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Abstract

Community structure detection has proven to be important in revealing the underlying properties of complex networks.
The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more
realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of
overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel
mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to
overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E.
coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative
of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter
and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the
organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways
that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-
connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their
participation in different network modules, setting them apart from proteins that are simply ‘hubs’, i.e. proteins with many
interaction partners but with a more specific biochemical role.
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Introduction

Community structure detection is widely accepted as a means of

elucidating the underlying properties of complex networks. In the

standard community structure detection problem, the aim is to

partition a network into disjoint communities, also known as

modules, which are generally regarded as semi-independent units.

In protein interaction networks, disjoint community structure

detection methods have served to propose functionally coherent

modules [1,2]. However, in reality proteins may carry out more

than one task or belong to more than one protein complex [3],

corresponding to membership of more than one module. If disjoint

communities are assumed to correspond to functional units, then

overlapping communities offer a means of expressing the

coordination of these functions within the context of the entire

system. Consequently, relaxing the constraint of strictly non-

overlapping communities in models of community structure may

represent a more true to life abstraction, thus leading to a more

accurate representation of cellular interactions.

The overlapping community structure detection problem is less

well-defined than the standard problem and can be formulated in

various ways depending on analytical requirements or user

interpretation. As a result, existing approaches vary to a large

degree. Methods exist based on clique percolation (CFinder [4]),

local expansion and optimisation (OSLOM [5], OCG [6] and

ClusterONE [7]), agent-based and dynamical algorithms (GAN-

XiSw [8]), Approximate Minimum Degree Ordering (MOFinder

[9]), normalised cut calculation (Graclus [10]), regularized sparse

random graph model (RSRGM [11]), modularity optimisation

(OMIM [12]), consensus clustering [13], hub duplication [14] and

Markov clustering (R-MCL [15]). The first challenge is therefore

to decide how to interpret the problem and subsequently to define

a suitable solution procedure in relation to biological systems.

Overlapping communities in protein interaction networks have

been studied to derive the functional cohesion of overlapping

communities compared with disjoint communities, according to

enrichment of GO terms and correspondence with protein

complexes [6,7,9,11,12,15,16]. In [6], proteins belonging to many

modules in the human PPI network were found to have on average

a higher node degree and node betweenness, to contain more

protein domains and to be annotated with more GO terms than

proteins belonging to only one module. Similarly, in [9] proteins

participating in many modules in the human PPI network were

found to be enriched for druggable targets according to the

Druggable Genome [17]. The method proposed in [18] has been

applied to a structural brain network, where each node

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e112821

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0112821&domain=pdf


corresponds to a brain region [19] and nodes assigned to more than

one module were found to have a higher degree and higher nodal

efficiency. Analogous ideas have been found in a social network

modelling the spread of disease, where nodes bridging communities

were found to be potential immunisation targets [20].

These studies introduce the idea that nodes with multiple

module membership may play an important role within a system,

either in topological or functional terms. However, despite such

previous investigations, there is still no concrete definition or

understanding of the nature of nodes with multiple module

membership, leaving much scope for (i) the development of a

solution procedure that clearly demarcates overlapping modules

and (ii) the systematic investigation of links between node

clustering properties and their functional potential. We address

these issues by first extending previous work on network module

detection based on modularity optimisation to allow for multiple

module membership. We then use the clustering features of

protein nodes as means to explore their topological and functional

significance on system properties.

Modularity is a measure that expresses how well-defined the

community structure of a network is by comparing the fraction of

edges that lie within modules minus the expected value in a null

model, i.e. a network with same degree distribution but edges placed

at random [21]. The metric provides a natural, intuitive description

of community structure for a wide range of biological applications

[1,2,22–24]. Optimisation of modularity is one of the most popular

methods for community structure detection (e.g. [25–28]) and has

been applied in various solution procedures, including simulated

annealing [26,29], greedy algorithms [27,30] and spectral methods

[28]. Mathematical programming has also been used to solve

modularity maximisation problems, achieving globally optimal

solutions in small to medium networks [31,32] and competitive

results for larger networks [33–37]. Here, we extend our previous

mathematical programming approaches to modularity optimisation

([31,34,36]) to detect overlapping modules as outlined below.

Given a hard partition of a network, i.e. a partition of non-

overlapping communities, if each module relates to a semi-independent

functionally cohesive unit, then nodes that form edges across the

borders of the communities can be thought of as bridges between

different functional groups. We define these nodes as connector nodes

and we distinguish them from isolated nodes, that only possess links

with nodes of the same community. Consequently, our proposed

method takes existing modularity optimisation methodologies one step

further by considering the dynamics at the borders of communities. We

pose the following questions: what effect do connector nodes have on

the modularity of their neighbouring modules, what parameters

determine whether a connector node has a multiple module

membership, what effect do these connector nodes have on the

cohesion of the network and do they exhibit some biological relevance?

Our proposed two-stage procedure is outlined in Figure 1. First,

a hard partition is detected by defining the disjoint communities of

a network using existing well-established and tested methodologies

for modularity optimisation. Through this step, connector nodes

are identified and distinguished from isolated nodes. In stage two,

the association of connector nodes with their neighbouring

modules is considered by allowing them to be allocated to any

of the modules that they interact with. Finally, connector nodes

will be assigned to a module if modularity is increased and

therefore they become either inter-connectors if they are assigned

to multiple communities, or intra-connectors if they remain a

member of a single community, resulting in a soft partition of the

network. The transformation from disjoint to overlapping

communities is achieved by a mixed integer non linear program-

ming (MINLP) model, known as OverMod.

Our method is evaluated through the investigation of the

disjoint and overlapping community structures of the rat, E. coli,

Figure 1. Outline of the two-stage procedure for detecting overlapping community structure. Black nodes (isolated nodes) have their
module membership fixed, whereas red nodes (connector nodes) are free to be assigned to one or more modules when solving OverMod.
doi:10.1371/journal.pone.0112821.g001
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yeast and human PPI networks. Properties of connector against

isolated nodes are first examined and OverMod then determines

which of the connector nodes remain assigned only to their

original module (intra-connectors), and which are distributed

across many modules (inter-connectors). Analysis of each category

of nodes reveals their own particular characteristics pertaining to

their topological and functional role in the organisation of the

network. Finally, a comparative analysis of related methodologies

from the literature is presented, where method performance is

discussed in relation to synthetic networks and the PPI networks.

Materials and Methods

A Mathematical Programming Model for Transforming
Disjoint to Overlapping Communities

In our previous work, modularity optimisation has been

formulated as a mixed integer quadratic programming (MIQP)

model [31] and a mixed integer non linear programming (MINLP)

model [34,36] to detect disjoint communities. In this work,

modularity is again used as the objective function in the

optimisation problem, but here node-module allocations for nodes

that have no connections outside their community, known as

isolated nodes, are fixed, leaving only connector nodes free to be

assigned to one or more modules. The new model, OverMod,

transforms a disjoint partition of a network into a partition with

overlapping communities. The input required for OverMod is an

undirected, weighted or unweighted network together with a hard

partition of the network. The output is a set of overlapping

communities. The indices, sets, parameters and variables associ-

ated with OverMod are defined below.

Indices

n,e nodes

m modules

Sets

CN set of all connector nodes

Cm connector nodes for module m

ISm isolated nodes for module m

Parameters

bne weight of the edge between nodes n and e

an weight of the edge node n makes with itself, i:e:

a loop

dn strength (weighted degree) of node n

L sum of the weights of all edges in the network

Continuousvariables

Lm

sum of weights of all edges

among nodes within

module m

Dm

sum of strengths of nodes in

module m

Binaryvariables

YSnm

node membership in the soft

partition; equal to 1 if

node n is allocated to module

m; 0 otherwise

If bne is non-zero, then an edge exists between nodes n and e

and bne~ben. The sets ISm and Cm are defined according to each

module, m, in the hard partition. ISm is the set of isolated nodes in

module m; nodes which belong to module m and do not interact

with nodes outside of module m. Cm is the set of connector nodes

associated with module m; nodes in module m that interact with

nodes in neighbouring modules or, nodes outside module m that

are connected to nodes within module m.

We adopt modularity as our objective function, defined as

follows:

Qov~
X

m

Lm

L
{

Dm

2L

� �2
" #

ð1Þ

where Dm is the sum of the strengths (weighted degrees) of all

nodes in module m, Lm is the sum of the weights of the edges with

both associated nodes belonging to module m and L is the sum of

the weights of all edges in the network. We label modularity Qov

instead of simply Q in order to distinguish it from modularity

values where each node is assigned to only one module. The idea

behind the approach is that since isolated nodes do not connect

with nodes in other modules, they would make little or no

contribution to the modularity of modules other than their own.

Consequently, their module membership remains fixed and only

connectors have the possibility of belonging to multiple modules in

the course of the conversion procedure. In other words, for all

n[ISm, YSnm is fixed to 1, and for all n[Cm, YSnm is assigned a

random initial value of 0 or 1. The number of variables in the

optimisation problem is therefore reduced and in turn, so is

computational cost.

Community Structure Detection for Overlapping Modules in PPI Networks
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Equation 1 is optimised subject to the following constraints.

First, Lm and Dm are defined as:

Lm~
X

n[ISm

anz
X

n[Cm

anYSnmz
X

n,e[ISm
nve

bne

z
X

n[Cm
e[ISm

bneYSnmz
X

n,e[Cm
nve

bneYSnmYSem, Vm
ð2Þ

and

Dm~
X

n[ISm

dnz
X

n[Cm

dnYSnm, Vm ð3Þ

where dn is the strength of node n and is defined as

dn~2anz
P

e,nve bne. Note that OverMod accommodates self-

interactions, also known as loops, an.

In order to account for the overlapping aspect of the model, the

following constrains each connector to belong to at least one

module:

X
m:n[Cm

YSnm§1, Vn[CN ð4Þ

The resulting MINLP model comprises a non-linear objective

function with a combination of integer and continuous variables,

summarised as:

Maximise:

Qov~
X

m

Lm

L
{

Dm

2L

� �2
" #

ð5Þ

Subject to:

Constraints (2-4)

Lm,Dm§0, Vm ð6Þ

YSnm[f0,1g, Vm,n[Cm ð7Þ

Implementation
OverMod was implemented in GAMS (General Algebraic

Modelling System) [38], where the MINLP is solved using the SBB

(standard branch and bound method) mixed integer optimisation

solver and CONOPT as the NLP solver. Due to the non-convex

nature of the model, globally optimal solutions cannot be

guaranteed. Thus, the MINLP is solved iteratively 100 times,

each time with a different random initial solution, giving a

approximate representation of solution space. The largest value of

Q corresponds to the best soft partition. The GAMS binaries of

the MINLP algorithm are available on request.

Networks
The proposed procedure is evaluated through its application to

protein-protein interaction (PPI) networks of the rat, E. coli, yeast

and human organisms. The rat PPI network was downloaded from

BioGRID (version 3.1.86, July 2012) [39]. Only interactions where

both nodes were proteins of rat were retained. We consider only

the main component of the network, which has 487 nodes and 572

interactions. The protein interaction network of E. coli was

downloaded from the IntAct database (July 2013) [40], comprising

exclusively interactions with a relation of type ‘direct interaction’

or ‘physical association’ that have been experimentally verified.

The main connected component has 668 nodes and 846

interactions. We also consider the yeast PPI network of Collins

et al. [41], from the BioGRID database. The main component of

the yeast network comprises 1002 nodes and 8313 interactions.

Finally, we include the main component of the human PPI

network, as used in [6] and made available by the authors, which

comprises 6160 nodes and 24014 interactions.

Statistical Analysis
Various comparisons are made where the average degree,

betweenness, eigenvector centrality, number of GO terms and

number of protein domains of groups of nodes were calculated.

Betweenness and eigenvector centrality were found using the

igraph library [42] in the statistical computing environment R

[43]. GO annotations for rat, E. coli, yeast and human were

downloaded from [44], [45], [46] and [47], respectively. Each

protein was mapped to all possible GO terms. Parent terms were

removed to keep the most specific GO annotations. Protein

domains for each organism were downloaded from the Pfam

database [48]. Only distinct domain annotations for each protein

were retained. The population means of each group of nodes for

each property were determined statistically significantly different

or not using the Mann-Whitney-Wilcoxon U test (two sided) as

implemented in R. A p-value of less than 0.01 indicates a

statistically significant difference. Finally, essential genes were

downloaded from the the Online GEne Essentiality (OGEE)

Database [49]. Enrichment of essential genes in multi-clustered

node was determined according to the Fisher’s Exact test as

implemented in R.

Node Removal
We investigated the effect of node removal using Monte Carlo

simulations. At each step a random node is removed from the sets

of isolated, inter and intra-connector nodes respectively. We then

calculate, s, the size (number of nodes) of the largest connected

component, over the initial component size. Each step is the

average of 100 independent runs.

Results and Discussion

In this section, the disjoint and overlapping community

structures of the PPI networks of rat, E. coli, yeast and human

are investigated. Hard partitions of the networks are first detected

by three different modularity optimisation methods. Based on the

hard partitions, each node is classified as either an isolated node or

a connector node. Characteristics of the connector nodes are

investigated in order to determine whether they possess some

topological and/or functional relevance relating to their position

in the network. The hard partitions are subsequently transformed

to overlapping communities by the proposed mathematical

programming method, OverMod. The effect of node removal

and the functional significance of the inter and intra-connectors

are then explored. Finally, the proposed procedure is discussed in

the context of other existing methodologies.

Community Structure Detection for Overlapping Modules in PPI Networks
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Detection of Hard Partitions
We employ three of the most well known methods of modularity

optimisation to detect hard partitions of the PPI networks: iMod

[34], Louvain [27] and QCUT [28]. Each method has been

shown to perform well in applications on various sizes of complex

networks. In particular, iMod outperformed several other well-

known methods on medium to large sized networks, including

finding known globally optimal solutions for small sized networks

[34] and Louvain, a heuristic method, is known for its low

computational cost and high quality results on very large networks

[50]. Employing these three methods allows us first to explore the

effect of the choice of hard partition on the final results found by

OverMod and in turn the stability of the algorithm, and second, to

combine the information from them to determine the most

robustly multi-clustered proteins. In doing this, we take advantage

of the information offered by a range of results from three of the

best available methods.

Table 1 gives the value of modularity, the corresponding

number of modules and the number of connector nodes found

by iMod, Louvain and QCUT for each of the PPI networks. For

the rat and E. coli networks, iMod finds partitions with marginally

larger values of modularity, for the yeast network, Louvain

performs best and for the human network QCUT performs best.

These differences in modularity are minimal and generally for

each network, the methods perform similarly in terms of value of

modularity, number of modules and number of connectors. The

difference between the three sets of connector nodes produced for

each network is quantified by employing the Jaccard index (results

not shown). The Jaccard index measures similarity between finite

sample sets, and is defined as the number of nodes in the

intersection of the sets divided by the number of nodes in the

union of the sets. The average of the Jaccard values between

pairwise sets of connectors for Rat, E. coli, Yeast and Human are

0.78, 0.80, 0.88 and 0.80, respectively. The difference between the

sets of connectors found by each method across the networks is

relatively small. It is investigated later how these differences are

reflected in the output of OverMod, i.e. how stable is the

algorithm to perturbations in the input.

Finally, as an illustrative example of the hard-partitioning step,

Figure 2 shows the rat PPI network before partitioning, followed

by the clustered network, where the modules found by iMod are

identified by an individual colour. Hub nodes, UBC (54

interaction partners) and SUMO3 (187 interaction partners), are

identified by yellow circles. The hard partition is dominated by

one large module (red). It comprises 168 nodes and corresponds to

the SUMO3 gene and its surrounding nodes, while the second

largest module (blue), comprises the UBC gene and 63 surround-

ing nodes.

Properties of Connector Nodes. We investigate the nature

of the two types of nodes that are defined according to the hard

partitions: isolated and connector nodes. If connector nodes are

interpreted as bridges between functional units, one expects them

to exhibit properties that reflect such activity. Here, various

topological and functional measures are employed to characterise

protein nodes and investigate whether connectors can be

distinguished from isolated nodes in terms of these properties.

The following topological properties are employed as measures

of a node’s structural features. First, node degree is used as it has

been shown that complex networks are vulnerable to targeted

removal of nodes with a high degree, also known as hubs [51,52].

Hubs therefore are considered to possess particular topological

characteristics that may also link to relevant functional properties.

Second, node betweenness is used to indicate the number of

shortest paths that traverse a particular node. It has been suggested

that nodes of high betweenness usually lie between communities,

according to the betweenness clustering method of Girvan and

Newman [53], potentially indicating connector properties. Finally,

eigenvector centrality is considered, which is a method of

computing the centrality of a node based on the centrality values

of the nodes that it is connected to.

Where the above properties offer topological measures for

illustrating structural importance, we also consider descriptive

features based on protein function. We use the number of GO

annotations as a measure of functional importance of a node, both

in combined form (ALL GO) as well in terms of the individual GO

categories (molecular function, MF, biological process, BP and

cellular compartment, CC). Additionally, the number of domains

that a protein contains are used as measure of its multi-

functionality. Finally, the Online GEne Essentiality (OGEE)

Database [49] that contains genes that have been tested

experimentally for essentiality, is employed here and we investigate

whether the connector nodes are enriched for essential proteins.

For all four networks node degree, node betweenness and

eigenvector centrality were on average significantly higher for

connector nodes when compared to isolated nodes (Table S1 in

File S1), thus demonstrating their distinct topological properties.

We now reinforce these results by showing that topological

features correspond to particular functional properties. First, it has

been shown that signalling domains are found more often in

intermodular hub proteins, which were also more frequently

associated with oncogenesis than their intramodular hub counter-

parts [54]. Our analysis therefore demonstrates that the high

connectivity of these nodes is correlated with their multiple roles

and their potential to act as bridges between functional modules.

In the human network, connectors have a significantly higher

average number of GO annotations and protein domains (Table

S2 in File S1). While in the rat network, this is true for GO terms.

For the yeast and E. coli networks these effects are less

pronounced, perhaps owing to the fact that, as yeast and E. coli
are unicellular organisms, they have much simpler biochemistry

than multicellular species. The difference in organismal complex-

ity may be therefore reflected, in this case, in the significance of

GO term enrichment. Additionally, with respect to essentiality

properties, we find significant enrichment of essential genes in the

connector nodes of E. coli, yeast and human (Table S3 in File S1).

For the rat network, only a small number of essential genes have

been identified, so statistical evaluation was not attempted.

The p-values for each property do not vary greatly between the

different hard partitioning methods employed, i.e the overall

properties of connector nodes are generally the same regardless of

the hard partitions used. The above results indicate then that in

general, connector nodes have not only distinct topological

properties, but also a wider functional repertoire than isolated

proteins. Our next task was to investigate the properties of

connector nodes through the detection of overlapping communi-

ties (soft partition), which we discuss in the following section.

Converting to Soft Partitions
We denote the application of OverMod to each hard partition

as the following three methods: (i) iMod for the hard partition

followed by OverMod, (ii) hard partition by Louvain followed by

OverMod and (iii) hard partition by QCUT followed by

OverMod. Applying OverMod to the hard partitions results in

connector nodes being determined as either inter or intra-

connector. Table 2 summarises the number of inter and intra-

connectors.

Figure 3 shows the number of modules that protein nodes

belong to across the reference organisms tested. Nodes belonging

Community Structure Detection for Overlapping Modules in PPI Networks
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to only one module include both isolated and intra-connector

nodes. For rat and E. coli, the inter-connector nodes belong to at

most 3 modules, whereas inter-connector nodes participate in up

to 7 and 13 modules in the yeast and human networks respectively.

The stability of OverMod is now investigated, i.e. it is

determined how much the output is perturbed by changes to the

input. In this case the input is the hard partition found by either

iMod, Louvain or QCUT and the output is the classification of

connectors as either inter or intra-connectors. Of particular

interest is how the sets of inter-connectors vary depending on

which hard partition is used as input. The commonality between

inter-connector nodes across methods (i) – (iii) is illustrated in

Figure 4. Inter-connector proteins found by all three methods

were 36 in the rat network, 40 in E. coli, 233 in yeast, and 3002 in

the human network. The Jaccard index is again employed as a

means of quantifying the similarity between the inter-connector

sets returned by OverMod for methods (i) – (iii). The Jaccard index

has previously been used a measure of cluster stability [55]. For

each PPI network, the Jaccard index is calculated for iMod +
OverMod vs. Louvain + OverMod, iMod + OverMod vs. QCUT

+ OverMod and Louvain + OverMod vs. QCUT + OverMod.

Results are presented in Table S4 in File S1 and here the average

Jaccard index for each network is reported: 0.72, 0.75, 0.85 and

0.74 for the rat, E. coli, yeast and human networks, respectively.

The similarity between inter-connector sets is relatively stable

across all networks. Overall, the results show a good degree of

stability regarding individual inter-connector proteins, indicating

that OverMod exhibits a good level of robustness to small

perturbations in the input.

Topological Features and the Effect of Node

Removal. Node degree, betweenness and eigenvector centrality

of the two types of connector nodes were calculated. Statistical

analysis showed a significant difference in node degree for the rat,

E. coli and human networks, with the intra-connectors having

consistently higher values (Table S5 in File S1). For the yeast

network, although inter-connectors have a higher average degree

than intra-connectors, the difference is not significant. Less

consistent results are found for betweenness and eigenvector

centrality.

On first inspection, the observation that nodes characterised as

intra-connectors by OverMod had higher degree was counter-

intuitive, we therefore sought to look more closely at inter-module

connections to determine if inter- and intra-connectors can be

characterised according to their communication with neighbour-

ing modules. A measure known as participation coefficient is

adopted, which measures how uniformly distributed the edges of a

node are among the communities of a partition [26]:

Pn~1{
XM
m~1

dnm

dn

� �2

ð8Þ

where M is the number of modules in the partition, dnm is the

number of links node n has with nodes in module m and dn is the

degree of node n. The larger the participation coefficient of a

connector, the more evenly distributed its connections are with

different modules. We found that for all four networks studied,

inter-connectors have a significantly higher average participation

coefficient than intra-connectors (Table S6 in File S1), indicating

that despite lower node degree on average, inter-connector genes

distribute their edges across communities more widely than intra-

connectors.

The topological properties of inter-connector, intra-connector,

as well as isolated nodes were also established through simulating
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the effect of their removal on network integrity. Figure 5 shows the

relative size of the largest component s against the number of

nodes n removed from the network. In all cases the removal of

isolated nodes has the smallest effect on network structure, in line

with our results of centrality of isolated vs connector nodes, where

degree and betweenness centrality are always significantly lower in

isolated nodes. This illustrates that the isolated nodes are the least

important in maintaining network integrity.

Our simulations also show that the removal of intra-connector

nodes breaks the network consistently faster than inter-connectors,

in accordance with their significantly higher node degree. The

effect can also be seen in the yeast and human networks, however

it is less pronounced due to the density and size of these networks,

i.e. a large portion of the nodes need to be removed in order to

reduce the largest component size. Alternatively, in rat and E. coli
where the effect was more marked is attributed to the fact that the

integrity of these smaller networks is largely maintained by a few

intra-connectors (Table 2), which for both networks contain the

most highly connected nodes in the entire network. These two

cases are discussed in more detail below.

The most highly connected node in the rat PPI network (degree

187) corresponds to the SUMO3 gene and the most highly

connected node in the E. coli networks is the CH60 (GroEL)

protein (degree 128). Both are intra-connector nodes despite their

large degree and the fact that they interact with nodes in 12 and 9

modules respectively. In other words, there is a large number of

possible modules that OverMod could assign them to. We

investigate why these two nodes are intra-connectors, when the

highest degree nodes in the yeast and human networks are inter-

connectors.

We consider the application of OverMod to the hard partitions

found by iMod in the following discussion regarding the rat and E.
coli networks. SUMO3 is not only the node with the highest

degree in the rat network, it is also the node with the largest

number of possible modules it can be assigned to. However,

OverMod, assigns SUMO3 to only one module. On further

investigation, we find that only 20 out of 187 connections link to

nodes in other modules, indicating (i) a strong connection to the

module where it was assigned during the hard partition stage and

(ii) a rather low participation coefficient of 0.2. Bearing in mind

that OverMod simultaneously optimises the modularity of all

modules in the soft partition by either assigning the connector

nodes to one or multiple modules, we calculate the modularity for

each of the 12 possible modules, with SUMO3 present and absent.

It is found that SUMO3 decreases the modularity of all modules

other than its own. Therefore, to optimise the total modularity

across the soft partition, OverMod assigns SUMO3 to its own

module only.

Similarly, in the E. coli network, the CH60 (GroEL) protein,

also has the highest number of possible modules it can be assigned

to. However, of its 128 interactions, only 12 are among the 9

neighbouring modules, corresponding to a participation coefficient

of 0.18. Again, CH60 was found to decrease the modularity of all

neighbouring modules and only increase the modularity of its own

module, despite its high centrality and potential to belong to many

modules. These two cases illustrate that high degree is not

necessarily the principal driving force when OverMod allocates a

connector node to more than one module. In fact, these two

examples are representative of high degree connector nodes that

become intra-connectors and thus why so many high degree

connectors remain in a single module.

We compare these cases with the most highly connected nodes

in the yeast and human networks, which are both multi-clustered

by OverMod. These have degrees 127 and 182 respectively.

However, the difference is their much higher participation

coefficient, 0.5 and 0.7 respectively. Therefore these high

centrality nodes have a more even distribution of edges, whereas

the corresponding nodes in the rat and E. coli have most edges

concentrated in their original module. It is worth noting that if one

calculated the average degree of the intra-connectors for the rat

and E. coli networks without SUMO3 and CH60 respectively, the

intra-connectors would still show a significantly higher average

degree than the inter-connectors (with no significant difference for

betweenness and eigenvector centrality as before). Similarly, inter-

connectors continue to have a significantly higher participation

coefficient than intra-connectors.

Figure 2. The left hand side of the figure shows the rat PPI network and on the right hand side, each community found by iMod is
given an individual colour. Hub nodes (SUMO3 and UBC) are highlighted by yellow circles in the network on the left. Visualisation of the network
was done using Cytoscape [82].
doi:10.1371/journal.pone.0112821.g002
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Overall, these results show that OverMod reveals the structural

significance of a portion of the connector nodes, i.e. those with

high connectivity which end up assigned to only one of their

possible modules. While the majority of connectors maximise

modularity by becoming inter-connectors (&90% in most cases), a

small number of highly connected nodes optimise modularity by

remaining in their original module. Thus our method discovers a

small subset of intra-connectors that are topologically important

for the integrity of the network. OverMod also identifies the set of

inter-connectors which may generally have a lower degree, but

exhibit a higher participation coefficient, signifying that their edges

are more evenly distributed among various modules. We now

investigate the functional properties of inter- and intra-connectors

and in particular we look into the biological evidence that

corresponds to the association of multi-clustered nodes with

multiple functional units.

Functional Comparison of Inter and Intra-connector

Proteins. A PPI network is a collection of interactions that

take place across time and space, no matter whether they happen

simultaneously or not, or whether they are exclusive or not.

Therefore, a PPI network may not capture a precise representa-

tion of protein interactions in vivo. While high centrality has been

traditionally correlated with essentiality for survival [56–58], we

investigate below whether this is consistently the case by

comparing the most robust inter-connectors and intra-connectors

with the highest connectivity.

First, we determine which nodes are considered as ‘strong’ inter-

connectors. For the rat and E. coli networks, since all inter-

connector proteins belong to either 2 or 3 modules, we consider

proteins belonging to 3 modules as strong inter-connectors. For

the yeast and human networks, the number of modules that inter-

connector nodes belong to is higher and so strong inter-connectors

are defined by finding the range of number of modules to which

the top ten strongest inter-connectors are assigned. For example,

for the yeast network, the top ten strongest inter-connectors for

iMod+OverMod belong to between 5 and 6 modules. However,

there are actually 19 nodes that belong to 5 and 6 modules and

therefore we consider all of them as strong inter-connector

proteins. It follows that any inter-connector defined as strong by

two or more methods is described as being robust (Table 3). We

now examine the biological functionality of robust inter-connector

proteins and high degree intra-connector proteins with high and

low inter-modular degree (shown in tables 3 and 4 respectively).

We investigate connectors by considering cases of proteins in

the literature with significant functionality. CH60 (GroEL) is a

molecular chaperone and belongs to a group of proteins that assist

in the folding, translocation and assembly of proteins in the cell

[59] and are the subject of significant research interest. Another

example is Ubiquitin, which is conjugated to target proteins via an

isopeptide bond either as a monomer (monoubiquitin - UBQ), a

polymer linked via different Lys residues of the ubiquitin

(polyubiquitin chains - UBC). The linkage type of the ubiquitin

chain determines whether a modified protein is degraded by the

proteasome or serves to attract proteins to initiate signalling

cascades or be internalised [60]. UBC is assigned as intra while

UBQ as inter-connector. The various types of Ub modifications

are linked to distinct physiological functions in cells. UBQ, for

example, regulates DNA repair and receptor endocytosis, whereas

lysine 48-linked Ub chains label proteins for proteasomal

degradation [61]. Since less is known about the functionality of

UBC chains than the UBQ monomer, it is possible that UBQ

rather than UBC becomes an inter-connector because of its

associated multi-functionality, as the molecular mechanisms

involving specificity in UBC chain synthesis and recognition are

still incompletely understood [62] and thus less information about

UBC interactions exists in PPI databases.

Genes in the RPS family encode approximately 80 different

ribosomal proteins, which in conjunction with rRNA make up the

ribosomal subunits. RPS4A, RPS5, RPS8A etc. are such proteins.

RPS5 is a component of the small ribosomal subunit. Mature

ribosomes consist of a small (40S) and a large (60S) subunit.

Because the ribosome is such a vital component of the translational

machinery and therefore of all cellular life, ribosomal proteins

(RPs) have been highly conserved throughout evolution [63,64].

The RSM and MRP genes encode proteins of the 37S small

subunit of mature mitochondrial ribosomes [65]. Surprisingly,

only a minority of MRPs that have been characterised show

significant sequence similarities to known ribosomal proteins from

other sources [66]. With respect to our analysis, ribosomes in the

cytosol are found to be inter-connectors while mitochondrial

ribosomes are intra-connector proteins. We hypothesise that this is

the case because cytosol ribosomes have a broader functionality,

while mitochondrial ribosomes participate in a more limited

spectrum of functions, since their main role is to synthesise

proteins of these organelles.

The TGF-beta type I receptor is a transmembrane kinase which

transduces TGF signalling from the cell surface to the cytoplasm

and thus regulates a plethora of physiological and pathological

processes [67–70]. Although TGF-beta is important in regulating

crucial cellular activities, the full mechanism behind the suggested

activation pathways is not yet well understood. Some of the known

activating pathways are cell or tissue-specific, while some are seen

in multiple cell types and tissues [71,72]. TGF beta receptor was

the intra-connector node with the highest inter-modular degree

(equal to 12), so it links to twelve different modules, yet remains

assigned in its original module. Because it acts as a signalling

Table 2. Soft partition summary: inter and intra-connectors.

(i) (ii) (iii)

Inter Intra Inter Intra Inter Intra

Rat 45 9 48 8 45 9

E. coli 51 8 51 7 50 7

Yeast 274 36 274 25 260 30

Human 4207 322 3952 420 3647 559

Summary of the number of connectors that become inter and intra-connectors in the corresponding soft partitions. For Rat, E. coli and Yeast in particular, we see that
the number of inter-connectors, i.e. nodes belonging to more than one community, found by each method (i) – (iii) are relatively similar. This stability is reinforced in
Figure 4, where we see that the number of common inter-connectors is high for each PPI network.
doi:10.1371/journal.pone.0112821.t002
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molecule activating many pathways but not directly participating

in the biochemical processes (i.e. further interacting with molecules

in the pathway), it is possible that while it’s a very central protein,

it remains assigned to a particular module rather than to multiple

modules.

GBLP (Guanine nucleotide-binding protein), a component of

the small (40S) ribosomal subunit, interacts with a wide variety of

proteins and is involved in the recruitment, assembly and

regulation of a variety of signalling molecules. CSK21 is a kinase

complex that phosphorylates a large number of substrates

containing acidic residues C-terminal to the phosphorylated serine

or threonine and regulates numerous cellular processes, such as

cell cycle and apoptosis [73]. CDC2 encodes the protein CDK1

(Cyclin dependent kinase 1), which is a highly conserved cell cycle

protein that forms complexes that phosphorylate a variety of target

substrates, leading to cell cycle progression [74]. RAF1 is a proto-

oncogene which encodes the c-RAF enzyme. It functions as a

switch determining cell fate decisions by acting as a regulatory link

between the membrane-associated Ras GTPases and the MAPK/

ERK cascade [75,76]. Mouse double minute 2 homolog (MDM2)

is an important negative regulator of the p53 tumor suppressor,

functioning both as an E3 ubiquitin ligase that binds to the p53

tumor suppressor and an inhibitor of p53 transcriptional activation

[77]. Cell cycle and cancer related-proteins are thus often

candidates for inter-connector molecules, as they regulate key

processes (such as cell cycle, proliferation and apoptosis) that are

interlinked for the cell’s survival and reproduction.

Therefore, we see some similarity in the role of connector nodes,

but also many differences. We have discovered that heat shock

proteins in the rat network can be classified as both inter and intra-

connector (HSP74 and HSP90, Tables 3 and 4). In general, intra-

Figure 3. Bar charts showing the number of modules and the corresponding number of proteins for each soft partition for the rat,
E. coli, yeast and human PPI networks.
doi:10.1371/journal.pone.0112821.g003

Figure 4. Venn diagrams illustrating the number of common
inter-connector proteins across the methods for each network.
The pink ellipse represents iMod + OverMod, the green striped ellipse
represents Louvain + OverMod and the empty ellipse is QCUT +
OverMod.
doi:10.1371/journal.pone.0112821.g004
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connectors do not participate directly in biochemical pathways,

but may act as signalling molecules providing multiple connections

between the modules (e.g TGF-beta receptor). Cytosol ribosomal

proteins in yeast are consistently classified as inter-connectors in

contrast to mitochondrial ribosomal proteins which end up in a

single module. Overall, many of the robust inter-connectors

exhibit the following characteristics:

1. Proteins which are major regulators of the cell cycle and

therefore proliferation and apoptosis

2. Proto-oncogenes, oncogenes and regulators of tumour sup-

pressors

3. Proteins which markedly affect cell growth

4. Ribosomal proteins which are essential for the survival and

function of the organism and other highly conserved proteins

In a PPI network a protein usually has multiple copies, each

acting as a specific molecular entity. These copies may interact

with different groups of molecules in the cell [78]. A PPI network

would then contain a single vertex that actually represents a

collection of that kind of protein, rather than individual protein

Figure 5. Relative size of largest component s vs number of nodes removed n for human, yeast, E. coli and rat networks. At each step,
a random node is removed from the set of isolated, inter-connector and intra-connector nodes respectively. Results are an average of 100 runs. From
each organism, the hard partitioning method which yielded the best Q was selected, namely iMod for the rat and E. coli networks, Louvain for yeast
and QCUT for human
doi:10.1371/journal.pone.0112821.g005

Table 3. Robust inter-connectors.

Rat MDM2, BRDT, HSP90AA1, SUMO1

E. coli EF-Tu1, MutL, DNA-Pol III

Yeast RPL31A, NOP1, RPS4A, RPL7B, RPS7A, RPS8A-B, RPS5, RPS11A-B, XRN1, RPS22A, RPS13,RPS9B, SRO9, PRP43,RPL8B, CBF5

Human GBLP, CSK21, HS90A, ANDR, CDC2, RAF1, CTNB1, RB, A4, NPM, UBIQ, 1433Z

Connector proteins that were found to be strong inter-connectors by OverMod when applied to: (i) all three hard partitions, (ii) two out of three hard partitions (italics).
doi:10.1371/journal.pone.0112821.t003
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copies [79]. This is why a hub vertex can bind to hundreds of

interactors in a PPI network, while this is unrealistic in biological

cells. Assuming that modules correspond to functional units, with

this method we suggest candidate proteins of multiple distinct roles

(inter-connectors), by their participation in different distinct

modules, rather than hubs which are regulators of highly specific

pathways.

Related Methodologies
The overlapping community structure problem has been subject

to multiple interpretations due to lack of formalisation of the

underlying problem statement. The great variation in existing

methodology is reflected in the results, which can even be seen on

a small network such as the benchmark Zachary karate network

[36]. Here we present a comparative analysis of OverMod with

various alternative overlapping community structure detection

methods from the literature, namely, CFinder [4], OSLOM [5],

OCG [6], ClusterONE [7], GANXiSw [8], MOFinder [9],

RSRGM [11] and R-MCL [15]. The performance of the above

methods will be evaluated on a series of synthetic networks and the

PPI networks described previously.

First, we note Wang et al. [12] have proposed a similar method

to OverMod involving the two stage optimisation of modularity.

Here we have addressed the problem more comprehensively and

in a more rigorous mathematical manner. By employing

mathematical programming and optimising the sum of modularity

across all modules in the soft partition, we avoid sequence

dependent results, as well as offering the possibility for a connector

node to leave its original module in the hard partition.

Furthermore, in our evaluation, we focus on the nature of multi-

clustered nodes in the context of PPI networks, instead of the

functional cohesion of modules. Since, a method implementation

is not publicly available, we do not provide results.

A series of synthetic networks of the type described in [80] was

generated. Each network comprises 500 nodes, with average

degree equal to 10 and with either 75, 150 or 250 (ON ) multi-

Table 4. Intra-connector proteins.

Rat UBC, SUMO3, UBC9, NTRK1, TBA1A, HSP74

E. coli CH60, DNAK, HLDD, KPRS, ODP1, RPE, RS2, SYP

Yeast CLP1, CKA2, CKB1-2, YEF3, FKS1, VID24, GCD11, NAP1, PAP1, PCF11, PTI1, REF2, MRP4, MRP7, RNA14, RSM19M RSMM22, RSM23M,
MRP51, MRPS9, MRPS18, SWD2, YSH1

Human TGFR1, EF1G, ATN1, MDFI, PLS1, TRIP6, CACO2, KR412, AP2M1, MCM7, PABP1, ARI2, FHL3

Proteins with inter-modular degree that is (i) greater than 5 and (ii) equal to or less than 5 (bold). Only the former are shown for human, as the number of low inter-
modular degree proteins is too large in this network.
doi:10.1371/journal.pone.0112821.t004

Figure 6. Method comparison on synthetic networks. The average Jaccard index between the sets of ‘known’ multi-clustered nodes and those
predicted to be multi-clustered by OverMod and other overlapping community structure detection methods from the literature.
doi:10.1371/journal.pone.0112821.g006
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clustered nodes belonging to either 4 or 8 (OM ) modules.

Therefore there are 6 sets of synthetic networks: (i) ON~75,

OM~4, (ii) ON~75, OM~8, (iii) ON~150, OM~4, (iv)

ON~150, OM~8, (v) ON~250, OM~4 and (vi) ON~250,

OM~8. For (i)–(vi), 10 networks were generated for each of the

following mixing parameters (the fraction of all links that lie

between modules): 0.05, 0.1, 0.2 and 0.3. OverMod, CFinder,

OSLOM, OCG, ClusterONE, GANXiSw, MOFinder and R-

MCL were applied to the synthetic networks. Note that RSRGM

was not evaluated on the synthetic networks as an upper bound for

the number of modules is required to be selected in advance.

Louvain was used to find the hard partition for OverMod, levels tp
and tp1 of the OSLOM results were considered, for GANXiSw,

r~0:25 and for CFinder, k was set to 3, 4 and 5. Otherwise, all

default parameters were selected.

The aim of OverMod is to identify multi-clustered nodes that

adopt the important role of bridging multiple modules. OverMod

and the alternative methods are therefore evaluated based on their

ability to identify those multi-clustered in synthetic networks. The

Jaccard index is employed here to quantify the similarity between

the set of ‘known’ multi-clustered nodes (as given by the synthetic

network generating software) and those predicted by the clustering

methods being evaluated. Figure 6 shows the average Jaccard

index against the mixing parameter for (i)–(iv) above. For (i),

OSLOM tp and CFinder k~4 identify the multi-clustered nodes

more accurately than OverMod, however for (ii) to (vi) OverMod

performs best. Note that there are no results for GANXiSw for (vi)

as for many networks the method only found one module. Overall,

OverMod identifies the known multi-clustered nodes well for a

range of synthetic networks with varying connectivity properties.

Synthetic networks offer a means of benchmarking community

structure detection methods, however, determining parameters

such as average degree, ON and OM, do not represent real life

complex networks. As such, each method, including RSRGM, is

now applied to the PPI networks analysed previously. For

RSRGM the upper bound on the number of modules was taken

to be the average of the results for all other methods for each

network. Table 5 summarises the results in terms of number of

modules (M), number of nodes that are assigned at least one

community (C), number of nodes that are multi-clustered (MC)

and the maximum number of modules the multi-clustered nodes

belong to (Max). Clearly, the results vary to a large degree for all

of these factors. In particular, the range of number of modules in

each soft partition for each network is vast, e.g. for the rat network

partitions have from between 3 and 328 modules. Note also that

for the rat PPI network, OSLOM finds only 1 multi-clustered

protein, CFinder (k~3) finds 4 multi-clustered proteins but only

74 our of 487 nodes are assigned at least one module and CFinder

(k~4) clusters only 12 nodes with no multi-clustered nodes.

Similarly for the E. coli network, OSLOM finds only 1 multi-

clustered node. Therefore, for some applications, these methods

may not offer satisfactory or relevant solutions.

The Jaccard index is employed to carry out a pair-wise

comparison between the sets of multi-clustered proteins found by

all methods for each of the four PPI networks (results not shown).

For the rat PPI network, the two methods with the most similar set

of multi-clustered nodes are OCG and R-MCL. Furthermore,

these are the two methods with results that are most similar to

OverMod. The same is true for the E. coli network. For the Yeast

network, MOFinder, closely followed by OCG and R-MCL,

generate sets of multi-clustered nodes most similar to those found

by OverMod. For the human network, R-MCL finds the most

similar multi-clustered nodes to OverMod. Furthermore, OCG

and R-MCL multi-cluster all of the robust inter-connectors

(Table 3) for the Rat, E. coli and Human networks, while the

same methods, and additionally MOFinder, multi-cluster all of the

robust inter-connectors for the Yeast network.

Evaluating method performance on the PPI networks is difficult.

Unlike the synthetic networks, a benchmark of known multi-

clustered nodes is not available. Each method’s approach varies to

such a large degree and for many of the above methods, choice of

parameter values can greatly affect the final results, with often no

way of determining the ‘correct’ values. Furthermore, as our

results show, and has also previously been reported [12], CFinder

generally leaves a large portion of the network un-clustered.

Similarly, ClusterONE, MOFinder, RSRGM and R-MCL do not

always assign each node to at least one module. Each of these

factors makes a fair comparison very difficult. Ultimately, one

must choose a method that is suited to their application and user

requirements. Based on the assumption that modularity optimi-

sation is meaningful in biological networks, we have chosen our

proposed two-stage approach and in light of the results presented

in the previous sections, we believe OverMod to be a reasonable

and successful approach to finding overlapping communities and

in particular identifying ‘important’ nodes in PPI networks.

Conclusions

In this work, a two-stage procedure for identifying overlapping

community structure is outlined. Stage one involves detecting

disjoint communities of a network using existing methodologies. In

stage two, we propose, OverMod, a novel mixed integer non-

linear programming (MINLP) model to convert disjoint to

overlapping network communities. We extend the use of

modularity optimisation and mathematical programming in

community detection and present a thorough investigation into

the relevance of this methodology in PPI networks. Connector

proteins exhibited a range of topological and functional properties

indicative of their role in these networks, thus demonstrating their

suitability as candidate nodes for multiple module membership.

OverMod was then shown to identify two types of connector

nodes: inter and intra-connector, each with their own distinguish-

ing topological features. In general, intra-connectors have a higher

node degree than inter-connectors, their removal breaks down the

network faster, while inter-connectors exhibit a larger dispersion of

their connections across modules, thereby acquiring a higher

average participation coefficient. Further investigation suggested

characteristics that differentiated these nodes in terms of

functionality.

Through the above discussion of our results and comparison to

other methods, the comparative advantages of the two-stage

procedure become apparent. In particular, OverMod can be

applied to any hard partitioning method that is deemed suitable to

the problem. Owing to the nature of the mathematical program-

ming framework used, modelling can be flexible enough to allow

additional constraints and parameters to be easily implemented, as

relevant according to user requirements. Prior knowledge on a

particular system can be incorporated, for example in the form of

nodes with similar functional annotations that may be constrained

to be allocated in the same community. Modelling and solution

procedure enhancements can also be investigated in order to

improve the efficiency of OverMod (e.g. symmetry breaking

constraints [31], column generation techniques [32] solution post

processing [81]).

Overall, the development of overlapping community detection

procedures has the potential to uncover the principles of

communication across distinct functional modules through the

investigation of nodes which connect cellular processes, providing

Community Structure Detection for Overlapping Modules in PPI Networks
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a greater understanding of system properties. OverMod identifies

two types of connector proteins that may play different but central

roles in linking distinct processes, distinguishing them from single

hubs that may connect a large number of possibly functionally

homogeneous interacting proteins.

We have demonstrated the potential of inter-connectors

through their participation in different modules, providing a

reasonable interpretation of proteins with multiple interactors in a

PPI network, since this is unrealistic in biological cells. Many of

these proteins are major regulators of proliferation and apoptosis,

including oncogenes and regulators of tumour suppressors. The

application of our method in disease networks may therefore be

relevant in prioritising OMICs results, especially when looking for

disease biomarkers, suggesting potential drug targets and regula-

tors of disease related pathways. These results demonstrate the

potential of the proposed method in future functional genomics

applications and especially in discovering important proteins in

less well-characterised systems.
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