms involved in cardiac fibrosis development
and to design new, effective pharmacological treatments capable of preventing the cardiac
consequences of fibrosis development.

Several mechanisms have been proposed to be involved in cardiac fibrosis in the context
of obesity, such as neurohormonal alterations [13], inflammation [14], hyperleptinemia [15],
oxidative stress [16] and endoplasmic reticulum (ER) stress [16], among others. ER stress is
a situation characterized by an increase in unfolded/misfolded proteins in the lumen of
the ER. Under these conditions, binding immunoglobulin protein (BiP) is dissociated from
three transmembrane proteins presented in the ER, such as inositol-requiring 1, PKR-like ER
kinase and activating transcription factor 6 (ATF6), thereby activating different downstream
pathways in order to restore ER homeostasis [17]. If the ER stress is maintained, the ER
leaks calcium, which could damage the mitochondria, thereby generating an excess of free
radicals and promoting the activation of apoptosis, in turn generating cell death and tissue
injury [18]. In previous studies from our group, we evaluated the role of mitochondrial
oxidative stress in some of these mechanisms involved in cardiac alterations associated
with obesity. In this sense, treatment for 6 weeks with the mitochondrial antioxidant MitoQ
prevented cardiac lipotoxicity characterized by mitochondrial lipid remodeling [16]. In
addition, we observed that treatment with MitoQ prevented the development of cardiac
fibrosis and the increase in collagen I protein levels, as well as the activation of ER stress in
obese animals, showing an interaction between mitochondrial oxidative stress and ER stress
and its involvement in cardiac fibrosis observed in obese rats [19]. In a previous study from
our group, obese animals presented with an increase in BiP protein levels accompanied by
an upregulation of CCAAT-enhancer-binding homologous protein (CHOP), a downstream
protein induced by ER stress activation [19]. In addition, in cardiac cells, we confirmed
direct crosstalk between ER stress and mitochondrial oxidative stress and its association
with extracellular matrix protein synthesis [19]. However, the entire effect of obesity
on cardiac alterations and the involvement of mitochondrial oxidative stress have not
been fully established. The aim of this study was to delve into the benefits observed in
obese animals treated with the mitochondrial antioxidant MitoQ. A proteomic approach
was used for the characterization of proteostasis improvement after MitoQ treatment in
order to establish the protein interactome network regulated by obesity and mitochondrial
oxidative stress.

2. Results
2.1. Proteome-Wide Exploration of Obesity at the Cardiac Level

In a previous study, we demonstrated that animals fed a high-fat diet for 6 weeks
showed an increase in body weight as compared with controls. The administration of
MitoQ reduced this increase; however, animals subjected to such administration still had
higher body weights than those in the control group [20]. These changes in body weight
could be, at least in part, due to differences in energy intake (calculated from the diet-
contained calories) observed in the different groups [20]. Obese rats presented with normal
cardiac structure, systolic and diastolic cardiac function as evaluated by left ventricle
ejection fraction and E/A ratio, as well as blood pressure levels. However, despite no
observed changes in cardiac function due to the short time of evolution with the diet,
obese animals presented with important cardiac alterations characterized by interstitial
fibrosis and an increase in relative heart weight and cardiomyocyte area accompanied
by an increase in oxidative stress and activation in ER stress [16,19]. Treatment with the
mitochondrial antioxidant MitoQ prevented all of these alterations. This beneficial effect of
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MitoQ seems to occur through, at least in part, the interaction between oxidative stress and
ER stress in extracellular matrix production [16,19].

In order to obtain a deep insight into the cardiac protein content and protein function
modulated by obesity and MitoQ treatment, a proteome-wide analysis of total cardiac
extracts was performed using 2D nano-liquid chromatography tandem mass spectrometry.
More than 1000 proteins were identified and quantified in the proteomic analysis. HFD
modulated the expression of 33 proteins as compared with a control diet (CT) (Table S1),
including proteins related to ER stress, lipid metabolism, oxidative stress and the im-
mune system. Obese animals treated with the mitochondrial antioxidant presented with
23 altered protein expressions as compared with untreated obese animals (Table S2).

Interestingly, among the modulated proteins observed in the proteomic analysis,
an increase in transthyretin (TTR) and 14:3:3 protein eta at the cardiac level was observed
in obese animals as compared to control animals. Treatment with the mitochondrial
antioxidant reverted these changes observed in obese animals, showing differential protein
expression under the experimental conditions (Figure 1A,B). The changes observed in TTR
levels were confirmed at plasma levels, and treatment with MitoQ prevented the increase
in TTR circulating levels observed in obese animals (Figure 1C).
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Figure 1. Mitochondrial oxidative stress promotes transthyretin upregulation in obesity. Heat map
representation showing proteins differentially expressed and the degree of change in hearts from
rats fed a standard diet (control, CT) or a high-fat diet (HFD) treated with MitoQ (HFD + MQ) (A).
Correlations in cardiac samples between (only significant) protein modulations (FC) under HFD
and HFD + MQ conditions (red dots represent proteins with reversal of changes observed in obese
rats after MQ treatment) (B). Circulating plasma levels of transthyretin (TTR) of rats fed a standard
diet (control, CT) or a high-fat diet (HFD) treated with MitoQ (HFD + MQ) or vehicle (CT + MQ) (C).
Bar graphs represent the mean ± SEM of 6–8 animals. ** p < 0.01.

2.2. Protein Interactome Network Modulated by TTR

To enhance the analytical outcome of proteomic findings, TTR protein interactome
and multipathway analyses were generated. The most significantly disrupted biofunctions
were response to topologically incorrect protein (LogP = −9.52), regulation of protein
stability (LogP = −8.75), cellular response to stimuli (LogP = −7.31), regulation of cellular
localization (LogP = −6.86), cellular response to peptides (LogP = −6.68), insertion of
tail-anchored proteins into the ER membrane (LogP = −6.38) and response to misfolded
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protein (LogP = −6.22) (Figure 2A and Table S3 associated with Figure 2A). In addition, we
used Biogrid to define potential regulators involved in the cardiac alterations observed in
obese animals. According to information present in the Biogrid database, we observed that
ATF4 (activating transcription factor 4), a protein involved in ER stress, was experimentally
demonstrated as a TTR protein interactor (Figure 2B).
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Figure 2. Transthyretin is associated with endoplasmic reticulum stress. Significantly enriched bio-
functions detected through Metascape tool (A) and experimentally-demonstrated protein interactome
network for transthyretin generated by the Biogrid database (B).

Interestingly, direct correlations were found between TTR circulating levels and my-
ocardial BiP protein levels, a marker of ER stress activation (p < 0.0016; Figure 3A). In
addition, TTR was correlated with cardiac fibrosis (p < 0.0112; Figure 3B) and collagen type
I protein levels (p < 0.0418; Figure 3C). These results suggest the following: (i) the possible
participation of TTR in the cardiac fibrosis observed in obese animals and (ii) an additional
mechanism for the beneficial effects of treatment with the mitochondrial antioxidant at the
cardiac level in obese animals.
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Figure 3. Circulating transthyretin is associated with endoplasmic reticulum stress and cardiac
fibrosis in obese rats. Direct correlations between transthyretin (TTR) plasma levels and (A) binding
immunoglobulin protein (BiP), (B) cardiac collagen volume fraction (CVF) and (C) collagen I (Col I)
protein levels in all animals. r: Pearson’s correlation coefficient; A.U.: arbitrary units.
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2.3. Effects of TTR on Cardiac Fibroblasts

In order to analyze the direct effects of TTR on extracellular matrix proteins and ER
stress activation, cardiac fibroblasts were exposed to recombinant TTR. Cardiac fibroblasts
treated with TTR presented with an increase in collagen type I protein levels, reaching
a maximum effect in TTR-treated cells at 5 µg/mL (Figure 4A,B).
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Figure 4. Transthyretin induces collagen I and endoplasmic reticulum stress activation in cardiac
fibroblasts. Representative Western blots (A) and quantification of collagen I (Col I) (B), binding
immunoglobulin protein (BiP) (C), CCAAT-enhancer-binding homologous protein (CHOP) (D) and
activating transcription factor 6 (ATF6α) (E) in cardiac fibroblasts treated with transthyretin (TTR) for
24 h at different doses (0.5–10 µg/mL). Bar graphs represent the mean ± SEM of four to six assays
normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). * p < 0.05; *** p < 0.001. A.U:
arbitrary units.

Recombinant TTR increased BiP protein levels in a dose-dependent manner in cardiac
fibroblasts, indicating activation of ER stress (Figure 4A,C). Analysis of different pathways
involved in ER stress activation revealed that cardiac cells treated with TTR presented
with enhanced protein levels of CHOP and ATF6α levels in a dose-dependent manner
(Figure 4A,D,E). Original blots are presented in Figure S1.

2.4. Mitochondrial Oxidative Stress Mediates the Effects of TTR on Cardiac Fibroblasts

Once the direct effects of TTR on extracellular matrix production and ER stress were
confirmed, cardiac fibroblasts were exposed to TTR (5 µg/mL) in the presence or absence
of the mitochondrial antioxidant MitoQ (5 nM).

The presence of MitoQ in the cultured medium blunted the profibrotic effect of TTR,
preventing an increase in collagen type I protein levels induced by TTR (Figure 5A,B). This
protective effect of MitoQ could be, at least in part, due to the prevention of ER stress
activation induced by TTR. As previously described, TTR increased BiP protein levels,
an effect that was accompanied by an upregulation of CHOP in the absence of modifications
in ATF6α protein levels after 24 h of stimulation (Figure 5A,C–E). The presence of MitoQ in
the culture medium prevented the activation of ER stress induced by TTR (Figure 5A,C–E).
Original blots are presented in Figure S2.
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Figure 5. Mitochondrial oxidative stress mediates profibrotic and endoplasmic reticulum stress
activation induced by transthyretin. Representative Western blots (A) and quantification of collagen
I (Col I) (B), binding immunoglobulin protein (BiP) (C), CCAAT-enhancer-binding homologous
protein (CHOP) (D) and activating transcription factor 6 (ATF6α) (E) in cardiac fibroblasts treated
with transthyretin (TTR; 5 µg/mL) in the presence or absence of MitoQ (MQ; 5 nM) for 24 h. Bar
graphs represent the mean ± SEM of four to six assays normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). * p < 0.05; ** p < 0.01. A.U: arbitrary units.

3. Discussion

The novel findings of the present study are as follows: (1) TTR is increased at cardiac
and plasma levels in obese animals, even in the absence of functional cardiac alterations;
(2) mitochondrial oxidative stress promotes TTR upregulation in the heart of obese rats;
and (3) TTR exerts profibrotic actions and ER stress activation in cardiac cells through
mitochondrial oxidative stress. These findings elucidate novel mechanisms of cardiac
alterations associated with obesity and suggest a possible new approach to TTR-related
pathologies, such as cardiac amyloidosis.

Obesity is associated with several cardiac alterations, such as structural modifications,
hypertrophy and fibrosis, which ultimately promotes functional alterations. In the present
study, HFD animals presented with cardiac fibrosis and hypertrophy characterized by
an increase in relative heart weight and cardiomyocyte cross-sectional area. These alter-
ations occurred prior to functional modifications, as obese animals showed normal systolic
and diastolic function as evaluated by left ventricle ejection fraction and E/A ratio [16],
respectively. In addition, obese rats did not develop diabetes but presented with insulin
resistance [20] due to the short time of HFD. Previous studies have demonstrated that
long-term feeding with HFD or gene mutations promote obesity, diabetes and cardiac
functional alterations in animals, as well as cardiac hypertrophy and fibrosis [21–23]. The
purpose of the present study was to evaluate the effects of the mitochondrial antioxidant
MitoQ in an early stage of cardiac damage in an animal model of obesity.

Proteomic analyses identified differential expression of two proteins at the cardiac
level: TTR and 14-3-3ζ. TTR, also known as prealbumin, is a 55 kDa tetrameric protein
mainly synthesized in the liver; its main function is to act as a plasma carrier protein of
thyroxin and retinol [24,25]. In a previous study, these two proteins were found to be inter-
connected, thereby showing that TTR regulates 14-3-3ζ protein levels in the hippocampus of
young mice [26]. In obese patients, an increase was observed in TTR expression, suggesting
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it as a biomarker for diabetes progression in overweight patients [27]. In accordance with
these findings, we observed an increase in TTR plasma levels in obese rats with insulin
resistance, as suggested by an increase in HOMA index values [20]. Previous studies have
demonstrated that TTR is related to oxidative stress, as its levels correlate with reactive
oxygen and nitrogen species [28,29], in addition to inducing oxidative stress [25]. In the
present study, the increase in TTR protein levels observed in obese animals was accompa-
nied by an increase in superoxide anion cardiac levels [16]. Interestingly, treatment with the
mitochondrial antioxidant MitoQ prevented an increase in TTR plasma levels, as well as
an increase in HOMA index values in HFD rats. It is important to mention that treatment
with MitoQ reduced but did not normalize the increase in body weight induced by an HFD.
These results confirm the interaction between TTR and insulin resistance and show, for
the first time, that TTR is not only a biomarker of oxidative stress but also an oxidative
environment, which promotes an increase in TTR levels.

TTR is also related to other pathologies due to its misfolding or unfolding properties,
promoting aggregates and amyloid fibrils and thereby contributing to the development
of Alzheimer’s disease and Creutzfeldt-Jakob disease and, as well as, at a cardiac level,
cardiac amyloidosis [30]. Cardiac amyloidosis is characterized by accumulation of extracel-
lular misfolded proteins; nine proteins have been identified as being able to aggregate as
amyloids [31]. Amongst these proteins, TTR—in both hereditary and acquired forms—is
the main protein involved in cardiac amyloidosis. Initially, cardiac amyloidosis was con-
sidered to be a rare disease of elderly patients; however, the advances in techniques for
diagnosis and postmortem studies have revealed that it was underappreciated as a cause of
common cardiac diseases or syndromes [32], and it has been reported as a frequent cause
of heart failure with preserved ejection fraction and severe aortic stenosis [33]. The survival
of patients after diagnosis varies, depending on the type of amyloidosis, with a survival
time of approximately 60 months in TTR-related amyloidosis [31]. The clinical manifes-
tations of cardiac amyloidosis are restrictive cardiomyopathy with restrictive ventricular
filling, cardiac hypertrophy, conduction abnormalities and atrial arrythmias [34]. Until
now, the standard treatment for cardiac amyloidosis has been the use of tafamidis which
has exhibited a lower all-cause mortality in patients with cardiac amyloidosis; however,
its use has several limitations, such as the excessive price of treatment and the need for
a high frequency of dosing [35]. For all of these reasons, it is necessary to deepen the
understanding of the basis of the pathology in order to discover new mechanisms and
possible treatments.

A link between TTR and ER stress has been proposed. TTR is dissociated into
monomers due to ER stress pathways, which can facilitate destabilization of TTR. In
our study, obese animals presented with cardiac ER stress [30]. These data are in agreement
with the observation in the animal model, in which obese animals present with cardiac ER
stress. In addition, treatment with the mitochondrial antioxidant MitoQ not only prevented
the activation of ER stress but increased TTR plasma and cardiac levels in obese animals. In
addition, TTR levels were correlated with cardiac fibrosis and collagen type I protein levels,
showing a possible relationship between TTR and the development of cardiac fibrosis, as
well as an interaction with mitochondrial oxidative stress.

Cardiac fibrosis is a common feature observed in obesity, which ultimately leads to
myocardial stiffness, arrhythmias and diastolic dysfunction [10,36]. Previous studies have
confirmed the detrimental role of TTR in cardiac cells, showing toxic effects on cardiac
myocytes [37]; however, there are no studies evaluating the effects of TTR on extracellular
matrix synthesis. We showed, for the first time, the role of TTR in the development of
cardiac fibrosis in cardiac fibroblasts, the main cell type involved in collagen synthesis in
the heart [38]. In the cells, TTR was able to promote collagen synthesis in a dose-dependent
manner, as well as an increase in BiP protein levels, thus showing ER stress activation. In
cardiac fibroblasts, TTR was also able to increase CHOP protein levels, a downstream target
upregulated under ER stress. CHOP is a common downstream element of inositol-requiring
1 and PKR-like ER kinase, which is involved in cardiac apoptosis, hypertrophy and heart
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failure [39]. Complementary analyses show that TTR only modified ATF6α protein levels
in cardiac cells at the highest dose of 10 µg/mL. Previous studies have demonstrated the
role of ATF6α in cardiac alterations promoting cardiac hypertrophy, as its specific deletion
in cardiac myocytes blunted the development of cardiac hypertrophy and impaired cardiac
function in an animal model of transverse aortic constriction [40]. However, the role of
ATF6α in cardiac fibrosis remains controversial, as some studies have shown that ATF6α
decreases the differentiation of cardiac fibroblasts in myofibroblasts, reducing cardiac
fibrosis [41]. In contrast, ATF6α was upregulated by the profibrotic mediator TGF-β in
human cardiac fibroblasts, thus contributing to the development of cardiac fibrosis [42].
All these data suggest that TTR exerts profibrotic actions and ER stress activation through
its pro-oxidant actions. This affirmation is based on treatment with the mitochondrial
antioxidant MitoQ, which prevented all these effects of TTR. Therefore, mitochondrial
oxidative stress not only mediates the increase in TTR protein levels observed in obese
animals but also mediates the cardiac actions of TTR.

In summary, through proteomic analyses, we identified an increase in TTR protein
levels in obese animals, an effect that was mediated by mitochondrial oxidative stress.
The protein interactome network showed that TTR is related to ER stress, a pathological
mechanism involved in the development of cardiac fibrosis. In vitro studies revealed
that TTR promoted an increase in collagen type I protein levels and ER stress activation
through mitochondrial oxidative stress. The results revealed another mechanism involved
in cardiac fibrosis associated with obesity and the beneficial effects of treatment with
mitochondrial antioxidants.

Some limitations should be addressed. This study was performed only in male rats
to avoid the effect of modulation of estrogen on the cardiovascular system; however,
a comparison between the two sexes could provide a more comprehensive view of how
obesity and mitochondrial oxidative stress could impact transthyretin levels and effects.
In addition, proteomics were performed in bulk tissue. Future deployment of single-cell
approaches will allow us to define in detail the localization, expression and role of TTR in
each cardiac cell types, increasing our knowledge about the molecular mechanisms involved
in the cardiac alterations associated with obesity. This study highlights that mitochondrial
oxidative stress mediates TTR effects on cardiac fibroblasts; however, an appropriate animal
model for TTR-derived cardiac amyloidosis treated with MitoQ could show the possible
beneficial effects of mitochondrial antioxidants in the pathology.

4. Materials and Methods
4.1. Animal Model

Six-week-old male Wistar rats with an initial body weight of 150 g (Envigo, Barcelona,
Spain) were fed a standard diet ad libitum (CT, 3.5% fat; Envigo Teklad no.TD.2014, Haslett,
MI, USA; n = 16) or a high-fat diet (HFD, 35% fat; Envigo Teklad no. TD.03307, Haslett,
MI, USA; n = 16) for 7 weeks. Diet compositions are presented in Table S4. Half of the
animals in each group received the mitochondrial antioxidant MitoQ (200 µM) in their
drinking water, as previously described [16]. The Animal Care and Use Committee of
Universidad Complutense de Madrid approved all experimental procedures according
to the Spanish Policy for Animal Protection RD53/2013, which meets European Union
Directive 2010/63/UE.

4.2. Cell Culture Studies

Cardiac fibroblasts from Innoprot (Ref: P10402) were used between passages 7 and
8 and were cultured under the same conditions (37 ◦C, 95% sterile air and 5% CO2) in
a saturation humidified incubator (Heracell 150i, Heraeus, Germany) following the man-
ufacturer’s instructions. Cells were maintained in DMEM supplemented with 10% fetal
bovine serum, 10 mmol/L L-glutamine, 100 U/mL penicillin/streptomycin, 10 mmol/L
L-pyruvate and 2 mmol/L HEPES. Cells were seeded into six-well plates at 90% confluence
and serum-starved for 18–24 h. Cells were treated for 24 h with different doses of recom-
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binant TTR (0.5–10 µg/mL; Abexxa; Ref: abc069456) in the presence or absence of MitoQ
(5 nM). The doses of the treatments were based on previous studies [16,43]. MitoQ was
provided by MP Murphy from the Medical Research Council Mitochondrial Biology Unit,
Cambridge BioMedical Campus, Cambridge, UK.

4.3. Proteomic Analyses
4.3.1. Sample Preparation

Tissue samples were homogenized in lysis buffer (7 M urea, 2 M thiourea, 50 mM
DTT), and protein concentration was quantified with a Bradford assay kit (Bio-Rad) and
precipitated with a ReadyPrep 2-D cleanup kit (BioRad). The protein extract for each
sample was diluted in Laemmli buffer and loaded into a 1.5 mm thick polyacrylamide gel
with a 4% stacking gel casted over a 15% resolving gel. The run was stopped as soon as
the front entered 3 mm into the resolving gel to concentrate the whole proteome in the
stacking/resolving gel interface. Bands were stained with Coomassie Brilliant Blue and
excised from the gel. Purification and concentration of peptides were performed using C18
Zip Tip solid-phase extraction (Millipore).

4.3.2. Mass Spectrometry Analysis

Peptide mixtures were separated by reverse-phase chromatography using an Eksigent
nanoLC ultra 2D pump fitted with a 75 µm ID column (Eksigent 0.075 × 250). Samples were
first loaded into a 0.5 cm length, 100 µm ID precolumn packed with the same chemistry as
the separating column for desalting and concentration. Mobile phases were 100% water,
0.1% formic acid (buffer A) and 100% acetonitrile 0.1% formic acid (buffer B). Column
gradient was developed in a 200 min, two-step gradient from 5% B to 25% B in 160 min
and 25%B to 40% B in 21 min. The column was equilibrated in 95% B for 8 min and 5%
B for 11 min. During all processes, the precolumn was in line with the column, and the
flow was maintained along the gradient at 300 nL/min. Eluting peptides from the column
were analyzed using a Sciex 5600 Triple-TOF system. Data were acquired by survey scan
performed in a mass range from 350 m/z up to 1250 m/z with a scan time of 250 ms. The
top 35 peaks were selected for fragmentation. Minimum accumulation time for MS/MS
was set to 100 ms, for a total cycle time of 3.8 s. Product ions were scanned in a mass range
from 230 m/z up to 1500 m/z and excluded for further fragmentation for 15 s.

4.3.3. Data Analysis

MS/MS data acquisition was performed using Analyst 1.7.1 (Sciex), and spectra files
were processed through Protein Pilot Software (v.5.0.1-Sciex) using the Paragon™ algorithm
(v.5.0.1) for database search [44] and Progroup™ for data grouping and searched against
the concatenated target–decoy UniProt proteome database (rat norvegicus). The false-
discovery rate was determined using a non-lineal fitting method [45] and results reporting
a 1% global false discovery rate or better were displayed.

Peptide quantification was performed using Progenesis LC−MS software (2.0.5556.29015,
Nonlinear Dynamics). Using the accurate mass measurements from full survey scans in
the TOF detector and the observed retention times, runs were aligned to compensate for
between-run variations in our nanoLC separation system. To this end, all runs were aligned
to a reference run automatically chosen by the software, and a master list of features con-
sidering m/z values and retention times was generated. The quality of these alignments
was manually supervised with the help of quality scores provided by the software. The
peptide identifications were exported from Protein Pilot software and imported to Progene-
sis LC−MS software, where they were matched to the respective features. Output data files
were managed for subsequent statistical analyses and representation. Proteins identified
by site (identification based only on a modification), reverse proteins (identified by decoy
database) and potential contaminants were filtered out. Proteins quantified with at least
two unique peptides, p-value lower than 0.05 and an absolute fold change of <0.7 or >1.3 in
linear scale were considered significantly differentially expressed.
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Bioinformatic analysis was performed using Metascape and Biogrid 4.4 tools [46,47]
with default settings.

4.4. Western Blot

For Western blog analysis, 20 µg of total cardiac proteins or cell lysates was separated
by sodium dodecyl sulfate–polyacrylamide gradient gel (4–20%; BioRad, Hercules, CA,
USA) and transferred to Hybond-c Extra nitrocellulose membranes (Hybond-P; Amersham
Biosciences, Piscataway, NJ, USA) with the Trans-Blot Turbo Transfer System. Membranes
were probed with primary antibody for collagen type I (Calbiochem, San Diego, CA, USA;
dilution 1:500; Ref: 234167), BiP (BD Biosciences, Madrid, Spain; dilution 1:1000; line-
breakRef: 610978), CHOP (Cell Signaling Technology, Danvers, MA, USA; dilution 1:500;
Ref: #2895), ATF6α (Santa Cruz, Dallas, TX, USA; dilution: 1:250; Ref: sc-166659) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Cell Signaling; dilution: 1:5000;
Ref: #5174) as loading control. The signals were detected using an ECL system (Mil-
lipore, Burlington, MA, USA). Several proteins were analyzed in the same membrane
after a stripping procedure (Thermo Scientific, Waltham, MA, USA; Ref: 21063). The re-
sults are expressed as n-fold increases over the values of the control group in arbitrary
densitometric units.

4.5. Circulating Plasma Levels of TTR

Circulating TTR levels were measured by sensitive enzyme immunoassays (Abnova;
Ref: KA2137) following the instructions of the manufacturer.

4.6. Statistical Analyses

Data are expressed as mean ± SEM. Normality of distributions was verified by means
of the Kolmogorov–Smirnov test. Pearson correlation analysis was used to examine associ-
ation among different variables. Data were analyzed using a one-way analysis of variance,
followed by a Tukey test or Dunnett test to assess specific differences among doses or
control conditions, respectively, using GraphPad software (San Diego, CA, USA). The
predetermined significance level was α equal to 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23158080/s1.
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