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Alpha fetoprotein (AFP) plays a key role in stimulating the growth, metastasis and drug
resistance of hepatocellular carcinoma (HCC). AFP is an important target molecule
in the treatment of HCC. The application of AFP-derived peptides, AFP fragments
and recombinant AFP (AFP-inhibiting fragments, AIFs) to inhibit the binding of AFP to
intracellular proteins or its receptors is the basis of a new strategy for the treatment of
HCC and other cancers. In addition, AIFs can be combined with drugs and delivery
agents to target treatments to cancer. AIFs conjugated to anticancer drugs not only
destroy cancer cells with these drugs but also activate immune cells to kill cancer
cells. Furthermore, AIF delivery of drugs relieves immunosuppression and enhances
chemotherapy effects. The synergism of immunotherapy and targeted chemotherapy
is expected to play an important role in enhancing the treatment effect of patients with
cancer. AIF delivery of drugs will be an available strategy for the targeted treatment of
cancer in the future.

Keywords: AFP molecular structure, AFP inhibiting fragments, drug delivery, targeted cancer therapy, drug design

INTRODUCTION

Alpha fetoprotein (AFP) is an oncofetal protein that is highly expressed in fetal cells
and in most patients with hepatocellular carcinoma (HCC), and it is a diagnostic
marker of liver cancer (Bei and Mizejewski, 2011, 2020; Mizejewski, 2014, 2019; Bai
et al., 2017; Kim et al., 2020; Mehta et al., 2020). Based on the origin, the types

Abbreviations: AFP, alpha fetoprotein; AFP-3BC, recombinant fragment protein derived from AFP domain-3 (from
473∼596 residues); AFPR, AFP receptor; AIFs, AFP-inhibiting fragments; ATRA, all-transretinoic acid; CyAFP, cytoplasmic
AFP; DC, dendritic cell; Dox, doxorubicin; GIP, AFP-derived growth inhibitory peptide (synthetic growth inhibitory peptide
derived from AFP domain-3); GPCRs, G protein-coupled receptors; HCC, hepatocellular carcinoma; HIF-1α, hypoxia-
induced factor (HIF)-1α; Kds, dissociation constants; MDR, multi-drug resistance; MDSCs, myeloid-derived suppressor cells;
nAFP, natural AFP (derived from fetal cells); NK, natural killer; PTEN, phosphatase and tensin homolog gene deleted on
chromosome 10; r3dAFP, recombinant fragment protein derived from C-terminal AFP (from 357∼590 residues); rAFP3D,
recombinant fragment protein derived from AFP domain-3 (from 404∼609 residues); RAR, retinoic acid receptor; rhAFP,
recombinant AFP (full-length AFP gene was expressed in E. coli as well as in yeast cells, which had biological properties
related to but not identical to native human AFP); SeAFP, secreted AFP; tAFP, tumor-derived AFP.
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of AFP include natural AFP (nAFP), which is derived
from fetal cells, and tumor-derived AFP (tAFP), which is
highly expressed in HCC and other cancers. The forms
of AFP are also categorized as secreted AFP (SeAFP) and
cytoplasmic AFP (CyAFP) (Mizejewski, 2015a; Tcherkassova
et al., 2017). Here, AFP mainly refers to tAFP, and CyAFP
refers to cytoplasmic tAFP. The AFP amino acid sequence
is highly homologous with albumin, and its structure is
similar to that of albumin. However, the functions of
AFP and albumin are different (Mizejewski, 2001, 2016).
Albumin maintains stable plasma osmolality and delivers
nutrients. AFP delivers nutrients, suppresses immunity and
stimulates the growth of cancer cells. When the serum
concentration of AFP is greater than 50 ng/ml in adult
blood, it stimulates tissue regeneration or hematopoiesis,
and it is also used by cancer cells to provide nutrients
and stimulate growth (Mizejewski, 2002; He et al., 2014;
Pak, 2018b).

Alpha fetoprotein regulates the expression of oncogenes,
inhibits apoptosis, promotes cancer cell growth, enhances drug
resistance, enhances the antitumor immune response, increases
invasion, and increases metastasis, resulting in the malignant
transformation of cancer, and these functions of AFP are referred
to as AFP malignant behaviors (Meng et al., 2016; Lu et al., 2016;
Suryatenggara et al., 2017; Komorowski et al., 2018; Mizejewski,
2019; Xue et al., 2020). AFP binds to its membrane receptor
and cytoplasmic proteins to promote malignancy (Mizejewski,
2011b, 2014, 2015a, 2019; Pak, 2018b). Use of AFP-derived
peptides, AFP fragments, and recombinant AFP (AFP-inhibiting
fragments, AIFs) to prevent AFP from binding to signal
transduction molecules or AFP receptors, thereby inhibiting
the malignant behaviors mediated by AFP. Additionally, use of
AIF conjugates with toxins or drugs to target its receptors to
selectively destroy cancer cells (Mizejewski, 2011a, 2014; Pak,
2018b). Classically, AIF comprised of peptides and fragments
which are derived from AFP domain-3. Here, we also categorize
recombinant AFP (rhAFP) as an unique AIF because it can
be used as a vector to deliver drugs to kill cancer cells.
Peptide AIFs include AFP-derived growth inhibitory peptide
(GIP) and its analogs. GIP does not bind the AFP receptor
(AFPR), but it can enter the cells influence the enzyme activity
of tumor cells (Mizejewski and Butterstein, 2006; Mizejewski
et al., 2010). Other new peptides of AIF could be obtained
from AFP domain-3, and these peptides can bind to AFPR
or signal transduction molecules and serve as candidate decoy
ligands to prevent malignancy mediated by AFP (Mizejewski,
2011b; Tcherkassova et al., 2017). Fragment AIFs include AFP-
3BC, rAFP3D, and r3dAFP, which are fragments of protein
derived from AFP domain-3, and they can deliver drugs and
be endocytosed by cancer cells with high AFPR expression
(Godovannyi et al., 2011; Posypanova et al., 2013; Yabbarov
et al., 2013; Tcherkassova et al., 2017). The unique AIF, rhAFP
is full-length AFP that is expressed in E. coli and in yeast
cells (Arshad et al., 2015), and they can also be designed
as candidate decoy ligands to deliver drugs to prevent AFP
malignant behaviors. The reports on the use of AIFs for the
treatment of cancer are shown in Table 1. In this review, we

summarize the application of AIFs to deliver drugs for targeted
cancer treatment.

DISTRIBUTION AND FUNCTION OF THE
AFP RECEPTOR IN CELLS

Alpha fetoprotein is a shuttle protein that is endocytosed mainly
upon binding to its receptor. Previously, many researchers have
suggested that AFP might bind to cellular membrane proteins
(Naval et al., 1985; Biddle and Sarcione, 1987; Torres et al.,
1989; Mizejewski, 1995, 2013, 2014, 2019), and further analysis
indicated that these proteins are receptors of AFP (Suzuki et al.,
1992; Mizejewski, 2014, 2019). The AFP receptor (AFPR) is
expressed in myoblasts (fetal cells) (Lorenzo et al., 1996), NIH3T3
cells, and malignant cells (Laborda et al., 1987; Esteban et al.,
1991; Torres et al., 1991; Li et al., 2002c; Mizejewski, 2011b),
but it is not expressed in well-differentiated myotubes (adult-like
cells) (Lorenzo et al., 1996). Recently, we detected the expression
and location of AFPR in normal liver cells and HCC cells
by immunohistochemistry and laser confocal microscopy. High
expression of AFPR has been observed in the membrane of HCC
cells (Li et al., 2013; Zhu et al., 2015b; Figure 1). Two subtypes
of AFPR have been identified in NIH3T3 and HCC cells with
different Kds (Li et al., 2002a,c), suggesting that AFPR exists in
at least two subtypes. AFP binds with AFPR, which increases
the concentrations of cAMP and Ca2+ in the cytoplasm and
promotes the expression of some oncogenes (Li et al., 2002c,
2004). Activation of growth and signaling pathways are pivotal
factors by which AFP promotes hepatocarcinogenesis (Wang
et al., 2012; Mizejewski, 2015a; Zhang et al., 2015, 2016; Xue et al.,
2020). These results suggest that AFPR in the cellular membrane
has traits of G protein-coupled receptors (GPCRs) and that the
signal transduction of AFPR follows the principles of GPCRs.
Secreted AFP has many functions, such as immunosuppression,
and it regulates the malignant behaviors of cancer cells through
mediation by AFPR (Mizejewski, 2018, 2019).

AFP was initially found to be taken up by fetal cells (Sell
et al., 1985; Iturralde et al., 1991; Alava et al., 1999; Nierhoff
et al., 2005), and later studies found that muscle tumor cells
also internalize exogenous AFP (Uriel et al., 1983; Lorenzo et al.,
1996; Mizejewski, 2011b, 2018). In addition, AFP binds to cellular
membrane receptors in pits in the membrane bilayer, thereby
triggering their internalization by cells. AFP and its receptor are
packaged in endosomal vesicles and transported to the trans-
Golgi network distributed near the nucleus (Lorenzo et al.,
1996; Torres et al., 1991; Mizejewski, 2011b, 2018). Finally, the
vesicles release AFP and its receptor complex into the cytoplasm
where they are translocated to cytoplasmic organelles undergoing
lysosomal degradation or engage in signal transduction pathways.
For example, AFP binds to PTEN in the cytoplasm and activates
PI3K signaling pathways, thus stimulating the growth of many
malignant cells (Wang et al., 2012; Zhang et al., 2015, 2016;
Mizejewski, 2019).

Although AFP-binding receptors are critical for receptor-
mediated endocytosis and the uptake of AFP into the
cytoplasm, the complete AFP-binding receptor structure has
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TABLE 1 | Reports of AFP-inhibiting fragments (AIFs) for the treatment of cancer.

Name Molecular derived Binding drugs The method of binding References

from AFP

GIP-34 It is a 34 amino acid peptide that
derived from AFP domain-3

Mizejewski et al., 2010;
Mizejewski, 2011b.

GIP-8 a peptide derived from AFP
residues EMTPVNPG (AFPep)

Dox Dox was synthesized by the use of a
4(4-N-maleimidomethyl)

Mizejewski et al., 2010;
Mizejewski, 2011b.

cyclohexane-1-carboxyl hydrazide
crosslinker that forms a thioester bond
between the 8-mer peptide and the
Dox (GIP-8–Dox)

GIP-P12 A synthetic peptide derived from
the AFP domain-3

Mizejewski, 2011b.

AFP-3BC recombinant fragment protein
derived from AFP domain-3 (from
473–596 residues)

Dox AFP-3BC was activated with SATA, and
Dox was modified with EMCH, then
Dox-EMCH and activated AFP-3BC
were conjugated (Dox-AFP-3BC)

Posypanova et al.,
2013

r3dAFP recombinant fragment protein
derived from C-terminal AFP (from
357–590 residues)

Dox, Paclitaxel Dox or paclitaxel containing
nanoparticles bound to r3dAFP
(NP-Dox-r3dAFP NP-paclitaxel-r3dAFP)

Godovannyi et al.,
2011; Posypanova
et al., 2008

rAFP3D recombinant fragment protein
derived from AFP domain-3 (from
404–609 residues)

Dox A three-component Yabbarov et al., 2013
delivery system including vector protein
rAFP3D, polyamidoamine (PAMAM)
generation 2 (G2) dendrimers and
antitumor antibiotic Dox
(rAFP3D-G2-Dox)

Recombinant
AFP (rhAFP)

full-length AFP gene were
expressed in E. coli as well as in
yeast cells

1′-S-1′- acetoxychavicol
acetate (ACA), or other

drugs

Non-covalent complexes of rhAFP and
ACA or other drugs

Arshad et al., 2015

not yet been elucidated. Many AFP-binding receptors have
been reported, and they are mainly classified into two
categories as follows: (a) the mucin (MUC) family and
(b) the scavenger receptor (SR) family (Uriel et al., 1984;
Mizejewski, 2013, 2014, 2015b, 2019). Although the details of
the AFP-binding receptor structure are not known, many
studies have shown that cancer cells take up AFP through
AFP-binding receptors (Laborda et al., 1987; Esteban et al.,
1991; Torres et al., 1991; Mizejewski, 2011b, 2013, 2014, 2019;
Zhu et al., 2015b).

Because HCC and other cancer cells regain the ability to
take up AFP via its receptor and exert malignant behaviors (Li
et al., 2013; Zhu et al., 2015b), AFP delivery of cytotoxins is
used to target and kill cancer cells. It has been demonstrated
that AFP is effective for drug delivery, but AFP, especially
tumor-derived AFP (tAFP), is also immunosuppressive and
thus can stimulate immune escape of cancer cells. AFP may
also promote initiation of cancer. Therefore, it is better
to use AIFs to deliver drugs to target cancer therapeutics
(Mizejewski, 2011a; Pak, 2014, 2018b). Experiments with
radioactively labeled an AIF (AFP-3BC) have confirmed that
they selectively accumulate in cancer cells and that AFP-
3BC loaded with drugs binds to human breast MCF7 cells
and ovarian adenocarcinoma SKOV3 cells, suppressing the
proliferation of these cancer cells. Importantly, AFP-3BC
do not bind to non-stimulated lymphocytes. These findings
indicate that AFP-3BC can be a promising new vector for
selectively targeting and inhibiting the malignant behaviors

of cancer cells (Posypanova et al., 2008; Mizejewski, 2011a;
Posypanova et al., 2013).

AFP PROMOTES THE MALIGNANT
BEHAVIORS OF CANCER CELLS

Because AFP is a growth-promoting factor, it mostly promotes
the growth of cancer cells. AFP binding to its receptors
activates the cAMP-PKA pathway and induces Ca2+ influx,
which promotes the expression of the c-fos, c-jun and Ras
oncogenes and stimulates the growth of hepatoma cells (Li
et al., 2002a,c; Ma et al., 2010; Wang et al., 2012; Zhang
et al., 2012, 2015, 2016). In addition, after binding to receptors,
AFP not only triggers growth-promoting signals but also
stimulates the endocytosis of AFP into cells (Torres et al.,
1991; Mizejewski, 2011b; Kong et al., 2012). The endocytosed
AFP is released (which becomes CyAFP) from its receptor
and then binds with some cytoplasmic proteins, leading to the
activation or inhibition of signaling pathways. For example,
CyAFP binding to caspase-3 inhibits the apoptosis signaling
pathway (Li et al., 2009a; Lin et al., 2017). CyAFP binding to
caspase-3 is shown in Figure 2. Caspase-3, also called cysteine
aspartyl proteinase 3, plays an important role in the apoptosis
pathway of cancer cells (Riedl et al., 2001; Zhang et al., 2019;
Jiao et al., 2020). Activated caspase-3 protein binds to its
substrate and induces apoptosis through cascade amplification,
indicating that caspase-3 is the main executor of apoptosis
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FIGURE 1 | Expression of AFPR in clinical patient liver tissues and HCC cells. (A) Clinical liver tissue samples were collected after surgical hepatectomy, and the
expression of AFPR in clinical patient liver tissues was detected by immunohistochemical assays. HE stained: hematoxylin-eosin stained; IH stained:
immunohistochemical stained; red arrow indicates AFPR. (B) Expression and localization of AFPR (green fluorescence) in HCC cells were observed by laser confocal
microscopy. Reprinted from Li et al. (2013) with permission from Elsevier.

(Mittl et al., 1997; Rogers et al., 2017). The binding of CyAFP
to caspase-3 prevents apoptotic signal transduction in HCC
cells. CyAFP not only directly binds to caspase-3 and inhibits
its activity but also affects the activation of caspase-3 through
the mitochondrial apoptosis pathway. Yang et al. (2008, 2018)
found that blocking the expression of AFP increases the ratio
of Bax/Bcl-2 and releases cytochrome C from the mitochondria,
thus activating caspase-3 to induce apoptosis. These results
suggest that CyAFP inhibits apoptosis in HCC through the
Bax/cytochrome C/caspase-3 signaling pathway and promotes
the proliferation of hepatoma cells. In addition, CyAFP also
binds to the all-trans retinoic acid (ATRA) receptor, RAR-β, and
inhibits receptor entry into the nucleus, leading to increased
expression of apoptosis-inhibiting proteins, such as survivin (Li
et al., 2009b; Zhang et al., 2020).

In addition, a study based on laser confocal microscopy,
immunoprecipitation, fluorescence energy resonance transfer,
molecular simulation and site-directed mutagenesis has shown
that CyAFP also binds to PTEN, which is an important tumor
suppressor that negatively regulates the PI3K/Akt signaling
pathway (Li et al., 2011; Wang et al., 2018). PTEN binds to PI3K
subunits, inhibits the phosphorylation of PI3K and blocks signal
transduction by PI3K/AKT (Lee et al., 2018). Specifically, the
CyAFP interaction with PTEN activates the PI3K/AKT/mTOR
pathway, inhibiting autophagy and promoting the malignant
behavior of HCC by upregulating the expression of mTOR
protein. After CyAFP binds to PTEN, the regulatory function
of PTEN is lost, which leads to the continuous phosphorylation
of PI3K and activation of the downstream molecule, AKT,
thereby leading to the malignant transformation of liver cancer
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FIGURE 2 | A molecular structure model of the interaction of CyAFP with caspase-3. (A) Overall structure of CyAFP in complex with caspase-3. CyAFP (blue) binds
to caspase-3 (green) in the hydrophobic pocket. (B) Residues of CyAFP interact with caspase-3 (Lin et al., 2017).

cells (Li et al., 2011; Wang et al., 2018). Activated AKT
stimulates the mTOR transcription cofactor and the STAT3 and
HIF-1α transcription factors, which regulates the expression
of oncogenes, inhibits apoptosis and inhibits autophagy in
hepatoma cells as well as promotes the growth of cancer
cells (Missiaglia et al., 2010; Li et al., 2011; Lee et al., 2018;
Wang et al., 2018).

Cytoplasmic AFP binding to PTEN not only promotes the
growth of liver cancer cells but also enhances the drug resistance
of cancer cells. For example, CyAFP plays an important role in
promoting the drug resistance of HCC (Li et al., 2012, 2020). The
binding of CyAFP to PTEN activates the PI3K/AKT signaling
pathway and interferes with the activity of caspase-3 (Zhu et al.,
2015a,c), which leads to the drug resistance of hepatoma cells.
A high concentration of CyAFP in liver cancer cells not only
promotes growth but also results in a loss of sensitivity to drugs
in vivo (Cheng et al., 2013; Li et al., 2020). The 2018 EASL
clinical practice guidelines suggest that AFP can be used as an
indicator for the diagnosis and prognosis of advanced HCC
(European Association for the Study of the Liver, 2018). Many
HCC patients with elevated SeAFP or CyAFP expression may
have drug resistance and a poor prognosis.

DESIGN OF AIFS FROM AFP DOMAIN-3
AND APPLICATIONS FOR TARGETING
DELIVER DRUGS TO CANCER CELLS

Alpha fetoprotein has a molecular weight of 69 kDa and
consists of a single peptide chain with 590∼609 amino acids
and three domains. The N-terminal region of AFP, consisting
of residues 1∼230, belongs to domain-1. The middle region
of AFP, consisting of residues 230∼400, belongs to domain-2.
The C-terminal region of AFP, consisting of residues 400∼609,
belongs to domain-3. The overall AFP structure is V-shaped

(see Figures 3A,B). Domain-1 (yellow) and domain-3 (red) are
located on each side of the V-shape, and domain-2 (blue) is
located at the bottom of the V-shape. A hydrophobic pocket
is formed between domain-1 and domain-3, and it transports
nutrients, such as fatty acids (Mizejewski, 2001, 2015b, 2016;
Muehlemann et al., 2005).

Alpha fetoprotein domain-3 can be used to design peptide
AIFs as vectors to deliver drugs to kill cancer cells. For
example, GIP (Figures 4A,B) derived from domain-3 of the
AFP sequence has the potential for treating cancer. GIP-34
and its analogs inhibit the migration and metastasis of cancer
cells in both isograft and xenograft models. Additionally, GIP-
34 and its analogs have been proposed to serve as vectors to
deliver drugs to treat cancer, which will enhance the therapeutic
effect (Mizejewski and Butterstein, 2006; Mizejewski et al., 2010;
Mizejewski, 2011a). The anticancer mechanism of GIP may be
explained as follows: GIP gains cell entry by: (1) direct cell
membrane penetration; (2) channel formation; and/or (3) pore
formation into the cell cytoplasm. And the cytoplasmic GIP
influence enzyme activity which mediated by CyAFP during the
growth and metastasis of cancer cells (Figure 4C). Such as GIP
causes cancer cell growth suppression by inducing cell cycle
arrest in the G1 to S-phase by preventing cell cycle p27 and
p21 inhibitor degradations, thus halting cell cycle progression
(Mizejewski and Butterstein, 2006; Mizejewski et al., 2010;
Mizejewski, 2011a, 2013).

As mentioned previously, the AFP domain-3 can also be used
to design fragment AIFs conjugated with toxins. For example,
Yabbarov et al. applied a fragment AIF (rAFP3D, which is
designed from AFP domain-3) as a vector molecule conjugated to
doxorubicin (Dox) (shown in Figure 5A) and utilized the drug-
sensitive human ovarian adenocarcinoma SKOV3 cell line and
the drug-resistant human ovarian adenocarcinoma SKVLB cell
line to observe rAFP3D-Dox in these cells (Yabbarov et al., 2013).
These researchers found that in drug-sensitive SKOV3 cells,
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FIGURE 3 | V-shaped AFP and its hydrophobic pocket. (A) Overall V-shaped structure of AFP comprised of three domains. Domain-1 (yellow) and domain-3 (red)
are located on each side of the V-shape, and domain-2 (blue) is located at the bottom of the V-shape. (B) A hydrophobic pocket is formed between domain1 and
domain-3 (Muehlemann et al., 2005; Pak, 2014; Mizejewski, 2015b, 2016).

there was little difference in the accumulation of Dox in
the cytoplasm and nucleus when treated with free Dox or
rAFP3D-Dox, but in the drug-resistant SKVLB cells, there
was a significant increase in the accumulation of Dox in
the cytoplasm and nucleus when treated with the rAFP3D-
Dox compared to the control free Dox (Figure 5B). These
results show that rAFP3D conjugated with fluorescein or
Dox can be taken up by cancer cells, indicating that AFPR
mediates AFP-derived rAFP3D-fluorescein or rAFP3D-Dox
endocytosis into cancer cells and that rAFP3D-Dox induces
cytotoxicity, resulting in cancer cell destruction. Thus, these
studies indicate that rAFP3D can be applied in cancer treatment
(Yabbarov et al., 2013).

Fragment AIFs can be used to prevent the AFP-mediated
activation of proliferation-related signaling pathways to
prevent drug resistance. Fragment AIFs can be conjugated
with drugs to improve the sensitivity of cancer cells to agents
(Godovannyi et al., 2011; Pak, 2018b). During cancer therapy,
cancer cells may reduce their intake of anticancer drugs,
such as methotrexate, paclitaxel, anthracyclines, platinum
derivatives, 5-fluorouracil (5-FU), gemcitabine, capecitabine
and sorafenib (Godovannyi et al., 2011; Pak, 2014), which may
lead to decreased or inactivated drug sensitivity. However,
these drugs can be conjugated to fragmented AIFs. Because
fragment AIFs, such as rAFP3D, recognize and bind to AFP
receptors on the membranes of cancer cells, they transport
drugs into the cell through receptor-mediated endocytosis,
which increases the intake of drugs and enhances the
accumulation of drugs, allowing the drugs to exert their
cytotoxic effects. For example, rAFP3D conjugated to Dox
(rAFP3D-G2-Dox) increases the sensitivity of human ovarian
carcinoma cells, breast cancer cells and other cancer cells
to Dox (Godovannyi et al., 2011; Yabbarov et al., 2013;
Tcherkassova et al., 2017).

There are several ways to conjugate AIFs with drugs.
Figure 5A shows a method of rAFP3D conjugation to Dox
(rAFP3D-G2-Dox) (Yabbarov et al., 2013; Posypanova et al.,
2013). rAFP3D can also link nanoparticles and liposomes to
increase the effectiveness of targeted therapy (Figures 6A,B;
Godovannyi et al., 2011; Yabbarov et al., 2013). Other AIFs, such
as peptide AIFs, can conjugate or synergize with drugs to treat
cancer (Figures 6C,D). Recombinant AFP (a unique AIF) may be
designed to retain the hydrophobic pockets of AFP, which may
non-covalently bind to a variety of drugs and effectively release
them inside cancer cells (Figure 6E) (Mizejewski et al., 2010;
Arshad et al., 2015; Pak, 2018b).

APPLICATION OF AIF TO ENHANCE
IMMUNOTHERAPY OF CANCER

Cancer cells can be produced in vivo at any time, but the immune
system eliminates them quickly and maintains a healthy state.
Mutations make cancer cells different, and immune cells can
recognize cancer cells based on certain differences and attack
them (Marx, 2008; Mohme et al., 2017). However, cancer cells
can acquire skills to promote their own survival (DuPage et al.,
2012; Ribas, 2015; McGray and Bramson, 2017). For example,
cancer cells can mask proteins to prevent immune cells from
recognizing them or produce proteins that suppress immunity
to escape immunity without being attacked. Thus, cancer cells
can survive and proliferate in vivo. As cancer cells proliferate and
continue to evolve in vivo, it becomes increasingly difficult for the
immune system to attack them.

Natural killer (NK) cells, which have a natural immune
function, are the first-line defense system. NK cells can prevent
cancer cell growth, invasion and metastasis as well as attack
pathogens. NK cells constantly surveil and eliminate cells that
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FIGURE 4 | Peptide AIFs (GIP) derived from AFP domain-3 are taken up by cancer cells and prevent AFP-induced malignant functions. (A) Amino acid sequence of
GIP-34. (B) Amino acid sequence of GIP analogs (GIP-8, 12, 14 and 34) derived from the AFP domain-3 sequence (Mizejewski et al., 2010). (C) The anticancer
mechanism of GIP. GIP gains cell entry by: (1) direct cell membrane penetration; (2) channel formation; and/or (3) pore formation into the cell cytoplasm, and the
cytoplasmic GIP target the smooth endoplasmic reticulum (ER) surrounding the nucleus and influence enzyme activity during the growth and metastasis of cancer
cells (Mizejewski and Butterstein, 2006; Mizejewski et al., 2010; Mizejewski, 2011a).

pose a threat to health. Disruption of NK cell action can lead
to diseases or carcinogenesis (Shimasaki et al., 2020). Similarly,
immune T cells in vivo can monitor and eliminate cancer
cells. However, cancer cells can disguise themselves through
the production of myeloid-derived suppressor cells (MDSCs)

and evade the surveillance of the immune system (Dumitru
et al., 2012; Baniyash, 2016). MDSCs express proteins that
bind with proteins on immune cells and signal them to “turn
off” their immune functions (Bruno et al., 2019). MDSCs are
advanced immunosuppressive cells that are produced from the
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FIGURE 5 | Scheme of conjugate synthesis of rAFP3D-G2-Dox and the accumulation of doxorubicin (Dox) in the drug-sensitive human ovarian adenocarcinoma
SKOV3 cell line and the drug-resistant human ovarian adenocarcinoma SKVLB cell line. (A) rAFP3D conjugated to Dox (rAFP3D-G2-Dox). (B) Intracellular
distribution of rAFP3D-G2-Dox and free Dox in (A∼D) the drug-sensitive human ovarian adenocarcinoma SKOV3 cell line and (E∼H) the drug-resistant human
ovarian adenocarcinoma SKVLB cell line. Reprinted from Yabbarov et al. (2013) with permission from Elsevier.

bone marrow and transported to the primary lesion where
they accumulate and suppress acquired immunity and innate
immunity. In cancer, the immune system produces MDSCs
from the bone marrow, and they proliferate in the blood
and normal peripheral organs. Further, cancer cells develop
immune tolerance.

Targeting MDSCs is a new approach to immunotherapy that
can eliminate immune tolerance molecules, activate NK cells,
activate T cells and engage the immune system in recognizing and
destroying cancer cells through a positive response (Makkouk
and Weiner, 2015; Pak, 2017). Many lines of evidence have
indicated that AFP inhibits the immune response in patients
with cancers (Um et al., 2004; Meng et al., 2016; Suryatenggara
et al., 2017; Wang and Wang, 2018; Zheng et al., 2020). AFP
inhibits the activity of NK cells and T cells by activating AFPR-
positive MDSCs and promoting cancer development (Belyaev
et al., 2018; Zamorina et al., 2018). Therefore, vaccines against
AFP inhibit the growth of AFP receptor-positive cancer cells
and prolong patient survival time (Lan et al., 2007). One study
has reported that inoculation of the placental carcinoembryonic-
derived proteins, AFP and AFPR, causes MDSCs to become
exhausted, resulting in the elimination of maternal-fetal and host-
tumor immune tolerance (Mizejewski, 2018; Pak, 2018b). Thus,
an AFP vaccine promotes a longer survival of advanced patients
with cancer. In some cancers, full-length glycosylated AFP
has immunosuppressive effects by stimulating cancer growth
and directly activating MDSCs (Pak, 2018a,b). Moreover, tAFP

significantly inhibits dendritic cell (DC) differentiation, thereby
playing a critical role in immunosuppression (Pardee et al., 2014;
Li et al., 2019). Therefore, it is more suitable to use AIF than tAFP
for manufacturing vaccines to prevent the initiation of cancer.

Currently, the main research direction of immunotherapy
involves immune checkpoint inhibitors as represented by
treatment with PD-1/PD-L1 inhibitors. PD-1/PD-L1 inhibitors
prevent PD-L1 from binding to PD-1 on immune cells, relieving
the inhibition of cancer immunosuppression and stimulating
immune cells to attack cancer cells (Chen and Han, 2015; Postow
et al., 2015; Sun et al., 2018; Andrews et al., 2019; Hayashi and
Nakagawa, 2020). In patients with HCC, high expression of both
PD-L1 and HIF-1α is significantly associated with high AFP
levels (Dai et al., 2018; Liu G. M. et al., 2019), indicating that
the expression of AFP is closely related to the expression of
PD-L1 in HCC cells. The expression of PD-L1 is regulated by
the HIF-1α transcription factor (Koh et al., 2015; Chen et al.,
2016; Zerdes et al., 2018). Researchers have previously reported
that AFP activates the PI3K/AKT signaling pathway to stimulate
HIF-1α, which regulates the expression of some oncogenes (Zhu
et al., 2015a,b), indicating that AFP has a biological role in
stimulating the expression of PD-L1 in cancer cells. In HCC
cells, the persistent expression of PD-L1 in HCC cells is a crucial
factor for resisting immune checkpoint inhibitors (Liu Z. et al.,
2019; Wu et al., 2019). We speculate that high AFP expression
in HCC cells promotes HIF-1α to stimulate the expression of
PD-L1, which plays a pivotal role in HCC cells resisting immune
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FIGURE 6 | AIFs (fragment AIFs, peptide AIFs and recombinant AFP) conjugate, synergize and complex with drugs. (A) Fragment AIF conjugates with drugs
(Posypanova et al., 2013; Yabbarov et al., 2013). (B) Fragment AIFs conjugate nanoparticles with drugs (Godovannyi et al., 2011; Yabbarov et al., 2013). (C) Peptide
AIF conjugates with drugs (Mizejewski et al., 2010). (D) Peptide AIF synergizes with drugs (Mizejewski et al., 2010). (E) Recombinant AFP complex with drugs
(Arshad et al., 2015; Pak, 2018b).

checkpoint inhibitors. Therefore, AIFs can be used to carry PD-
1/PD-L1 inhibitors because AIFs do not induce the malignant
behavior caused by tAFP. AIFs exhaust MDSCs and cancer cells,
and PD-1/PD-L1 inhibitors reactivate the function of T cells,
which leads to the activation of NK cells, restoring their normal
function of recognizing cancer cells and destroying them.

In addition, synergistic immunotherapy with chemotherapy
is better for treating cancer. AFP activates MDSCs and inhibits
various non-specific immune reactions (Pardee et al., 2014;
Belyaev et al., 2018). The structure of AFP-binding receptors
is still unclear, but MDSCs and cancer cells have ‘scavenger’
receptors that are similar to AFP-binding receptors and are
critical for receptor-mediated endocytosis. The receptors take
up AFP and provide nutrients to cancer cells and bone marrow
mesenchymal stem cells through shuttling; thus, AFP delivery
of drugs instead of nutrients kills MDSCs and cancer cells. The
use of AIFs combined with toxicity-inducing drugs is a new

treatment that integrates chemotherapy and immunotherapy.
AIFs can deplete MDSCs, and inhibiting fragments loaded with
toxins can destroy cancer cells. For example, AIFs conjugated
with paclitaxel, 5-Fu or other chemotherapeutic drugs not
only are used as toxins to kill cancer cells but also serve
as immunomodulators. AIFs conjugated with drugs selectively
reduce the immunosuppression of MDSCs and destroy cancer
cells to improve the treatment of cancers.

The conjugation of AIFs with drugs is a new type of treatment
for cancer. It not only activates T cells and kills cancer cells by
drugs but also depletes MDSCs, activates NK cells and destroys
cancer stem and metastatic cells through AIFs. This combination
also activates T cells through drug action. Conjugating AIFs
and drugs is a new approach to immunotherapy and targeted
chemotherapy, and this combination will play an important role
in future cancer therapies (Mizejewski, 2011a; Pak, 2014, 2018b;
Llovet et al., 2018; Pinter and Peck-Radosavljevic, 2018).
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FORECASTS OF THE DESIGN AND
APPLICATION OF AIFS IN TARGETING
THERAPEUTICS OF CANCERS

Cancer cells with multi-drug resistance (MDR) traits resist
chemotherapy, and they express PD-L1 to suppress the immune
response and escape immune surveillance, preventing the attack
of immune cells (Ribas, 2015; Berraondo et al., 2016; Chen and
Mellman, 2017; O’Donnell et al., 2019). tAFP is a crucial molecule
for promoting the malignant behaviors of HCC cells, primarily by
activating growth signaling pathways. Other cancer cells also take
up AFP to activate malignant signaling pathways to acquire drug
resistance, contributing to their survival in vivo. tAFP also has the
capacity to impair immune cells (Bei et al., 1999; Pardee et al.,
2014; Vujanovic et al., 2017; Santos et al., 2019) and stimulate
the malignant behaviors of cancer cells. Therefore, it will better
to design AIFs to prevent the malignant behaviors mediated by
tAFP in cancer cells.

In previous studies, we found that the cytoplasmic tAFP
(CyAFP) binds to caspase-3, ATRA, PTEN and other proteins (Li
et al., 2002b, 2009a, 2011, 2012; Zhu et al., 2015c; Lin et al., 2017;
Wang et al., 2018; Zhang et al., 2020) to affect the transduction
of apoptosis- or proliferation-related signaling pathways. CyAFP
binding to caspase-3 is shown in Figure 2. In particular, we found
that the CyAFP domain-3 residues, K-558, S-445, R-452 and its
adjacent residue R-214, directly interact with caspase-3 loop4
(L4) residues in the cytoplasm (Lin et al., 2017). Through these
binding sites, a peptide or fragment AIF can be precisely designed
as a ligand decoy, which will prevent the binding of CyAFP and
caspase-3, thereby promoting cell apoptosis. Similarly, we found
that the CyAFP domain-3 residues, M490 and D529, interact with
PTEN (Zhu et al., 2015c). Based on the binding sites, relevant
AFP-blocking peptides can be designed to inhibit AFP binding
to PTEN, which will prevent the growth of cancer cells. In
addition, cancer therapy realized by targeting AFP may overcome
the problem of MDR. MDR is a major problem that vexes
clinical oncologists. Although the MDR mechanism in cancer is
complicated, studies have found that AFP is involved in MDR by
inhibiting the function of PTEN and activating the PI3K/AKT
signaling pathway, which leads to the inhibition of autophagy,
induction of metabolic reprogramming of cancer stem cells,
inhibition of the expression of apoptosis-related enzymes and
resistance to tumor cell apoptosis, thereby enabling cancer cells
to acquire a drug-resistant phenotype (Kang-Park et al., 2006;
Fruman et al., 2017; Zhu et al., 2017; Janku et al., 2018; Hoxhaj
and Manning, 2020).

Cytoplasmic tAFP domain-3 (CyAFP-3D) is a pivotal site for
inhibiting PTEN and caspase-3 (Li et al., 2009a; Mizejewski,
2015b; Zhu et al., 2015c; Lin et al., 2017; Wang et al., 2018;
Li et al., 2020), leading to MDR. Therefore, CyAFP-3D can be
used to design AIF for interacting with signaling molecules that
play crucial roles in inhibiting immune responses and cancer
cell growth, drug resistance and metastasis. The designed AIF
can bind to intracellular caspase-3, PTEN and other signaling
molecules to prevent AFP from binding to them and activating
malignant signaling pathways.

Cytoplasmic AFP domain-3 can also be used to design AIFs
to deliver drugs to target cancer cells. Because some cancer cells
and immune suppressive cells have high expression of AFPR vs
normal cells, AIF will bind to AFPR and transport drugs into
cancer cells and immune suppressive cells, thereby resulting in
low cytotoxicity in normal cells. Therefore, a precisely designed
AIF can be used to block AFP-stimulated malignant behavior and
to carry anticancer drugs to selectively treat cancers (Godovannyi
et al., 2011; Posypanova et al., 2013; Yabbarov et al., 2013;
Tcherkassova et al., 2017).

Alpha fetoprotein-inhibiting fragments also competes with
CyAFP in immune cells to decrease the immune suppression
mediated by CyAFP. Additionally, AIF can be designed to block
CyAFP from activating the transcriptional activity of HIF-1α,
which regulates the expression of PD-L1 in cancer cells, thus
contributing to immune cells attacking cancer cells.

CONCLUSION AND FUTURE
PERSPECTIVES

Alpha fetoprotein-inhibiting fragments selectively deliver
antineoplastic agents to cancer cells to inhibit the malignant
behaviors mediated by CyAFP, representing a precise design
for targeting and killing cancer cells. Moreover, blocking
the immunosuppressive effect of CyAFP is a crucial issue
for stimulating the immune response to cancer cells. CyAFP
promotes the malignant behaviors of cancer cells and impairs
the function of immune cells. Domain-3 of CyAFP can be
applied to precisely design AIFs to carry anticancer drugs to
selectively accumulate them in cancer or immunosuppressive
cells. Precisely designed AIFs not only deliver drugs into cancer
cells but also compete with CyAFP to bind to various signaling
molecules, inhibiting the role of CyAFP in promoting the
malignant behaviors of cancer cells and blocking its effect
on immunosuppression. These AIFs can be combined with
immunotherapy drugs to strengthen the therapeutic effect. In the
future, computer simulation screening will be used to establish
a database of AIFs that are effective in treating cancer and a
database of drugs that can be conjugated with AIFs. Therefore,
the application of AIFs will be a precise, readily available strategy
for targeted treatment of cancers in the future.
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