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Abstract
Background: Cuproptosis is considered a novel copper-dependent cell death model. 
In this study, we established a novel scoring system based on 10 cuproptosis-related 
genes (CRGs) to predict the prognosis and immune landscape of head and neck squa-
mous cell carcinoma (HNSCC).
Methods: The RNA-seq data of HNSCC patients were downloaded from the GEO 
and TCGA databases and were merged into a novel HNSCC cohort. Multiomics land-
scape analyses were conducted, including tumor mutation burden (TMB), copy num-
ber variations and the interaction network of CRGs. Patients were then divided into 
different cuproptosis subtypes based on the expression of 10 CRGs and subsequently 
regrouped into novel gene clusters referring to differentially expressed genes. A cu-
proptosis score (CS) system was established using principal component analysis. The 
CIBERSORT, ssGSEA and ESTIMATE algorithms were used to assess the tumor im-
mune microenvironment. Moreover, the immunotherapeutic and chemotherapeutic 
responses were assessed.
Results: Patients were divided into three cuproptosis subtypes and subsequently re-
grouped into three gene clusters, reflecting different immune infiltration. Assessed 
by the CS system, those with higher CSs exhibited worse prognosis and higher TMB 
frequency. Nevertheless, the immune-related analysis revealed patients in the low-CS 
group appeared immunosuppressive and easily suffered from immune escape. High 
CSs possibly show high expression of immune checkpoint genes and enhance chemo-
therapy sensitivity to cisplatin, docetaxel, and gemcitabine.
Conclusion: We established a novel scoring system to predict the prognosis and im-
mune landscape of HNSCC patients. This signature exhibits satisfactory predictive 
effects and the potential to guide comprehensive treatment for patients.
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1  |  INTRODUC TION

Head and neck squamous cell carcinoma (HNSCC) is considered 
the most common type of head and neck cancer, with increas-
ing diagnosed cases per year and poor prognosis.1,2 To eliminate 
the tumor tissue and prolong the survival time for patients, con-
ventional treatment, including surgery, radiotherapy, and che-
motherapy, was applied; nevertheless, the prognosis remained 
unsatisfactory.3,4 Especially for advanced HNSCC, the survival 
rate is approximately as low as 50%.5,6 Hence, it is crucial to ex-
plore novel methods to predict prognosis and guide treatment for 
patients.

Immune checkpoint inhibitor (ICI) antibodies are a novel treat-
ment for HNSCC patients and have substantially improved progno-
sis by identifying and eliminating tumor cells and activating patients' 
immune defense systems.7–9 However, patients exhibit different 
immunotherapeutic responses due to differences in the tumor mi-
croenvironment (TME), and a minority of patients receive benefits.10 
According to compelling evidence, the programmed cell death pro-
cess is associated with the immunotherapy response and plays a 
core role in tumor progression.2,11

Copper plays an important role in organisms. The concentra-
tions influence the biological process and induce cell death.12 As re-
ported by Tsvetkov et al, cuproptosis is a novel copper-dependent 
cell death process that is distinct from known death mechanisms 
and dependent on mitochondrial respiration regulated by target-
ing lipoylated components of the tricarboxylic acid (TCA) cycle.12 
It can be induced by mitochondrial stress, lipoylated mitochondrial 
enzyme aggregation and Fe-S cluster protein loss.13,14 As a novel 
cell death model, cuproptosis shows great potential and prospects 
in the treatment of tumors. However, there is a lack of studies 
investigating the relationship between cuproptosis and HNSCC. 
In this study, we divided HNSCC patients into novel molecular 
subtypes based on the expression of 10 cuproptosis-related genes 
(CRGs) and subsequently constructed a novel scoring system to 
predict the prognosis and immune landscape of HNSCC according 
to the differentially expressed genes (DEGs) among the molecular 
subtypes.

2  |  METHODS AND MATERIAL S

2.1  |  Obtaining HNSCC datasets and clinical data

Head and neck squamous cell carcinoma gene expression datasets 
with detailed clinical information were downloaded from the Gene 
Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) 
databases (last assessed: 1 May 2022). A total of three available 

datasets, including GSE41613 and GSE65858 from the GEO da-
tabase and the RNA sequencing (RNA-seq) transcriptome data of 
the TCGA-HNSC dataset from the TCGA database, were used for 
further analysis. For the TCGA-HNSC cohort, the gene expression 
matrix was obtained as transcripts per million (TPM). Background 
adjustment and quantitative normalization were performed, and the 
batch effect was removed to construct a novel merge gene expres-
sion matrix. To decrease the potential bias, we excluded patients 
with short overall survival (OS) values, which were less than 30 days, 
or missing OS values.

2.2  |  Multiomics landscape analysis based on CRGs 
in the TCGA-HNSC dataset

Referring to Tsvetkov et al's study, we selected 10 core CRGs 
from the lipoic acid (LA) pathway (including FDX1, LIPT1, LIAS and 
DLD) and the pyruvate dehydrogenase (PDH) complex (consisting 
of DLAT, PDHA1, PDHB, MTF1, GLS and CDKN2A) for further 
analysis.12 The expression of these 10 genes between 504 HNSCC 
samples and 44 normal samples was compared by the utilization 
of the “limma” R package. The somatic mutation data of these 10 
CRGs and tumor mutation burden (TMB) were analyzed and eval-
uated, which are reflected in the waterfall plot. In addition, the 
copy number variation (CNV) frequency of CRGs was assessed. 
Moreover, a univariate Cox (uni-Cox) analysis was subsequently 
conducted to identify prognostic CRGs related to survival, and 
an interaction network was established to reveal the correlation 
among these 10 CRGs.

2.3  |  Molecular subtypes based on the 
expression of CRGs

Based on the expression of CRGs, patients were subsequently divided 
into different subtypes with the use of the “ConsesusClusterPlus” R 
package. Kaplan–Meier survival analysis was also conducted to com-
pare the OS values in clusters. Moreover, a heatmap plot was uti-
lized to reflect the relationship between CRG expression and clinical 
characteristics.

2.4  |  Functional enrichment analysis

Gene set variation analysis (GSVA) was performed to compare the 
differentially enriched pathways (adjusted p value < 0.05) of the 
cuproptosis subtypes in accordance with the assisted gene set 
(c2.cp.kegg.v6.2.-symbols) obtained from the Molecular Signature 
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Database.15 The differentially expressed genes (DEGs) of the cu-
proptosis subtypes were then compared in each of the two clus-
ters and identified with the criteria of adjusted p value < 0.05. 
Based on the intersection of these DEGs, gene ontology (GO) 
analysis was conducted to explore enriched GO terms, including 
biological processes (BPs), cellular components (CCs) and mo-
lecular functions (MFs). In addition, Kyoto Encyclopedia of Gene 
and Genomes (KEGG) pathway analysis was used to identify the 
potential pathways enriched in DEGs. All enriched GO and KEGG 
terms were considered significant, while the p-value and q-value 
were < 0.05.

2.5  |  Assessment of the immune landscape of 
cuproptosis clusters

The immune cell subsets of each HSNCC sample were calculated 
using the CIBERSORT method. Moreover, the immune infiltration 
statuses and immune functions were analyzed with the use of a sin-
gle sample gene set enrichment analysis (ssGSEA) algorithm. In addi-
tion, to assess and compare the tumor immune microenvironment in 
different cuproptosis clusters, we utilized the “estimate” R package 
to calculate the immune score, stromal score, ESTIMATE score and 
tumor purity of each HNSCC sample.

2.6  |  Establishment of cuproptosis-related DEG 
clusters and cuproptosis scores

The DEGs of interest in cuproptosis clusters were then identi-
fied and selected with uni-Cox regression analysis. Based on the 
expression of these prognostic DEGs, the HNSCC cohort was 
divided into novel gene clusters. Kaplan–Meier (K-M) survival 
analysis and immune infiltration were also conducted as in the 
cuproptosis clusters, and a heatmap plot was used to show the 
correlation of cuproptosis clusters, gene clusters, CRG expression, 
and clinical features. In addition, principal component analysis 
(PCA) was conducted to establish a novel cuproptosis signature 
score system. For each sample of the HNSCC dataset, the cuprop-
tosis score was calculated using the following formula: cuprop-
tosis score (CS) =  ∑PC1i + PC2i.16,17 Furthermore, based on the 
cut-point survival analysis, patients were regrouped into low-CS 
and high-CS groups.

2.7  |  Correlation of CSs and subtypes

The correlations of the cuproptosis clusters, gene clusters, CS 
groups and survival status are shown in the Sankey diagram. 
Subsequently, the differences in the survival status of the CSs 
were analyzed and compared. In addition, survival analysis was 
conducted between the two CS groups and compared in accord-
ance with different clinical characteristics, including age (<60 

or ≥60), gender (male or female) and clinical stage (stages I–II or 
stages III–IV).

2.8  |  Correlation of CSs and TMB

The 20 topmost mutated genes in both the low-CS and high-CS 
groups are shown in the waterfall plots. The total mutation counts 
of each HNSCC sample were analyzed, and the tumor mutation bur-
den (TMB) frequency was compared between the two CS groups. 
Spearman's correlation analysis was applied to explore the relation-
ship between CS and TMB. Survival analysis was also conducted to 
investigate and compare the OS values for patients with different 
CSs and TMB frequencies.

2.9  |  Assessment of immunotherapy and 
chemotherapy

Subsequently, the efficacy of clinical immunotherapy and chemo-
therapy was further explored. The correlation between CSs, immune 
cells and immune functions was assessed by the Pearson correla-
tion test based on the ssGESA method. In addition, the expression of 
ICI-related genes, including PD-1, PD-L1 and CTLA, was compared 
between the low-CS and high-CS groups. Tumor immune dysfunc-
tion and exclusion (TIDE)-related scores, including TIDE scores, T-
cell dysfunction scores and T-cell exclusion scores, were predicted 
by the TIDE database and compared to evaluate the effectiveness of 
the immunotherapy response.

Four conventional chemotherapeutic agents, including cisplatin, 
paclitaxel, docetaxel and gemcitabine, were selected to predict the 
drug sensitivity and effectiveness of chemotherapy based on the 
value of half-maximum inhibitory concentration (IC50) via the “pR-
Rophetic” R package.

3  |  RESULTS

3.1  |  Multiomics landscape analysis in the TCGA-
HNSC cohort

With the utilization of the “limma” R package, the differentially ex-
pressed CRGs are shown in Figure 1A, including DLAT, PDHB, GLS 
and CDKN2A. Among them, GLS and CDKN2A were considered 
upregulated in tumor samples; nevertheless, DLAT and PDHB were 
downregulated. Accordingly, the overall mutation rate of 10 CRGs 
was 22.75%, and CDKN2A appeared to have the highest muta-
tion rate (20% total). (Figure 1B) In addition, CNV analysis revealed 
that FDX1, DLAT and CDKN2A perform copy number deletions 
(Figure 1C), and the locations of these 10 CRGs on the chromosomal 
rcircos are shown in Figure  1D. Moreover, the interaction and in-
terconnection of 10 CRGs and their efficacy on the patient OS are 
described in Figure 1E.
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F I G U R E  1 Multiomics analysis of CRGs in TCGA-HNSC. (A) Boxplots of differential expressed CRGs; (B) Tumor mutation frequency of 
CRGs; (C) CNV frequency of CRGs in TCGA-HNSC cohort; (D) The location of PRGs with CNV mutation on chromosomes; (E) Interaction 
among CRGs in HNSCC patients.
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3.2  |  Subtypes based on the expression of CRGs

Based on the expression of 10 CRGs, patients were subsequently 
divided into three clusters with the use of the “ConsensusCluster” 
R package. The K-M survival indicated that these three clusters had 
significantly different OS (p = 0.047), which suggested that patients 
in cluster A had the worst prognosis. (Figure 2A) The heatmap plot 
reflected different expressions of CRGs, and the CDKN2A gene 
was mostly upregulated in cluster B but downregulated in cluster 
A. (Figure 2B) In addition, the GSVA analysis determined that there 
were many more differentially enriched KEGG pathways between 
cluster B and cluster C. (Figure 2C and Figures S1 and S2) Moreover, 
according to the results of CIBERSORT, cluster B had more im-
mune cell infiltration, including CD8+ T cells, activated CD4+ T 
cells and M1 macrophages. (Figure 2D) The results of ssGSEA also 
supported the CIBERSORT analysis and determined that cluster B 
was more associated with APC coinhibition; nevertheless, cluster C 
was more associated with the activation of immune functions (e.g., 
CCR). (Figure  2E,F) In addition, referring to the application of the 
“estimate” R package, differences in the TME scores among the 
three cuproptosis clusters were investigated and are summarized in 
Figure 2G. As shown in the boxplots, patients in cluster C had the 
highest immune scores and the lowest tumor purity, and cluster B 
had the lowest stromal scores, but there were no significant differ-
ences among the three cuproptosis clusters for the ESTIMATE score.

3.3  |  Gene clusters based on prognostic DEGs

According to the Venn diagram, there were 112 DEGs among the 
three clusters. (Figure S3) GO and KEGG enrichment analyses sug-
gested that these 112 DEGs may be mostly enriched in the DNA rep-
lication of BPs, chromosomal region of CCs, catalytic activity acting 
on DNA of MFs and DNA replication pathways. (Figures S4 and S5) 
Among them, eight genes were considered associated with patient 
survival, including CDKN2A, PRELID2, ANP32B, MRPL47, CCDC59, 
WDR90, NLRX1 and KCNK6. (Figure 3A) Based on the expression 
of these eight DEGs, the HNSCC patients were then regrouped into 
three gene clusters, and the K-M curves suggested significant dif-
ferences in OS among these gene clusters. (Figure 3B) A heatmap 
of the gene clusters showed the relationship among gene expres-
sion, cuproptosis clusters, gene clusters and clinical characteristics. 
(Figure 3C) In addition, the boxplot in Figure 3D reflected the CRG 
distribution in three gene clusters, indicating that cluster A had the 
highest expression of GLS and cluster C had the highest expression 
of FDX1, DLAT and MTF1. However, cluster B displayed the most 
high CRG expression, including LIAS, LIPT1, PDHA1 PDHB and 
CDKN2A. Furthermore, as reflected by the results of CIBERSORT 
and ssGSEA, cluster B and cluster C represented much more en-
riched immune infiltration and immune functions. (Figure 3E–G) By 
comparing TME scores among the three gene clusters, patients in 
gene cluster B were assessed to have the lowest immune scores, 
stromal scores, ESTIMATE scores and the highest tumor purity; 

nevertheless, there was no difference in TME scores between clus-
ters A and C. (Figure 3H).

3.4  |  Correlation of CSs and subtypes

Concerning the PCA, patients in the HNSCC cohort were assessed 
with the cuproptosis score and were divided into low-CS and high-
CS groups. As shown in the Sankey plot, the correlations of cuprop-
tosis clusters, gene clusters, CS groups and survival status were 
revealed. (Figure 4A) The K-M survival analysis, as well as barplots 
and boxplots, suggested that patients with high CSs had a worse 
prognosis. (Figure 4B,C) Comparing the OS between the low-CS and 
high-CS groups with different clinical characteristics, patients in the 
low-CS group exhibited better prognosis with clinical features of age 
≥60, males, females or stages III-IV. However, there were no differ-
ences between the two CS groups in groups of age <60 and stages 
I–II. (Figure 4D–I).

3.5  |  Correlation between CSs and TMB

Waterfall plots of the TMB in the low-CS and high-CS groups are 
shown in Figure 5A,B. Based on the Wilcoxon signed-rank test and 
Spearman's correlation analysis, patients in the low-CS group had a 
lower TMB than those in the high-CS group, and CSs were positively 
correlated with TMB. (Figure 5C,D) Moreover, considering the sur-
vival analysis of TMB, patients with high TMB had a worse progno-
sis, especially when combined with high CSs. (Figure 5E,F).

3.6  |  TME, immunotherapeutic and 
chemotherapeutic response

As suggested by the CIBERSORT algorithm, the CSs exhibited a posi-
tive correlation with naive B cells, monocytes and activated CD4+ 
memory T cells infiltration. In contrast, gamma delta T cells, acti-
vated dendritic cells, resting dendritic cells, neutrophils and plasma 
cells were negatively associated with CSs. (Figure 6A,B) The correla-
tion analysis based on ssGSEA also supported the CIBERSORT re-
sults regarding immune cell infiltration, which showed that CSs had 
a positive correlation with activated B cells, CD4+ T cells and CD8+ 
T cells. (Figure 6C) In addition, CSs were positively correlated with 
most immune functions. (Figure  6D) However, there were no sig-
nificant differences in TME scores between the low-CS and high-CS 
groups. (Figure 6E) Regarding the expression of ICI genes, patients 
in the high-CS group exhibited higher expression of PD-1 and CTLA4 
than those in the low-CS group. (Figure 7A) Moreover, referring to 
the analysis of TIDE-related scores, patients with high CSs had sig-
nificantly higher exclusion scores, lower TIDE scores and lower T cell 
dysfunction scores than low-CS patients. (Figure  7B) Given these 
findings, patients with high CSs may possibly be more sensitive to 
immunotherapy.
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Similarly, we also assessed the drug sensitivity of four conventional 
chemotherapeutic agents. Based on the IC50 values, the CSs were 
negatively correlated with the IC50 values of cisplatin, docetaxel, and 

gemcitabine, which indicated that patients with high CSs were more sen-
sitive to these three drugs. However, patients in the low-CS group exhib-
ited lower IC50 values and higher sensitivity to paclitaxel. (Figure 7C,D).

F I G U R E  2 Subtypes based on the expression of CRGs. (A) Kaplan-Meier survival analysis among three clusters; (B) Heatmap of CRGs, 
clinical features in subtypes; (C) GSVA analysis between cluster B and C; (D) CIBERSORT analysis; (E) Immune cell infiltration based on 
ssGSEA; (F) Immune function analysis in cuproptosis clusters; (G) TME scores based on ESTIMATE algorithm.
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4  |  DISCUSSION

Considering the poor prognosis and therapeutic efficacy for ad-
vanced HNSCC patients, a novel accurate prognostic model is crucial 

to predict prognosis and guide individualized and precise treatment.1,2 
Previous studies have determined that the programmed cell death 
process is involved in metabolizing tumor cell biological processes 
of proliferation, migration and invasion and the TME, which can be 

F I G U R E  3 Gene cluster based on prognostic DEGs. (A) Forest plot of prognostic DEGs. (B) Kaplan-Meier survival analysis among three 
gene clusters; (C) Heatmap of CRGs, clinical features, cuproptosis subtypes and gene clusters; (D) Expression of CRGs in gene clusters; (E) 
CIBERSORT analysis in gene clusters; (F) Immune cell infiltration in gene clusters; (G) Immune function in gene clusters; (H) TME scores in 
gene clusters.



8 of 12  |     HUANG et al.

considered novel prognostic biomarkers and potential therapeutic 
targets.18–20 Referring to a recent study investigated by Tsvetkov 
et al.12 cuproptosis was determined to be a novel copper-induced 
cell death model and considered a potential therapeutic prospect for 
tumor patients. In this study, we explored the correlation between 
cuproptosis and HNSCC and constructed a novel scoring system to 
predict the prognosis and therapeutic effects for patients.

Compared to conventional prognostic signatures, in this study, we 
focused on DEGs among cuproptosis clusters to establish the CS sys-
tem instead of the differential expression of CRGs in HNSCC patients. 
The multiomics analysis revealed a comprehensive landscape of the 
somatic mutation, CNV frequency, chromosome location and interac-
tion associated with CRGs in the TCGA-HNSC cohort. After dividing 
patients into three subtypes based on the expression of CRGs, the 
three cuproptosis clusters exhibited different survival and outcomes 
and biological function activity in HNSCC. As indicated by the GSVA 
analysis, most of the different pathways among the three cupropto-
sis subtypes were associated with DNA replication and metabolism, 
which are considered to play important roles in tumors. Based on the 
ESTIMATE, CIBERSORT and ssGSEA algorithms, diverse TME charac-
terizations identified that cuproptosis cluster A possibly exhibited the 

worst immunotherapeutic response with lower immune scores, less 
immune cell infiltration and enriched immune functions.21,22

To further assess the effects of 10 CRGs, three gene clusters 
were identified as cuproptosis patterns for HNSCC patients based 
on eight DEGs. The survival analysis revealed different OS, and 
immune-related analysis reflected a distinct tumor immune mi-
croenvironment. Among the eight DEGs, CDKN2A was consid-
ered the prognostic CRG that was upregulated in HNSCC samples. 
Previous studies determined that the CDKN2A gene is a common 
mutation of the tumor suppressor and checkpoint mediator in HPV-
negative HNSCC.23 Similarly, CDKN2A inactivation also appears 
with frequent copy number alterations in smoking-related HNSCCs. 
Therefore, CDKN2A plays important roles in the prognosis of 
HSNCC patients.24

Based on the PCA, each HNSCC patient was assessed with 
CSs and regrouped into low-CS and high-CS groups. As indicated, 
K-M survival analysis revealed that high CSs increased the risks 
and led to worse prognosis for HNSCC patients. The clinical sub-
group comparisons of age, sex and clinical stage suggest that the 
prognostic patterns were effective in all subgroups except the age 
<60 and stage I-II subgroups, which may be caused by low case 

F I G U R E  4 Correlation of CSs and subtypes. (A) Sankey plot revealing the relationship; (B) K-M analysis between the low-CS and high-CS 
groups. (C) The survival distinction of patients in the CS groups. (D–I), Relationship between CSs and clinical subtypes of HNSCC patients.
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samples. Concerning the above results, this novel scoring system 
served as a reliable prognostic biomarker with universal prognos-
tic patterns.

Reportedly, previous studies have determined that TMB 
plays crucial roles influencing prognosis and immunotherapy 

response.25–27 We explored the correlation between CSs and TMB 
and verified that CS was strongly associated with TMB. Both fac-
tors can enhance the risks and shorten the survival time for patients. 
These results suggested that the CS could be a preferable marker in 
predicting genomic aberrations.

F I G U R E  5 Tumor mutation burden analysis. (A) Waterfall plots of mutation in the low-CS group; (B) Waterfall plots of mutation in the 
high-CS group; (C) Comparison of TMB between two groups; (D) Correlation of TMB, CSs and gene clusters; (E) survival analysis between 
high and low TMB cohorts; (F) survival analysis for patients based on TMB and CSs.
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Importantly, we also assessed the TME of HNSCC patients 
with the assistance of the CS system. Accordingly, patients with 
high CSs exhibited more immune cell infiltration, especially CD8+ 
T cells, which can eliminate tumor cells, disrupt immune tolerance 
and enhance the immunotherapy response via the PD-1/PD-L1 
immune inhibitory axis.28,29 The correlation analysis of ssGSEA 
suggested that patients in the high-CS group exhibited a high im-
munotherapeutic response to ICI therapy, which coincided with 
the TMB analysis. In addition, the comparative expression of PD-1 
and CTLA4 also supported the results that the high-CS group ex-
hibited higher immune checkpoint gene expression.30,31 Moreover, 
patients in the low-CS group with an immunosuppressive TME 
may easily suffer from immune escape based on the TIDE-
related scores.32 Although there were no significant differences 
in TME scores between the two groups, other immune-related 

assessments predicted and indicated that patients with high CSs 
displayed a better immunotherapy response than those with low 
CSs.(31,33) Given these findings, cuproptosis could affect the re-
sponse to immunotherapy in HNSCC patients, and CSs can be 
considered effectively to predict the prognosis of immunotherapy. 
Moreover, we also explored the relationship between CSs and four 
therapeutic drugs. The results of drug sensitivity may promote the 
development of individualized treatment combined with immuno-
therapy and chemotherapy.2

Although we established a novel scoring system to assess the 
effects of cuproptosis on HNSCC patients, there are several limita-
tions in our study, including the lack of understanding of the mech-
anism of the effects of cuproptosis patterns on immune infiltration 
and chemotherapy in HNSCC. Further studies with large samples 
are required to test the results of these bioinformatics analyses.

F I G U R E  6 TME analysis between the low-CS and high-CS groups. (A) Comparison of immune cell infiltration based on CIBERSORT. (B) 
Correlation of CSs and immune cells based on CIBERSORT; (C) Correlation of CSs and immune cells according to ssGSEA; (D) Correlation of 
CSs and immune functions according to ssGSEA; (E) Comparison of TME scores between the two groups.
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5  |  CONCLUSION

In conclusion, we established a novel cuproptosis-related scoring 
system to predict the prognosis and immune landscape of HNSCC 
patients. This signature exhibits satisfactory predictive effects and 
the potential to guide comprehensive treatment for patients.
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