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Abstract

Background

The International Study of Asthma and Allergies in Children (ISAAC) Wheezing Module is

commonly used to characterize pediatric asthma in epidemiological studies, including nearly

all airway cohorts participating in the Environmental Influences on Child Health Outcomes

(ECHO) consortium. However, there is no consensus model for operationalizing wheezing

severity with this instrument in explanatory research studies. Severity is typically measured

using coarsely-defined categorical variables, reducing power and potentially underestimat-

ing etiological associations. More precise measurement approaches could improve testing

of etiological theories of wheezing illness.

Methods

We evaluated a continuous latent variable model of pediatric wheezing severity based on

four ISAAC Wheezing Module items. Analyses included subgroups of children from three

independent cohorts whose parents reported past wheezing: infants ages 0–2 in the

INSPIRE birth cohort study (Cohort 1; n = 657), 6-7-year-old North American children from

Phase One of the ISAAC study (Cohort 2; n = 2,765), and 5-6-year-old children in the

EHAAS birth cohort study (Cohort 3; n = 102). Models were estimated using structural equa-

tion modeling.

Results

In all cohorts, covariance patterns implied by the latent variable model were consistent with

the observed data, as indicated by non-significant χ2 goodness of fit tests (no evidence of
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model misspecification). Cohort 1 analyses showed that the latent factor structure was sta-

ble across time points and child sexes. In both cohorts 1 and 3, the latent wheezing severity

variable was prospectively associated with wheeze-related clinical outcomes, including phy-

sician asthma diagnosis, acute corticosteroid use, and wheeze-related outpatient medical

visits when adjusting for confounders

Conclusion

We developed an easily applicable continuous latent variable model of pediatric wheezing

severity based on items from the well-validated ISAAC Wheezing Module. This model pro-

spectively associates with asthma morbidity, as demonstrated in two ECHO birth cohort

studies, and provides a more statistically powerful method of testing etiologic hypotheses of

childhood wheezing illness and asthma.

Introduction

Background

Asthma is among the most common and costly diseases affecting childhood [1,2]. Large epidemi-

ological studies aimed at advancing understanding of the development and sequelae of asthma

often rely on brief questionnaires that can be broadly implemented to characterize symptom

severity [3,4]. Investigators for the International Study of Asthma and Allergies in Children

(ISAAC) [3] developed and validated a research questionnaire assessing wheezing symptoms [3,5]

that has since been used worldwide to assess the prevalence and etiology of asthma [4,6–10]. The

ISAAC Wheezing Module (ISAAC-WM) includes eight items, four specifically focused on wheez-

ing, either parent-reported for younger children or self-reported by older children [3]. The ques-

tionnaire and manual are available at http://isaac.auckland.ac.nz/story/methods/methods.php.

There is no consensus method for operationalizing wheezing severity using the ISAAC-WM.

Respondents endorsing past-year wheezing complete three items assessing the frequency of

wheezing episodes and negative sequelae in the past 12 months. Additionally, all respondents

report on whether or not their child experienced exercise-induced wheezing [3]. Researchers

typically stratify children into discrete severity groups based on frequency of wheezing episodes

(item 3), wheeze-related sleep disturbance (item 4), wheeze-related speech disturbance (item 5)

[7], exercise-induced wheezing (item 7), or a combination of these items [11].

Discrete severity variables are suboptimal in explanatory research as they artificially reduce

variability, grouping individuals with truly differing severity levels into the same data bins

[12]. This reduces power, likely resulting in underestimates of etiological associations and sub-

optimal theory testing [12,13]. A number of research groups have used exploratory techniques,

like principal components [14,15] or latent factor approaches [16,17], to develop continuous

asthma severity measures [18]. To our knowledge, however, no studies have tested the plausi-

bility of these models using confirmatory analytic techniques. Additionally, we know of no

studies, either exploratory or confirmatory, evaluating the ability of the ISAAC-WM to capture

pediatric wheezing severity on a continuous scale for research purposes.

Purpose

There are a number of large epidemiological studies evaluating pediatric wheezing illness

using the ISAAC-WM [4,8,19,20], including nearly all airway cohorts participating in the
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Environmental Influences on Child Health Outcomes (ECHO) initiative [21]. ECHO is an

NIH-funded consortium of previously established birth cohorts aimed at understanding the

modifiable environmental etiologies of four major diseases, including asthma [21]. These stud-

ies contain rich data (e.g., early life exposures and wheeze-related clinical outcomes), providing

opportunities to test etiological models of wheezing illness development and outcomes. To

conduct strong tests of theory, however, it is critical to measure wheezing severity with optimal

precision. The purpose of this study is to demonstrate how studies using the ISAAC-WM can

use structural equation modeling (SEM) to estimate wheezing severity as a continuous latent

variable. Using a continuous latent variable approach, rather than discrete severity variables,

may lead to more precise measurement and stronger tests of etiological theory [22] in studies

using the ISAAC-WM. This, in turn, could lead to improved understanding of pediatric

wheezing illness and strengthen prevention and early intervention efforts.

SEM is a flexible multivariate statistical approach that supports precise specification of

theoretical models and estimation of latent variables representing constructs that we cannot

measure directly [22–25]. Latent factors capture shared variance among multiple measured

variables (factor indicators) believed to have a common underlying cause [25,26]. In this study,

we conceptualize wheezing illness as a latent (unobserved) variable that has measurable conse-

quences (e.g., wheezing attacks, disturbed sleep). The four wheezing-focused ISAAC-WM

items capture and quantify these observable manifestations of wheezing illness. If we assume

that wheezing illness (the latent construct) is driving observed correlations among the ISAAC-

WM wheezing items, then their shared variance can be used to estimate wheezing illness as a

continuous latent variable. Modeling associations with well-specified latent variables generally

results in increased statistical power [22,27].

We evaluated our proposed model of wheezing illness severity in three independent

cohorts. Two of these cohorts are part of the Children’s Respiratory Research and Environ-

ment Workgroup (CREW) within the ECHO initiative [21], and the third is a publicly avail-

able data set from the ISAAC Phase I study [6]. Nearly all ECHO airway cohorts have used the

ISAAC-WM, thus a more powerful approach to estimating severity in explanatory research

studies with this instrument may be of broad interest. We address whether the proposed latent

factor model of pediatric wheezing severity is:

1. consistent with observed data in all three cohorts

2. positively and concurrently associated with established markers of wheezing illness (con-

vergent validity)

3. stable over repeated time points (longitudinal invariance) and across child sexes

4. positively and prospectively associated with wheeze-related clinical outcomes (predictive

validity)

A valid latent variable approach to measuring wheezing severity with the ISAAC-WM may

facilitate stronger tests of etiological theory and advancements in our understanding of pediat-

ric wheezing illness.

Materials and methods

Data sources and measures

Table 1 provides demographic characteristics for each cohort.

Cohort 1. INSPIRE birth cohort study. The Infant Susceptibility to Pulmonary Infec-

tions and Asthma following RSV Exposure (INSPIRE) study is an ongoing population-based

birth cohort that is part of the ECHO/CREW consortium, evaluating the role of early life
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respiratory infection in pediatric asthma [19,28]. The study enrolled term and otherwise

healthy infants (N = 1,951) in Middle Tennessee. The Vanderbilt University Institutional

Review Board (IRB) approved all study procedures. Wheezing symptoms are assessed annually

using the parent-reported ISAAC-WM [19]. Although all participants complete the ISAAC-

WM, given our focus on wheezing severity, we included only children whose parents reported

wheezing in the first two years of life (n = 657).

At both the one- and two-year assessments, parents reported whether or not their children

used asthma medications and/or had been hospitalized for respiratory illnesses in the prior

year. With regard to asthma medications, parents were asked explicitly if their children had

been treated with any of the following: Budesonide, Fluticasone, Beclomethasone, Montelu-

kast, Albuterol, Budesonide-Salmeterol, Fluticasone-Salmeterol, Prednisone/Prednisolone,

Dexamethasone, or any other asthma medications. At the year-three assessment, parents

reported several wheeze-related clinical outcomes: physician diagnosis of asthma at any point

in life (Absent or Present), past-year treatment of asthma symptoms with any form of cortico-

steroid (Never, 1–3 times, 4+ times), and past-year frequency of wheeze-related healthcare visits

(None, 1–3, 4+). When asking parents about corticosteroid use, no distinction was made

between parenteral steroids or oral corticosteroids in the questioning.

Cohort 2. ISAAC Phase 1 study. Cohort 2 analyses used publicly available data from the

ISAAC Study Phase I (http://isaac.auckland.ac.nz/phases/phaseone/results/resultsIndv.php) to

Table 1. Participant characteristics for all cohorts.

n Proportion

Cohort 1: INSPIRE (n = 657)

Maternal History of Asthma 154 0.23

Child RSV+ Molecular Diagnostic Test 66 0.10

Maternal Prenatal Cigarette Smoking (Any) 139 0.21

Medicaid Insurance at Enrollment 377 0.57

Child Cesarean Birth Delivery 224 0.34

Child Sex: Female 250 0.38

Mother Married at Enrollment 368 0.56

Child Race

African American 167 0.25

Asian 10 0.02

Native American/Native Alaskan 6 0.01

Native Hawaiian/Pacific Islander 2 0.003

White 510 0.78

Other Race 37 0.06

Child Ethnicity: Hispanic/Latino 58 0.09

Cohort 2: ISAAC Phase 1 (n = 2,765)

Child Sex: Female 1,193 0.43

Cohort 3: EHAAS (n = 102)

Child Sex: Female 34 0.33

Child Race/Ethnicity

African American 10 0.10

Asian 7 0.07

Hispanic/Latino 4 0.04

White 80 0.78

Other Race 1 0.01

https://doi.org/10.1371/journal.pone.0194739.t001
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evaluate whether the covariance patterns implied by the latent wheezing severity model estab-

lished in Cohort 1 were consistent with observed covariance patterns in an independent dataset.

Detailed study procedures are available in prior publications [3,5]. ISAAC Phase I included two

cohorts of children (ages 6–7 and ages 13–14) from 38 countries. We limited analyses to 6-7-year-

old children from the three North American countries: Canada, U.S.A., and Barbados. This was

felt to be most representative of the ECHO/CREW consortium sites. Analyses included the subset

of children who, by parent report, had ever had wheezing episodes (n = 2,765).

Cohort 3. EHAAS birth cohort. Cohort 3 analyses evaluated whether the latent wheezing

severity model established with Cohort 1 was consistent with observed data patterns in the

Epidemiology of Home Allergens and Asthma Study (EHAAS) study, and whether the latent

factor was prospectively associated with wheezing morbidity. EHAAS is a prospective birth

cohort study that is also part of the ECHO/CREW consortium (N = 505) [20,29–31]. Families

from a Boston hospital were eligible if the biological mother was 18+ years old at enrollment,

at least one biological parent had a history of allergies or asthma, infants were born term with-

out major congenital anomalies and were not admitted to the neonatal intensive care unit.

Study procedures were approved by the Brigham and Women’s Hospital IRB. We evaluated

ISAAC-WM data collected when children were 5 and 6 years old. Analyses were limited to the

subsample of children whose parents reported wheezing episodes at some point during the

two-year follow-up window (n = 102). Clinical outcomes at age 7 included whether or not the

child had: (1) a physician diagnosis of asthma, (2) any prior-year wheezing-related medical vis-

its, and (3) any prior-year wheezing-related urgent visits to a healthcare provider’s office or

emergency department.

Statistical analyses

Structural equation modeling (SEM) was the primary analytic strategy with parameters esti-

mated via robust weighted least squares [32]. Fig 1A shows the hypothesized latent wheezing

severity model. Associations between the latent wheezing severity variable and the ordinal

ISAAC-WM severity items were estimated using a latent response variable framework

[22,32,33], in which ordered categorical outcomes (y1, y2, y3, y4) are conceptualized as coarse

approximations of underlying continuous variables (y1
�, y2

�, y3
�, y4

�). The models used probit

regressions to estimate c-1 thresholds (τ) for ordinal outcomes, where c is the number of

ordered levels, dividing the underlying continuous distributions into discrete categories [32].

Analyses were conducted using the lavaan package version 0.5–22 [34] in R [35] and Mplus

version 7.4 [36]. Missing data in the response variables were presumed to be missing at ran-

dom conditional on the model covariates [37].

The ISAAC Phase 1 data (Cohort 2) had a complex structure with children nested within

schools (j = 282) within study sites (k = 3). We used multilevel SEM [38,39] to evaluate the

latent wheezing severity factor model while accounting for clustering (dependence) within

schools (Fig 1B). On the within-school level, the wheezing severity model was identical to the

model specified in Cohort 1. On the between-schools level, we specified a saturated model

where all indicator variances and covariances were freely estimated and the indicators were

regressed on dummy variables coding study site. This approach accounts for between-school

and between-site variability, but presumes that wheezing severity is a meaningful construct

only on the within-schools level of analysis; that is, wheezing severity is only intended to be

measured as a child-level characteristic, not a school-level characteristic [40].

In the Cohort 3 analyses, to avoid sparse cells for the ISAAC-WM indicators, data for each

of the ISAAC-WM items were aggregated across the age-5 and age-6 assessments (Table 2).

These aggregated items were used in all models.

A latent variable model of pediatric wheezing severity
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Assessing model adequacy. In all three cohorts, the degree of discrepancy between pro-

posed models and observed data was assessed using a mean- and variance-adjusted χ2 Good-

ness of Fit (χ2
GOF) test [32,37,41,42]. Significant χ2

GOF values lead to a rejection of the null

hypothesis of a perfect correspondence between the model and the observed data [22]. We

reported two additional indices of model adequacy: the root mean error of approximation

(RMSEA) [43,44] and comparative fit index (CFI) [45]. The RMSEA provides an estimate of

the amount of misspecification per model degree of freedom with a 90% confidence interval

(CI), whereas the CFI compares the hypothesized model to a simpler baseline (null) model,

penalizing the hypothesized model for each estimated parameter [46]. Although there are no

perfect cutoff values for these indices [47], RMSEA values< .05 and CFI values� .95 are gen-

erally considered to be indicative of a desirable model [48].

It is noteworthy that, owing to the relatively small sample size, Study 3 models were under-

powered to detect significant model misspecification with the χ2
GOF test. Consequently, we

relied on data from studies 1 and 2 to assess whether our proposed latent wheezing severity

model was consistent with the observed data, whereas Study 3 analyses were focused on evalu-

ating whether the latent wheezing severity variable was prospectively associated with estab-

lished markers of wheezing illness severity (predictive validity).

Convergent validity. Using Cohort 1 data at both the year-one and year-two assessments,

we specified models evaluating concurrent associations between the latent wheezing severity

factor and parent-reported markers of wheezing illness: wheezing medication use (Any vs.

None) and respiratory hospitalizations (Any vs. None). These associations were adjusted for

seven potential confounders representing characteristics that have been linked to asthma risk

in prior studies [49]: maternal asthma history [50] (Absent vs. Present), maternal prenatal ciga-

rette use [51] (None vs. Any), maternal marital status [52] (Married vs. Single), insurance at

Fig 1. Latent variable model of wheezing illness severity. Panel a shows the latent wheezing severity model used in

cohorts 1 and 3. The severity of wheezing illness is estimated as a unidimensional latent variable (η1) with four

reflective ordinal indicators: wheezing episode frequency (y1), frequency of wheeze-related sleep disturbance (y2),

wheeze-related speech disturbance (y3), and exercise-induced wheeze (y4). The ordinal indicators are presumed to be

coarse measurements of underlying continuous variables (y1
�-y4

�). Panel b shows the multilevel wheezing severity

model used in the Cohort 2 analyses. The within-schools level of the model is identical to panel a. The between-schools

level of the model accounts for non-independence due to clustering within schools and study sites. Estimated

parameters are depicted in red.

https://doi.org/10.1371/journal.pone.0194739.g001
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enrollment as a proxy for socioeconomic status [53] (Private vs. Medicaid), birth method [54]

(Vaginal vs. Cesarean), child sex [55], and child race [55] (African American, all other race

groups, and white race [reference group]). Both the markers of wheezing illness severity (valid-

ity outcomes) and the latent wheezing factor were regressed on these seven asthma risk

factors.

Latent factor stability. Using Cohort 1 data, we evaluated whether our latent wheezing

severity model was stable across the one- and two-year follow-ups using procedures described

in Liu et al. (2016) [56]. An unstable factor structure indicates that the latent construct cannot

be measured reliably in the same way across repeated assessments, making it challenging to

interpret change over time [56–58]. Four competing models, representing differing degrees of

instability, were specified and compared using scaled χ2 likelihood ratio tests [59]. Significant

χ2 tests are not desirable in this context because they indicate that models allowing for instabil-

ity in the factor structure fit better than more restrictive models that assume stability. The

most desirable model allows mean levels of wheezing severity (the latent factor) to change over

Table 2. Cohort 3 EHAAS study: Derived wheezing severity items characterizing the severity of wheeze across the

60- and 72-month assessments combined.

ISAAC-WM WHEEZING ITEM DERIVED SEVERITY LEVELS COMBINING ACROSS

THE 60- AND 72-MONTH ASSESSSMENTS

Item 3. Number of wheezing attacks in past 12 months Very infrequent (value = 0)

• None (60-Month) and 1–3 attacks (72-Month)

• 1–3 attacks (60-Month) and None (72-Month)

Infrequent (value = 1)

• 1–3 attacks (60-Month) and 1–3 attacks (72-Month)

• None (60-Month) and 4–12 attacks (72-Month)

• 4–12 attacks (60-Month) and None (72-Month)

Frequent (value = 2)

• 1–3 attacks (60-Month) and 4–12 attacks (72-Month)

• 4–12 attacks (60-Month) and 1–3 attacks (72-Month)

• None (60-Month) and 13+ attacks (72-Month)

• 13+ attacks (60-Month) and None (72-Month)

Very frequent (value = 3)

• 4–12 attacks (60-Month) and 4–12 attacks
(72-Month)

• 4–12 attacks (60-Month) and 13+ attacks (72-Month)

• 13+ attacks (60-Month) and 4–12 attacks (72-Month)

• 13+ attacks (60-Month) and 13+ attacks (72-Month)

Item 4. Child’s sleep disturbed due to wheezing Never (value = 0)

• Never (60-Month) and Never (72-Month)

Infrequent (value = 1)

• Never (60-Month) and < 1 night/week (72-Month)

• < 1 night/week (60-Month) and Never (72-Month)

Frequent (value = 2)

• Never (60-Month) and 1+ nights/week (72-Month)

• 1+ nights/week (60-Month) and Never (72-Month)

• <1 night/week (60-Month) and <1 night/week
(72-Month)

• <1 night/week (60-Month) and 1+ nights/week
(72-Month)

• 1+ nights/week (60-Month) and <1 night/week
(72-Month)

• 1+ nights/week (60-Month) and 1+ nights/week
(72-Month)

Item 5. Wheezing ever severe enough to child’s speech

to only one or two words at a time between breaths

Absent at both assessments (value = 0)

Present at either or both assessments (value = 1)

Item 7. Wheezing or whistling in chest during or after

exercise

Absent at both assessments (value = 0)

Present at either or both assessments (value = 1)

https://doi.org/10.1371/journal.pone.0194739.t002
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time, but holds the measurement of wheezing severity (factor loadings, thresholds, and resid-

ual variances) constant over time. In all models, the latent wheezing factor was regressed on

the seven asthma risk factors described above, with associations between risk factors and the

latent factor permitted to vary freely across time points. We used similar procedures [60] to

test whether the latent factor measurement was consistent across sexes (female vs. male chil-

dren) [61].

Predictive validity. Using Cohort 1 data, we specified longitudinal models evaluating

whether the latent wheezing illness factor at the two-year assessment was prospectively associ-

ated with year-three clinical outcomes, including physician asthma diagnosis, acute corticoste-

roid use, and wheeze-related outpatient visits. These prospective associations were adjusted for

all seven asthma risk factors described above. Using Cohort 3 data, we evaluated whether the

latent wheezing severity variable measured at ages 5–6 was prospectively associated with

wheeze-related outcomes at age 7, adjusting for child sex and race.

Comparison to discrete severity models. Using data from Cohort 1, we gauged whether

the latent factor approach to estimating wheezing severity as a continuous construct had

greater predictive utility relative to a more traditional approach with a discrete severity vari-

able. To accomplish this, we first derived a five-level ordinal wheezing severity variable indicat-

ing the number of ISAAC-WM wheezing items endorsed (i.e., present to some degree) at the

year-two assessment (None, 1, 2, 3, 4). We then reran the latent variable predictive validity

models described in the prior section, using the same covariates and estimation procedures,

but replacing the latent wheezing severity factor with the ordinal severity variable. This allowed

us to evaluate whether the latent variable modeling approach yielded stronger associations

with the future clinical outcomes (physician asthma diagnosis, acute corticosteroid use, and

wheeze-related outpatient visits) compared to the more traditional discrete severity approach.

Results

Table 3 provides descriptive statistics for the ISAAC-WM severity items for all three cohorts.

Separate online appendixes for Cohort 1 (S1 Appendix), Cohort 2 (S2 Appendix), and Cohort

3 (S3 Appendix) are available providing model code. For cohorts 1 and 3, we provide sufficient

summary statistics (covariance matrixes, weighted least squares weight vector, asymptotic vari-

ance matrix, and sample size) to allow others to reproduce our models (S1 File).

Model fit

Table 4 provides information about model adequacy for all models. Model numbers are pro-

vided in the table and are referenced in the text below.

Cohort 1. INSPIRE birth cohort. The unidimensional latent factor model of wheezing ill-

ness severity (Fig 1A) provided a close fit to the observed data at both the one- and two-year

assessments, as indicated by non-significant χ2
GOF tests (Table 4, models 1.1 and 1.2). At both

assessments, there were strong positive associations between the latent wheezing factor and

the ISAAC-WM wheezing indicators (S1 Fig). Consistent with prior research using a different

instrument [16], information curves showed that levels of wheezing illness severity factor

could be estimated with greatest precision at moderate to high levels of illness severity: The

latent factor was less informative for children with mild wheezing symptoms (S2 Fig).

Cohort 2. ISAAC Phase 1. Consistent with Cohort 1 findings, the multilevel SEM model

evaluating the wheezing severity as a unidimensional construct yielded a non-significant

χ2
GOF test (Table 4, Model 2.1), indicating a close fit to the data. Associations between the

latent factor and all four indicators were positive and significant on the within-school level of

analysis.
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Cohort 3. EHAAS birth cohort. Consistent with findings from cohorts 1 and 2, the hypoth-

esized unidimensional factor model yielded a non-significant w2
GOF test (Table 4, Model 3.1). Thus,

there was no evidence of model misspecification. This finding should be interpreted cautiously,

Table 3. Descriptive statistics for ISAAC-wheezing module severity items.

LEVELS COUNT PROP COUNT PROP

Cohort 1: INSPIRE 1st Year of Life 2nd Year of Life

# of Wheeze Episodes Never 205 0.31 156 0.24

1 to 3 328 0.50 274 0.42

4 to 12 73 0.11 76 0.12

13+ 28 0.04 17 0.03

Missing 23 0.04 134 0.20

Wheeze Disturbs Sleep Never 455 0.69 336 0.51

< 1 night/week 83 0.13 93 0.14

1+ nights/week 96 0.15 94 0.14

Missing 23 0.04 134 0.20

Wheeze Disturbs Speech Present 116 0.18 100 0.15

Missing 24 0.04 135 0.21

Exercise-Induced Wheeze Present 67 0.10 76 0.12

Missing 14 0.02 33 0.05

Cohort 2: ISAAC Phase 1

# of Wheeze Episodes Never 1,173 0.42

1 to 3 1,074 0.39

4 to 12 330 0.12

13+ 107 0.04

Missing 81 0.03

Wheeze Disturbs Sleep Never 1,793 0.65

< 1 night/week 641 0.23

1+ nights/week 228 0.08

Missing 103 0.04

Wheeze Disturbs Speech Present 259 0.09

Missing 91 0.03

Exercise-Induced Wheeze Present 714 0.26

Missing 119 0.04

Cohort 3: EHAAS

# of Wheeze Episodes Very Infrequent 31 0.30

Infrequent 39 0.38

Frequent 12 0.12

Very frequent 16 0.16

Missing 4 0.04

Wheeze Disturbs Sleep Never 55 0.54

Infrequent 23 0.23

Frequent 21 0.21

Missing 3 0.03

Wheeze Disturbs Speech Present 11 0.11

Missing 3 0.03

Exercise-Induced Wheeze Present 28 0.27

Missing 1 0.01

PROP = proportion of the total sample.

https://doi.org/10.1371/journal.pone.0194739.t003
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however, as the model was underpowered to detect a significant discrepancy between the model

and data because of the relatively small sample size in the Cohort 3 analyses.

Convergent validity

Using Cohort 1 data at both the one- and two-year assessments, the wheezing illness factor

was positively associated with hospitalization for respiratory illness (Table 5, models 1.3 and

Table 4. Indices of model adequacy.

χ2
GOF RMSEA CFI Model Description

Cohort 1: INSPIRE Birth Cohort

Est df p Est 90% CI Est

Model 1.1 2.35 2 .31 .02 .00, .08 1.0 Y1: Wheeze severity model

Model 1.2 3.76 2 .15 .04 .00, .10 1.0 Y2: Wheeze severity model

Model 1.3 27.19 29 .56 .00 .00, .03 1.0 Y1: Concurrent association with respiratory hospital visit

Model 1.4 31.08 29 .36 .01 .00, .03 .97 Y2: Concurrent association with respiratory hospital visit

Model 1.5 26.75 29 .59 .00 .00, .03 1.0 Y1: Concurrent association with asthma medication

Model 1.6 29.47 29 .44 .01 .00, .03 1.0 Y2: Concurrent association with asthma medication

Model 1.7 29.48 29 .44 .01 .00, .03 .99 Prospective associations with Y3 asthma diagnosis

Model 1.8 29.28 29 .45 .00 .00, .03 1.0 Prospective associations with Y3 corticosteroids

Model 1.9 29.01 29 .46 .00 .00, .03 1.0 Prospective associations with Y3 wheeze medical visits

Cohort 2: ISAAC Phase 1

Model 2.1 0.48 2 .79 .02 NA 1.0 Wheeze severity model

Model 2.2 7.20 5 .21 .00 NA 1.0 Regression of wheeze severity factor on child sex

Cohort 3: EHAAS Birth Cohort

Model 3.1 0.83 2 .66 .00 .00, .15 1.0 Wheeze severity model

Model 3.2 4.00 8 .86 .00 .00, .06 1.0 Regression of wheeze severity on child sex and race

Model 3.3 7.01 11 .80 .00 .00, .07 1.0 Predictive validity: 84-month asthma dx.

Model 3.4 7.22 11 .78 .00 .00, .07 1.0 Predictive validity: 84-month wheeze visits

Model 3.5 6.05 11 .87 .00 .00, .05 1.0 Predictive validity: 84-month ER visits

w2
GOF = model chi-square goodness of fit test; RMSEA = root mean error of approximation; CFI = Comparative Fit Index; Y1-Y3 = Year 1 –Year 3; NA = RMSEA

confidence intervals were not available for multilevel SEM models.

https://doi.org/10.1371/journal.pone.0194739.t004

Table 5. Cohort 1: Associations between the latent wheezing illness severity factors at both year-1 and year-2 and established markers of wheezing illness severity.

LATENT FACTOR MODEL EST 95% CI

Marker of Wheezing Illness Severity # βa Lower Upper

Year 1 Wheezing Illness Severity (Ages 0–1)

Ages 0–1Wheeze -Related Hospitalizations 1.3 0.68 0.51 0.86

Ages 0–1 Asthma Medication Use 1.5 0.87 0.72 1.01

Year 2 Wheezing Illness Severity (Ages 1–2)

Ages 1–2Wheeze -Related Hospitalizations 1.4 0.54 0.35 0.72

Ages 1–2 Asthma Medication Use 1.6 0.90 0.77 1.03

Ages 2–3 Asthma Diagnosis 1.7 0.71 0.53 0.88

Ages 2–3 Acute Corticosteroid Use 1.8 0.63 0.49 0.76

Ages 2–3Wheeze-Related Medical Visits 1.9 0.64 0.48 0.79

aLinear regression coefficient estimating the association between the latent wheezing illness severity factor and the continuous latent variable (y�) underlying the

observed categorical outcome variable (y) that is an established marker of wheezing severity.

https://doi.org/10.1371/journal.pone.0194739.t005
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1.4) and asthma medication use (Table 5, models 1.5 and 1.6) adjusting for covariates. Fig 2

shows the magnitude of these concurrent associations at year-one.

Latent factor stability

Using Cohort 1 data, there was no evidence from likelihood ratio χ2 tests (p values� .20) that

imposing invariance restrictions on the loadings, thresholds, or unique variances across time

points worsened model fit (Table 6). Thus, there was no evidence of temporal instability,

allowing for meaningful evaluation of change in the latent factor. Additionally, there was no

evidence of latent factor instability across child sex at either year-one or year-two (p values�

.25; Table 6), indicating that the same latent wheezing severity model was reasonable for girls

and boys

Consistent with prior research [62], male children scored higher on average than female

children on the wheezing illness severity factor in all three cohorts. In Cohort 1 analyses, male

children scored 0.20 (95% CI [0.02, 0.45]) standard deviations (SDs) higher (more severe

Fig 2. Cohort 1: Concurrent associations between the latent wheezing severity factor and markers of wheezing illness in year-one. This

figure shows estimated probabilities of having at least one respiratory hospitalization (panel a; model 1.3) and using asthma medication (panel b;

model 1.5) against levels of the latent wheezing severity variable in the first year of life. As wheezing severity increases so does the estimated

probability of respiratory hospitalization and medication use. These models held all covariates constant at their median values. Dotted lines

represent 95% confidence intervals for estimated probability estimates.

https://doi.org/10.1371/journal.pone.0194739.g002
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symptoms) than females on the latent factor in the second year of life. Similarly, in cohorts 2

(model 2.2) and 3 (model 3.2), male children scored 0.09 SDs (95% CI [0.003, 0.18]) and 0.68

SDs (95% CI [0.01, 1.35]) higher on wheezing severity than females, respectively.

Predictive validity

In Cohort 1 longitudinal models, the severity of wheezing illness in the second year of life was

uniquely and prospectively associated with year-three physician asthma diagnosis (model 1.7),

acute corticosteroid use (model 1.8), and wheeze-related outpatient visits (model 1.9), adjust-

ing for covariates (Table 5). Using Cohort 3 data, adjusting for covariates, the latent wheezing

illness factor representing wheezing severity measured at ages 5–6 was prospectively associated

with all clinical outcomes measured at age 7 (Fig 3): physician asthma diagnosis (model 3.3; β
= 0.52, 95% CI [0.22, 0.82]), wheeze -related medical visits (model 3.4; β = 0.58, 95% CI [0.20,

0.96]), and urgent wheeze-related medical visits (model 3.5; β = 0.82, 95% CI [0.41, 1.24]).

Comparison with discrete wheezing severity model

Using Cohort 1 data, the discrete wheezing severity variable coding the number of

ISAAC-WM severity items endorsed at the year-two assessment was significantly and posi-

tively associated with year-three asthma diagnosis, acute corticosteroid use, and wheeze/

asthma-related outpatient visits. Thus, the discrete severity exposure variable had utility in pre-

dicting future wheezing morbidity. However, Fig 4 illustrates the potential benefits of model-

ing wheezing severity as a latent continuous variable in explanatory models. Fig 4A plots the

estimated probability of a child having at least one wheeze-related medical visit in the third

year of life against the year-2 discrete wheezing severity variable, adjusting for covariates. As

the number of ISAAC-WM severity items endorsed increased in the second year of life (x-

Table 6. Cohort 1: Comparison of models testing stability in the latent wheezing severity factor across time and across child sex.

Measurement Parameters χ2
GOF Model Comparison

Factor Loadings Indicator

Thresholds

Residual Variances Est. df p Models χ2
DIFF p

Models Evaluating Measurement Stability Across One- and Two-Year Assessments

1 Free Free Free 61.97 62 .48 - - -

2 Constant Free Free 64.52 65 .49 2 vs 1 0.22 .97

3 Constant Constant Free 68.19 68 .47 3 vs 2 4.10 .20

4 Constant Constant Constant 69.58 72 .56 4 vs 3 0.92 .88

Models Evaluating Measurement Stability Across Child Sex (Female vs. Male) at Year-One

5 Free Free Free 46.31 46 .46 - - -

6 Constant Free Free 49.64 49 .45 6 vs 5 2.97 .25

7 Constant Constant Free 51.45 51 .46 7 vs 6 0.63 .60

8 Constant Constant Constant 52.69 55 .56 8 vs 7 0.68 .85

Models Evaluating Measurement Stability Across Child Sex (Female vs. Male) at Year-Two

9 Free Free Free 38.95 46 .76 - - -

10 Constant Free Free 41.01 49 .78 10 vs 9 0.72 .72

11 Constant Constant Free 42.95 51 .78 11 vs 10 1.24 .37

12 Constant Constant Constant 47.83 55 .74 12 vs 11 2.70 .37

w2
GOF = chi-square goodness of fit statistic evaluating whether the model is consistent with the observed data; w2

DIFF = chi-square test comparing the fit of competing

nested models; Free = parameter was allowed to vary freely across groups (i.e., time points or child sex); Constant = parameter was constrained to be equal across groups

(i.e., time points or child sex).

https://doi.org/10.1371/journal.pone.0194739.t006
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axis) the estimated probability of a child having a wheeze-related medical visit in the third year

of life (y-axis) increased. In the discrete severity model, however, there are only five possible

values of the estimated probability of year-three wheeze-related medical visits, ranging from

0.05 to 0.63, corresponding to the five levels of the discrete severity variable.

In contrast, Fig 4B shows the estimated probabilities of year-3 wheeze-related medical visits

as a function of the latent wheezing severity factor, with estimated probabilities following a

smooth curve ranging from 0.01 (at -3 SDs) to 0.82 (at +3 SDs). Going from the lowest level of

the discrete wheezing severity variable to the highest results in a 0.59 (95% CI [0.34, 0.83])

increase in the estimated probability of year-3 wheeze-related medical visits; whereas going

from 3 SDs below the mean to 3 SDs above the mean on the latent severity variable results in

an increase in the estimated probability of 0.81, 95% CI [0.67, 0.94]. Similar patterns were

observed for year-3 physician asthma diagnosis (Fig 5) and acute corticosteroid treatment (Fig

6). Also, the degree of uncertainty around the estimated probabilities was smaller when using

the latent wheezing severity model. This is consistent with our central premise that a latent

Fig 3. Cohort 3: Prospective associations between wheezing illness severity and wheeze-related morbidity outcomes. In the EHAAS birth

cohort study, there were strong prospective associations between the latent wheezing illness severity factor representing wheezing illness severity

from 60–72 months and three asthma morbidity outcomes at the 84-month follow-up: physician diagnosis of asthma (panel a; model 3.3), any

asthma medical visits (panel b; model 3.4), and urgent asthma/wheeze-related medical visits to either a doctor’s office or the emergency department

(panel c; model 3.5). These models held all covariates constant at their median values. Dotted lines represent 95% confidence intervals. Pseudo-R2

values represent the approximate proportion of variance in the outcome accounted for by the predictors.

https://doi.org/10.1371/journal.pone.0194739.g003
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severity model can provide improved estimation of severity, resulting in stronger associations

with clinical outcomes.

Discussion

Summary of key findings

The findings from three independent studies support the utility of a unidimensional latent var-

iable approach to measuring pediatric wheezing illness severity based on items from the

ISAAC-WM in explanatory research studies. We found:

1. a close correspondence between the latent wheezing severity model and the observed data

(cohorts 1 and 2);

Fig 4. Cohort 1: Estimated probability of year-three wheeze-related medical visits as a function of wheezing severity in year-2. These plots

show the strength of associations between year-2 wheezing severity (x-axis) and year-3 wheeze-related medical visits (y-axis), with all covariates

held constant at their median values. Panels a shows estimated probabilities of corticosteroid treatment being present in the third year of life as a

function of the discrete severity exposure variable; whereas panel b shows estimated probabilities vs. the latent continuous severity factor. In both

models, as year-2 wheezing severity increases, so does the estimated probability of acute corticosteroid treatment, though the range of estimated

probabilities is larger in the latent severity model. Values and 95% confidence intervals above the blue brackets show the increase in the estimated

probabilities for a given increase in wheezing severity. Dotted lines represent 95% confidence intervals for estimated probability estimates.

https://doi.org/10.1371/journal.pone.0194739.g004
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2. concurrent (Cohort 1) and prospective (cohorts 1 and 3) associations with wheeze-related

clinical outcomes;

3. stability in the latent wheezing severity factor structure across time points and child sex

(Cohort 1);

4. stronger prospective associations with wheezing outcomes compared to a discrete severity

variable (Cohort 1).

Interpretation and implications

Wheezing is the hallmark of asthma and an indicator of asthma control [63,64]. The ISAAC

questionnaire is a validated instrument used in epidemiologic studies worldwide [3,4]. The use

Fig 5. Cohort 1: Year-3 physician asthma diagnosis as a function of wheezing severity in year-2. These plots show the strength of associations

between year-2 wheezing severity (x-axis) and year-3 physician asthma diagnosis (y-axis), with all covariates held constant at their median values.

Panels a shows estimated probabilities of a physician asthma diagnosis being present in the third year of life as a function of the discrete severity

exposure variable; whereas panel b shows estimated probabilities vs. the latent continuous severity factor. In both models, as year-2 wheezing

severity increases, so does the estimated probability of a physician asthma diagnosis being present, though the range of estimated probabilities is

larger in the latent severity model. Values and 95% confidence intervals above the blue brackets show the expected increase in the estimated

probabilities for a given increase in wheezing severity. Dotted lines represent 95% confidence intervals for estimated probability estimates.

https://doi.org/10.1371/journal.pone.0194739.g005
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of wheezing questions to assess disease severity in etiological research is highly desirable, par-

ticularly for the new ECHO consortium in which nearly all of the asthma birth cohorts utilized

the ISAAC-WM. Our latent variable approach yields a continuous measure of wheezing illness

severity that capitalizes on shared variance from the four wheezing-focused ISAAC-WM

items. Our findings suggest that this latent variable approach results in stronger associations

with established measures of wheezing illness severity than models using discrete severity vari-

ables based on the ISAAC-WM. Thus, for studies using the ISAAC-WM, the proposed latent

variable approach may result in stronger tests of etiological theory than models using discrete

severity variables.

It is important to note that the proposed SEM-based latent variable approach is intended

for use in explanatory research models, where the goal is to test specific etiological hypotheses

and theories. Latent variables do not yield unique scores for individual respondents [65].

Fig 6. Cohort 1: Year-3 estimated probability of acute corticosteroid treatment as a function of wheezing severity in year-2. These plots

show the strength of associations between year-2 wheezing severity (x-axis) and year-3 acute corticosteroid treatment (y-axis), with all covariates

held constant at their median values. Panels a shows estimated probabilities of corticosteroid treatment being present in the third year of life as a

function of the discrete severity exposure variable; whereas panel b shows estimated probabilities vs. the latent continuous severity factor. In both

models, as year-2 wheezing severity increases, so does the estimated probability of acute corticosteroid treatment, though the range of estimated

probabilities is larger in the latent severity model. Values and 95% confidence intervals above the blue brackets show the increase in the estimated

probabilities for a given increase in wheezing severity. Dotted lines represent 95% confidence intervals for estimated probability estimates.

https://doi.org/10.1371/journal.pone.0194739.g006
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Consequently, our proposed SEM-based latent variable model of wheezing severity could not

be used in clinical practice to aid in diagnostic decisions or to make patient-specific predic-

tions about risk for future adverse outcomes [65]. There are, however, a number of existing

questionnaires measuring wheezing severity that were designed and validated for these pur-

poses [18]. However, for researchers testing specific etiological models of wheezing illness

development and/or outcomes with the ISAAC-WM, this approach could lead to stronger

tests of theory. We provided programming code for both lavaan (open-source) and Mplus

(proprietary) in online appendices to facilitate implementation in datasets utilizing the

ISAAC-WM.

Despite its widespread use, this was the first study, to our knowledge, to test a model of

wheezing illness severity using the ISAAC-WM. Our model was founded in the hypothesis

that wheezing severity can be conceptualized as a continuous unidimensional latent variable

and that the categorical ISAAC-WM items are surrogates, capturing measurable consequences

of this unobserved variable. In each cohort, the χ2
GOF test, which is highly sensitive to model

misspecifications with large sample sizes [66,67], found no significant evidence of discrepan-

cies between the covariance matrixes implied by our proposed model of wheezing severity and

the observed covariance matrixes.

This was also the first study to explicitly evaluate whether a model of pediatric wheezing

severity was consistent over time (longitudinal invariance) and across child sexes. Our Cohort

1 analyses suggested that the factor structure (i.e., the relationship between the latent factor

and its measured indicators) was stable over the first two years of life, allowing for meaningful

evaluation of change in pediatric wheezing severity. Although males and females differed in

their mean levels of wheezing severity, there was no evidence that the latent factor structure

was inconsistent across child sexes. This means that a single model of wheezing severity in

early childhood for girls and boys may be sufficient as long as analyses account for mean differ-

ences across sexes.

Finally, we demonstrated the benefits of using a continuous latent factor model within a

structural equation modeling framework compared to a discrete wheezing severity variable in

terms of its power to detect associations with future clinical outcomes. Going from the lowest

to highest levels of the latent factor was associated with a greater increase in the estimated

probability of future wheezing morbidity outcomes compared to going from the lowest to

highest levels of a discrete severity variable. Thus, the latent factor approach may yield more

powerful tests of etiological associations than categorical severity variables.

While there are a number of strengths of this study, including evaluation of the latent vari-

able approach in three independent datasets, there are several limitations which should be con-

sidered. First, we relied exclusively on parent report for the measurement of both wheezing

symptoms and validity outcomes; though the ISAAC-WM was designed and validated for this

purpose. Second, we tested our factor model using just four ordinal indicators. More precise

measurements of the indicators (e.g., exact counts of wheezing episodes) should result in better

severity estimation. Greater precision might also be achieved by combining the ISAAC-WM

items with other indicators of wheezing severity, assuming that they are theoretically and

empirically commensurate with the proposed model. Third, our models were unidimensional

and only captured variability in wheezing symptoms. Prior studies suggest that asthma is a

multidimensional construct [16–18], with wheezing severity represented in one of the dimen-

sions. Future studies should explore whether the proposed latent wheezing severity model can

be combined with other symptom dimensions to provide a more comprehensive representa-

tion of asthma severity [68,69]. Fourth, the latent factor model does not discriminate as well

among children who are low on the severity spectrum compared to those with moderate to

severe symptoms. Adding indicators that better distinguish between children with mild
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symptoms would be desirable in future studies. Lastly, it is important to note that SEM gener-

ally requires large samples and may not be feasible in smaller studies [70].

Conclusions

In conclusion, the proposed latent variable model of pediatric wheezing illness estimates

wheezing severity as a continuous construct, is consistent with data from three independent

cohorts, and is prospectively associated with asthma morbidity. This modeling approach can

be applied in cohorts with ISAAC-WM data with a sufficient sample size by adapting the pro-

vided code. Using a latent severity approach provides more powerful testing of etiological

hypotheses.
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13. O’Byrne PM, Reddel HK, Eriksson G, Östlund O, Peterson S, Sears MR, et al. Measuring asthma con-

trol: a comparison of three classification systems. Eur Respir J. 2010; 36: 269–276. https://doi.org/10.

1183/09031936.00124009 PMID: 20110397

14. Horner S, Kieckhefer G, Fouladi R. Measuring asthma severity: instrument refinement. J Asthma. 2006;

43: 533–538. https://doi.org/10.1080/02770900600857192 PMID: 16939994

15. Bailey W, Higgins D, Richards B, Richards J. Asthma severity: a factor analytic investigation. Am J

Med. 1992; 93: 263–269. https://doi.org/10.1016/0002-9343(92)90231-Y PMID: 1524077

16. Rosier MJ, Bishop J, Nolan T, Robertson CF, Carlin JB, Phelan PD. Measurement of functional severity

of asthma in children. Am J Respir Crit Care Med. 1994; 149: 1434–1441. https://doi.org/10.1164/

ajrccm.149.6.8004295 PMID: 8004295

17. Wildfire J, Gergen P, Sorkness C, Mitchell H, Calatroni A, Kattan M, et al. Development and validation

of the Composite Asthma Severity Index—an outcome measure for use in children and adolescents. J

Allergy Clin Immunol. 2012; 129: 694–701. https://doi.org/10.1016/j.jaci.2011.12.962 PMID: 22244599

18. Cloutier M, Schatz M, Castro M, Clark N, Kelly H, Mangione-Smith R, et al. Asthma outcomes: Compos-

ite scores of asthma control. J Allergy Clin Immunol. 2012; 129: S24–S33. https://doi.org/10.1016/j.jaci.

2011.12.980 PMID: 22386507

19. Larkin EK, Gebretsadik T, Moore ML, Anderson LJ, Dupont WD, Chappell JD, et al. Objectives, design

and enrollment results from the Infant Susceptibility to Pulmonary Infections and Asthma Following

RSV Exposure Study (INSPIRE). BMC Pulm Med. 2015; 15: 45. https://doi.org/10.1186/s12890-015-

0040-0 PMID: 26021723

20. Gold D, Burge H, Carey V, Milton D, Platts-Mills T, Weiss S. Predictors of repeated wheeze in the first

year of life: the relative roles of cockroach, birth weight, acute lower respiratory illness, and maternal

smoking. Am J Respir Crit Care Med. 1999; 160: 227–236. https://doi.org/10.1164/ajrccm.160.1.

9807104 PMID: 10390405

21. Schmidt C. Growing a new study: environmental influences on child health outcomes. Environ Health

Perspect. 2015; 123: A260–A263. https://doi.org/10.1289/ehp.123-A260 PMID: 26421459

22. Bollen KA. Structural equations with latent variables. Oxford, England: John Wiley & Sons; 1989.

23. Bagozzi R, Yi Y. Specification, evaluation, and interpretation of structural equation models. J Acad Mark

Sci. 2012; 40: 8–34. https://doi.org/10.1007/s11747-011-0278-x

24. Bentler PM, Stein JA. Structural equation models in medical research. Stat Methods Med Res. 1992; 1:

159–181. https://doi.org/10.1177/096228029200100203 PMID: 1341656

25. Bollen KA. Latent variables in psychology and the social sciences. Annu Rev Psychol. 2002; 53: 605–

634. https://doi.org/10.1146/annurev.psych.53.100901.135239 PMID: 11752498

26. Bollen K, Bauldry S. Three Cs in measurement models: Causal indicators, composite indicators, and

covariates. Psychol Methods. 2011; 16: 265–284. http://dx.doi.org.proxy.library.vanderbilt.edu/10.

1037/a0024448 PMID: 21767021

27. Cole D, Preacher K. Manifest variable path analysis: Potentially serious and misleading consequences

due to uncorrected measurement error. Psychol Methods. 2014; 19: 300–315. http://dx.doi.org/10.

1037/a0033805 PMID: 24079927

28. Rosas-Salazar C, Shilts M, Tovchigrechko A, Schobel S, Chappell J, Larkin E, et al. Differences in the

nasopharyngeal microbiome during acute respiratory tract infection with human rhinovirus and respira-

tory syncytial virus in infancy. J Infect Dis. 2016; 214: 1924–1928. https://doi.org/10.1093/infdis/jiw456

PMID: 27923952

29. Tse S, Coull B, Sordillo J, Datta S, Gold D. Gender- and age-specific risk factors for wheeze from birth

through adolescence. Pediatr Pulmonol. 2015; 50: 955–962. https://doi.org/10.1002/ppul.23113 PMID:

25348842

30. Tse S, Rifas-Shiman S, Coull B, Litonjua A, Oken E, Gold D. Sex-specific risk factors for childhood

wheeze and longitudinal phenotypes of wheeze. J Allergy Clin Immunol. 2016; 138: 1561–1568.e6.

https://doi.org/10.1016/j.jaci.2016.04.005 PMID: 27246527

31. Ly N, Gold D, Weiss S, Celedón J. Recurrent wheeze in early childhood and asthma among children at

risk for atopy. Pediatrics. 2006; 117: e1132–e1138. https://doi.org/10.1542/peds.2005-2271 PMID:

16740815

32. Muthén BO. A general structural equation model with dichotomous, ordered categorical, and continuous

latent variable indicators. Psychometrika. 1984; 49: 115–132.

33. Muthén BO. Mplus Technical Appendices. [Internet]. Los Angeles, CA; 1998 2004. Available: http://

statmodel.com/download/techappen.pdf

34. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. J Stat Softw. 2012; 48: 1–36.

A latent variable model of pediatric wheezing severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0194739 April 17, 2018 20 / 22

https://doi.org/10.1183/09031936.00124009
https://doi.org/10.1183/09031936.00124009
http://www.ncbi.nlm.nih.gov/pubmed/20110397
https://doi.org/10.1080/02770900600857192
http://www.ncbi.nlm.nih.gov/pubmed/16939994
https://doi.org/10.1016/0002-9343(92)90231-Y
http://www.ncbi.nlm.nih.gov/pubmed/1524077
https://doi.org/10.1164/ajrccm.149.6.8004295
https://doi.org/10.1164/ajrccm.149.6.8004295
http://www.ncbi.nlm.nih.gov/pubmed/8004295
https://doi.org/10.1016/j.jaci.2011.12.962
http://www.ncbi.nlm.nih.gov/pubmed/22244599
https://doi.org/10.1016/j.jaci.2011.12.980
https://doi.org/10.1016/j.jaci.2011.12.980
http://www.ncbi.nlm.nih.gov/pubmed/22386507
https://doi.org/10.1186/s12890-015-0040-0
https://doi.org/10.1186/s12890-015-0040-0
http://www.ncbi.nlm.nih.gov/pubmed/26021723
https://doi.org/10.1164/ajrccm.160.1.9807104
https://doi.org/10.1164/ajrccm.160.1.9807104
http://www.ncbi.nlm.nih.gov/pubmed/10390405
https://doi.org/10.1289/ehp.123-A260
http://www.ncbi.nlm.nih.gov/pubmed/26421459
https://doi.org/10.1007/s11747-011-0278-x
https://doi.org/10.1177/096228029200100203
http://www.ncbi.nlm.nih.gov/pubmed/1341656
https://doi.org/10.1146/annurev.psych.53.100901.135239
http://www.ncbi.nlm.nih.gov/pubmed/11752498
http://dx.doi.org.proxy.library.vanderbilt.edu/10.1037/a0024448
http://dx.doi.org.proxy.library.vanderbilt.edu/10.1037/a0024448
http://www.ncbi.nlm.nih.gov/pubmed/21767021
http://dx.doi.org/10.1037/a0033805
http://dx.doi.org/10.1037/a0033805
http://www.ncbi.nlm.nih.gov/pubmed/24079927
https://doi.org/10.1093/infdis/jiw456
http://www.ncbi.nlm.nih.gov/pubmed/27923952
https://doi.org/10.1002/ppul.23113
http://www.ncbi.nlm.nih.gov/pubmed/25348842
https://doi.org/10.1016/j.jaci.2016.04.005
http://www.ncbi.nlm.nih.gov/pubmed/27246527
https://doi.org/10.1542/peds.2005-2271
http://www.ncbi.nlm.nih.gov/pubmed/16740815
http://statmodel.com/download/techappen.pdf
http://statmodel.com/download/techappen.pdf
https://doi.org/10.1371/journal.pone.0194739


35. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R

Foundation for Statistical Computing; 2016. Available: http://www.R-project.org/

36. Muthén L, Muthén B. Mplus user’s guide. Seventh edition. Los Angeles, CA: Muthén & Muthén; 1998.

37. Asparouhov T, Muthén BO. Weighted least squares estimation with missing data. Mplus Tech Append.

2010; 1–10.

38. Bauer DJ. Estimating multilevel linear models as structural equation models. J Educ Behav Stat. 2003;

28: 135–167.

39. Hox J, Maas C. Multilevel structural equation models: The limited information approach and the multi-

variate multilevel approach. Recent developments on structural equation models. Springer Science &

Business Media; 2004. pp. 135–149. Available: http://link.springer.com/chapter/10.1007/978-1-4020-

1958-6_8

40. Stapleton L, Yang J, Hancock G. Construct meaning in multilevel settings. J Educ Behav Stat. 2016; 41:

481–520. https://doi.org/10.3102/1076998616646200

41. Muthén BO, Asparouhov T. Latent variable analysis with categorical outcomes: Multiple-group and

growth modeling in Mplus. Mplus Web Notes. 2002; 4: 1–22.

42. Muthén B, Du Toit S, Spisic D. Robust inference using weighted least squares and quadratic estimating

equations in latent variable modeling with categorical and continuous outcomes. Psychometrika. 1997;

75: 1–45.

43. Steiger J. Point estimation, hypothesis testing, and interval estimation using the RMSEA: Some com-

ments and a reply to Hayduk and Glaser. Struct Equ Model. 2000; 7: 149–162. http://dx.doi.org/10.

1207/S15328007SEM0702_1

44. Steiger J, Lind J. Statistically-based tests for the number of common factors. Paper presented at: Meet-

ing of the Psychometric Society; 1980 May; Iowa City, IA, USA.

45. Bentler PM, Bonett DG. Significance tests and goodness of fit in the analysis of covariance structures.

Psychol Bull. 1980; 88: 588–606.

46. Rigdon E. CFI versus RMSEA: A comparison of two fit indexes for structural equation modeling. Struct

Equ Model Multidiscip J. 1996; 3: 369–379. https://doi.org/10.1080/10705519609540052

47. Chen F, Curran PJ, Bollen KA, Kirby J, Paxton P. An empirical evaluation of the use of fixed cutoff points

in RMSEA test statistic in structural equation models. Sociol Methods Res. 2008; 36: 462. https://doi.

org/10.1177/0049124108314720 PMID: 19756246

48. Hu L-T, Bentler P. Fit indices in covariance structure modeling: Sensitivity to underparameterized model

misspecification. Psychol Methods. 1998; 3: 424–453. https://doi.org/10.1037/1082-989X.3.4.424

49. Castro-Rodriguez J, Forno E, Rodriguez-Martinez C, Celedón J. Risk and protective factors for child-

hood asthma: what is the evidence? J Allergy Clin Immunol Pract. 2016; 4: 1111–1122. https://doi.org/

10.1016/j.jaip.2016.05.003 PMID: 27286779

50. Lim R, Kobzik L, Dahl M. Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-anal-

ysis. PloS One. 2010; 5: e10134. https://doi.org/10.1371/journal.pone.0010134 PMID: 20405032

51. Burke H, Leonardi-Bee J, Hashim A, Pine-Abata H, Chen Y, Cook DG, et al. Prenatal and passive

smoke exposure and incidence of asthma and wheeze: systematic review and meta-analysis. Pediat-

rics. 2012; 129: 735–744. https://doi.org/10.1542/peds.2011-2196 PMID: 22430451

52. Moncrief T, Beck A, Simmons J, Huang B, Kahn R. Single parent households and increased child

asthma morbidity. J Asthma Off J Assoc Care Asthma. 2014; 51: 260–266. https://doi.org/10.3109/

02770903.2013.873806 PMID: 24320709

53. Thakur N, Oh S, Nguyen E, Martin M, Roth L, Galanter J, et al. Socioeconomic status and childhood

asthma in urban minority uouths. the GALA II and SAGE II studies. Am J Respir Crit Care Med. 2013;

188: 1202–1209. https://doi.org/10.1164/rccm.201306-1016OC PMID: 24050698

54. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association

between Caesarean section and childhood asthma. Clin Exp Allergy. 2008; 38: 629–633. https://doi.

org/10.1111/j.1365-2222.2007.02780.x PMID: 18352976

55. Geier D, Kern J, Geier M. Demographic and neonatal risk factors for childhood asthma in the USA. J

Matern Fetal Neonatal Med. 2017;Published online ahead of print. https://doi.org/10.1080/14767058.

2017.1393068 PMID: 29034748

56. Liu Y, Millsap RE, West SG, Tein J-Y, Tanaka R, Grimm KJ. Testing measurement invariance in longitu-

dinal data with ordered-categorical measures. Psychol Methods. 2016;Advance online publication:

1–21. http://dx.doi.org/10.1037/met0000075

57. Vandenberg R, Lance C. A review and synthesis of the measurement invariance literature: Sugges-

tions, practices, and recommendations for organizational research. Organ Res Methods. 2000; 3: 4–70.

https://doi.org/10.1177/109442810031002

A latent variable model of pediatric wheezing severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0194739 April 17, 2018 21 / 22

http://www.R-project.org/
http://link.springer.com/chapter/10.1007/978-1-4020-1958-6_8
http://link.springer.com/chapter/10.1007/978-1-4020-1958-6_8
https://doi.org/10.3102/1076998616646200
http://dx.doi.org/10.1207/S15328007SEM0702_1
http://dx.doi.org/10.1207/S15328007SEM0702_1
https://doi.org/10.1080/10705519609540052
https://doi.org/10.1177/0049124108314720
https://doi.org/10.1177/0049124108314720
http://www.ncbi.nlm.nih.gov/pubmed/19756246
https://doi.org/10.1037/1082-989X.3.4.424
https://doi.org/10.1016/j.jaip.2016.05.003
https://doi.org/10.1016/j.jaip.2016.05.003
http://www.ncbi.nlm.nih.gov/pubmed/27286779
https://doi.org/10.1371/journal.pone.0010134
http://www.ncbi.nlm.nih.gov/pubmed/20405032
https://doi.org/10.1542/peds.2011-2196
http://www.ncbi.nlm.nih.gov/pubmed/22430451
https://doi.org/10.3109/02770903.2013.873806
https://doi.org/10.3109/02770903.2013.873806
http://www.ncbi.nlm.nih.gov/pubmed/24320709
https://doi.org/10.1164/rccm.201306-1016OC
http://www.ncbi.nlm.nih.gov/pubmed/24050698
https://doi.org/10.1111/j.1365-2222.2007.02780.x
https://doi.org/10.1111/j.1365-2222.2007.02780.x
http://www.ncbi.nlm.nih.gov/pubmed/18352976
https://doi.org/10.1080/14767058.2017.1393068
https://doi.org/10.1080/14767058.2017.1393068
http://www.ncbi.nlm.nih.gov/pubmed/29034748
http://dx.doi.org/10.1037/met0000075
https://doi.org/10.1177/109442810031002
https://doi.org/10.1371/journal.pone.0194739


58. Little T, Preacher K, Selig J, Card N. New developments in latent variable panel analyses of longitudinal

data. Int J Behav Dev. 2007; 31: 357–365. https://doi.org/10.1177/0165025407077757

59. Satorra A. Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In: Heij-

mans RDH, Pollock DSG, Satorra A, editors. Innovations in multivariate statistical analysis: A festschrift

for Heinz Neudecker. Dordrecht, The Netherlands: Springer Science+Business Media; 2000. pp. 233–

247. https://doi.org/10.1007/978-1-4615-4603-0_17

60. Hirschfeld G, Von Brachel R. Multiple-Group confirmatory factor analysis in R: a tutorial in measurement

invariance with continuous and ordinal indicators. Pract Assess Res Eval. 2014; 19. Available: http://

pareonline.net/getvn.asp?v=19&n=7

61. Millsap R, Tein J-Y. Assessing factorial invariance in ordered-categorical measures. Multivar Behav

Res. 2004; 39: 479–515. https://doi.org/10.1207/S15327906MBR3903_4

62. Zein J, Udeh B, Teague W, Koroukian S, Schlitz N, Bleecker E, et al. Impact of age and sex on out-

comes and hospital cost of acute asthma in the United States, 2011–2012. PLOS ONE. 2016; 11:

e0157301. https://doi.org/10.1371/journal.pone.0157301 PMID: 27294365

63. Castro-Rodrı́guez J, Holberg C, Wright A, Martinez F. A clinical index to define risk of asthma in young

children with recurrent wheezing. Am J Respir Crit Care Med. 2000; 162: 1403–1406. https://doi.org/10.

1164/ajrccm.162.4.9912111 PMID: 11029352

64. Liu A, Zeiger R, Sorkness C, Mahr T, Ostrom N, Burgess S, et al. Development and cross-sectional vali-

dation of the Childhood Asthma Control Test. J Allergy Clin Immunol. 2007; 119: 817–825. https://doi.

org/10.1016/j.jaci.2006.12.662 PMID: 17353040

65. Rigdon E. Rethinking partial least squares path modeling: In praise of simple methods. Long Range

Plann. 2012; 45: 341–358. https://doi.org/10.1016/j.lrp.2012.09.010

66. Bentler P. On tests and indices for evaluating structural models. Personal Individ Differ. 2007; 42: 825–

829. https://doi.org/10.1016/j.paid.2006.09.024

67. Steiger J. Understanding the limitations of global fit assessment in structural equation modeling. Per-

sonal Individ Differ. 2007; 42: 893–898. https://doi.org/10.1016/j.paid.2006.09.017

68. Nathan R, Sorkness C, Kosinski M, Schatz M, Li J, Marcus P, et al. Development of the asthma control

test: A survey for assessing asthma control. J Allergy Clin Immunol. 2004; 113: 59–65. https://doi.org/

10.1016/j.jaci.2003.09.008 PMID: 14713908

69. Cockcroft D, Swystun V. Asthma control versus asthma severity. J Allergy Clin Immunol. 1996; 98:

1016–1018. PMID: 8977499

70. Westland J. Lower bounds on sample size in structural equation modeling. Electron Commer Res Appl.

2010; 9: 476–487. https://doi.org/10.1016/j.elerap.2010.07.003

A latent variable model of pediatric wheezing severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0194739 April 17, 2018 22 / 22

https://doi.org/10.1177/0165025407077757
https://doi.org/10.1007/978-1-4615-4603-0_17
http://pareonline.net/getvn.asp?v=19&n=7
http://pareonline.net/getvn.asp?v=19&n=7
https://doi.org/10.1207/S15327906MBR3903_4
https://doi.org/10.1371/journal.pone.0157301
http://www.ncbi.nlm.nih.gov/pubmed/27294365
https://doi.org/10.1164/ajrccm.162.4.9912111
https://doi.org/10.1164/ajrccm.162.4.9912111
http://www.ncbi.nlm.nih.gov/pubmed/11029352
https://doi.org/10.1016/j.jaci.2006.12.662
https://doi.org/10.1016/j.jaci.2006.12.662
http://www.ncbi.nlm.nih.gov/pubmed/17353040
https://doi.org/10.1016/j.lrp.2012.09.010
https://doi.org/10.1016/j.paid.2006.09.024
https://doi.org/10.1016/j.paid.2006.09.017
https://doi.org/10.1016/j.jaci.2003.09.008
https://doi.org/10.1016/j.jaci.2003.09.008
http://www.ncbi.nlm.nih.gov/pubmed/14713908
http://www.ncbi.nlm.nih.gov/pubmed/8977499
https://doi.org/10.1016/j.elerap.2010.07.003
https://doi.org/10.1371/journal.pone.0194739

