
J Clin Lab Anal. 2022;36:e24638.	 		 	 | 1 of 12
https://doi.org/10.1002/jcla.24638

wileyonlinelibrary.com/journal/jcla

Received:	30	June	2022  | Revised:	18	July	2022  | Accepted:	22	July	2022
DOI: 10.1002/jcla.24638  

R E S E A R C H  A R T I C L E

Identification of cuproptosis- related subtypes and 
characterization of the tumor microenvironment landscape in 
head and neck squamous cell carcinoma

Juntao Huang1,2  |   Ziqian Xu3 |   Zhechen Yuan1,2 |   Lixin Cheng1,2 |   
Chongchang Zhou1,2  |   Yi Shen1,2

This is an open access article under the terms of the Creative	Commons	Attribution-	NonCommercial-	NoDerivs License, which permits use and distribution in 
any	medium,	provided	the	original	work	is	properly	cited,	the	use	is	non-	commercial	and	no	modifications	or	adaptations	are	made.
©	2022	The	Authors.	Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC.

Juntao Huang and Ziqian Xu have contributed equally to this work.  

1Department of Otolaryngology Head 
and	Neck	Surgery,	Ningbo	Medical	Center	
Lihuili	Hospital,	The	Affiliated	Lihuili	
Hospital	of	Ningbo	University,	Ningbo,	
China
2School	of	Medicine,	Ningbo	University,	
Ningbo,	China
3Department	of	Dermatology,	Shanghai	
General	Hospital,	Shanghai	Jiao	Tong	
University	School	of	Medicine,	Shanghai,	
China

Correspondence
Yi	Shen,	Department	of	Otolaryngology	
Head	and	Neck	Surgery,	Ningbo	Medical	
Center	Lihuili	Hospital,	The	Affiliated	
Lihuili	Hospital	of	Ningbo	University,	
Ningbo,	Zhejiang,	China.
Email: tyzdhs@163.com

Funding information
Ningbo	Public	Science	Research	
Foundation,	Grant/Award	Number:	
2021S170;	Ningbo	Natural	Science	
Foundation,	Grant/Award	Number:	
2018A610363;	Zhejiang	Provincial	
Medical	and	Health	Science	Research	
Foundation,	Grant/Award	Number:	
2020KY274,	2020RC107	and	
2022KY1086;	National	Natural	Science	
Foundation	of	China,	Grant/Award	
Number:	81670920

Abstract
Background: Cuproptosis	is	considered	a	novel	copper-	dependent	cell	death	model.	
In	this	study,	we	established	a	novel	scoring	system	based	on	10	cuproptosis-	related	
genes (CRGs) to predict the prognosis and immune landscape of head and neck squa-
mous	cell	carcinoma	(HNSCC).
Methods: The	RNA-	seq	data	 of	HNSCC	patients	were	 downloaded	 from	 the	GEO	
and	TCGA	databases	and	were	merged	into	a	novel	HNSCC	cohort.	Multiomics	land-
scape	analyses	were	conducted,	including	tumor	mutation	burden	(TMB),	copy	num-
ber variations and the interaction network of CRGs. Patients were then divided into 
different cuproptosis subtypes based on the expression of 10 CRGs and subsequently 
regrouped	into	novel	gene	clusters	referring	to	differentially	expressed	genes.	A	cu-
proptosis	score	(CS)	system	was	established	using	principal	component	analysis.	The	
CIBERSORT,	ssGSEA	and	ESTIMATE	algorithms	were	used	to	assess	the	tumor	 im-
mune	microenvironment.	Moreover,	 the	 immunotherapeutic	and	chemotherapeutic	
responses were assessed.
Results: Patients were divided into three cuproptosis subtypes and subsequently re-
grouped	 into	three	gene	clusters,	 reflecting	different	 immune	 infiltration.	Assessed	
by	the	CS	system,	those	with	higher	CSs	exhibited	worse	prognosis	and	higher	TMB	
frequency.	Nevertheless,	the	immune-	related	analysis	revealed	patients	in	the	low-	CS	
group appeared immunosuppressive and easily suffered from immune escape. High 
CSs	possibly	show	high	expression	of	immune	checkpoint	genes	and	enhance	chemo-
therapy sensitivity to cisplatin, docetaxel, and gemcitabine.
Conclusion: We established a novel scoring system to predict the prognosis and im-
mune	 landscape	of	HNSCC	patients.	This	 signature	exhibits	 satisfactory	predictive	
effects and the potential to guide comprehensive treatment for patients.

www.wileyonlinelibrary.com/journal/jcla
https://orcid.org/0000-0002-0206-9365
https://orcid.org/0000-0002-8728-6819
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tyzdhs@163.com


2 of 12  |     HUANG et al.

1  |  INTRODUC TION

Head	 and	neck	 squamous	 cell	 carcinoma	 (HNSCC)	 is	 considered	
the most common type of head and neck cancer, with increas-
ing diagnosed cases per year and poor prognosis.1,2 To eliminate 
the tumor tissue and prolong the survival time for patients, con-
ventional treatment, including surgery, radiotherapy, and che-
motherapy, was applied; nevertheless, the prognosis remained 
unsatisfactory.3,4	 Especially	 for	 advanced	 HNSCC,	 the	 survival	
rate is approximately as low as 50%.5,6 Hence, it is crucial to ex-
plore novel methods to predict prognosis and guide treatment for 
patients.

Immune checkpoint inhibitor (ICI) antibodies are a novel treat-
ment	for	HNSCC	patients	and	have	substantially	improved	progno-
sis by identifying and eliminating tumor cells and activating patients' 
immune defense systems.7–	9 However, patients exhibit different 
immunotherapeutic responses due to differences in the tumor mi-
croenvironment	(TME),	and	a	minority	of	patients	receive	benefits.10 
According	to	compelling	evidence,	the	programmed	cell	death	pro-
cess is associated with the immunotherapy response and plays a 
core role in tumor progression.2,11

Copper plays an important role in organisms. The concentra-
tions influence the biological process and induce cell death.12	As	re-
ported	by	Tsvetkov	et	al,	cuproptosis	is	a	novel	copper-	dependent	
cell death process that is distinct from known death mechanisms 
and dependent on mitochondrial respiration regulated by target-
ing	lipoylated	components	of	the	tricarboxylic	acid	(TCA)	cycle.12 
It can be induced by mitochondrial stress, lipoylated mitochondrial 
enzyme	aggregation	and	Fe-	S	cluster	protein	loss.13,14	As	a	novel	
cell death model, cuproptosis shows great potential and prospects 
in the treatment of tumors. However, there is a lack of studies 
investigating	 the	 relationship	 between	 cuproptosis	 and	HNSCC.	
In	 this	 study,	 we	 divided	 HNSCC	 patients	 into	 novel	 molecular	
subtypes	based	on	the	expression	of	10	cuproptosis-	related	genes	
(CRGs) and subsequently constructed a novel scoring system to 
predict	the	prognosis	and	immune	landscape	of	HNSCC	according	
to the differentially expressed genes (DEGs) among the molecular 
subtypes.

2  |  METHODS AND MATERIAL S

2.1  |  Obtaining HNSCC datasets and clinical data

Head and neck squamous cell carcinoma gene expression datasets 
with detailed clinical information were downloaded from the Gene 
Expression	Omnibus	 (GEO)	and	The	Cancer	Genome	Atlas	 (TCGA)	
databases	 (last	 assessed:	 1	May	 2022).	 A	 total	 of	 three	 available	

datasets,	 including	 GSE41613	 and	 GSE65858	 from	 the	 GEO	 da-
tabase	 and	 the	 RNA	 sequencing	 (RNA-	seq)	 transcriptome	 data	 of	
the	TCGA-	HNSC	dataset	 from	 the	TCGA	database,	were	used	 for	
further	analysis.	For	the	TCGA-	HNSC	cohort,	 the	gene	expression	
matrix	was	 obtained	 as	 transcripts	 per	million	 (TPM).	 Background	
adjustment and quantitative normalization were performed, and the 
batch effect was removed to construct a novel merge gene expres-
sion matrix. To decrease the potential bias, we excluded patients 
with	short	overall	survival	(OS)	values,	which	were	less	than	30 days,	
or	missing	OS	values.

2.2  |  Multiomics landscape analysis based on CRGs 
in the TCGA- HNSC dataset

Referring to Tsvetkov et al's study, we selected 10 core CRGs 
from	the	lipoic	acid	(LA)	pathway	(including	FDX1,	LIPT1,	LIAS	and	
DLD) and the pyruvate dehydrogenase (PDH) complex (consisting 
of	 DLAT,	 PDHA1,	 PDHB,	MTF1,	 GLS	 and	 CDKN2A)	 for	 further	
analysis.12	The	expression	of	these	10	genes	between	504	HNSCC	
samples and 44 normal samples was compared by the utilization 
of the “limma” R package. The somatic mutation data of these 10 
CRGs	and	tumor	mutation	burden	(TMB)	were	analyzed	and	eval-
uated, which are reflected in the waterfall plot. In addition, the 
copy	 number	 variation	 (CNV)	 frequency	 of	 CRGs	was	 assessed.	
Moreover,	 a	 univariate	 Cox	 (uni-	Cox)	 analysis	was	 subsequently	
conducted to identify prognostic CRGs related to survival, and 
an interaction network was established to reveal the correlation 
among these 10 CRGs.

2.3  |  Molecular subtypes based on the 
expression of CRGs

Based	on	the	expression	of	CRGs,	patients	were	subsequently	divided	
into different subtypes with the use of the “ConsesusClusterPlus” R 
package.	Kaplan–	Meier	survival	analysis	was	also	conducted	to	com-
pare	 the	OS	values	 in	clusters.	Moreover,	a	heatmap	plot	was	uti-
lized to reflect the relationship between CRG expression and clinical 
characteristics.

2.4  |  Functional enrichment analysis

Gene	set	variation	analysis	(GSVA)	was	performed	to	compare	the	
differentially enriched pathways (adjusted p	 value < 0.05)	 of	 the	
cuproptosis subtypes in accordance with the assisted gene set 
(c2.cp.kegg.v6.2.-	symbols)	obtained	from	the	Molecular	Signature	
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Database.15 The differentially expressed genes (DEGs) of the cu-
proptosis subtypes were then compared in each of the two clus-
ters and identified with the criteria of adjusted p	 value < 0.05.	
Based	 on	 the	 intersection	 of	 these	 DEGs,	 gene	 ontology	 (GO)	
analysis was conducted to explore enriched GO terms, including 
biological	 processes	 (BPs),	 cellular	 components	 (CCs)	 and	 mo-
lecular	 functions	 (MFs).	 In	addition,	Kyoto	Encyclopedia	of	Gene	
and Genomes (KEGG) pathway analysis was used to identify the 
potential	pathways	enriched	in	DEGs.	All	enriched	GO	and	KEGG	
terms	were	considered	significant,	while	the	p-	value	and	q-	value	
were < 0.05.

2.5  |  Assessment of the immune landscape of 
cuproptosis clusters

The	 immune	 cell	 subsets	 of	 each	HSNCC	 sample	were	 calculated	
using	 the	 CIBERSORT	method.	Moreover,	 the	 immune	 infiltration	
statuses and immune functions were analyzed with the use of a sin-
gle	sample	gene	set	enrichment	analysis	(ssGSEA)	algorithm.	In	addi-
tion, to assess and compare the tumor immune microenvironment in 
different cuproptosis clusters, we utilized the “estimate” R package 
to	calculate	the	immune	score,	stromal	score,	ESTIMATE	score	and	
tumor	purity	of	each	HNSCC	sample.

2.6  |  Establishment of cuproptosis- related DEG 
clusters and cuproptosis scores

The DEGs of interest in cuproptosis clusters were then identi-
fied	and	selected	with	uni-	Cox	regression	analysis.	Based	on	the	
expression	 of	 these	 prognostic	 DEGs,	 the	 HNSCC	 cohort	 was	
divided	 into	 novel	 gene	 clusters.	 Kaplan–	Meier	 (K-	M)	 survival	
analysis and immune infiltration were also conducted as in the 
cuproptosis clusters, and a heatmap plot was used to show the 
correlation of cuproptosis clusters, gene clusters, CRG expression, 
and clinical features. In addition, principal component analysis 
(PCA)	was	 conducted	 to	 establish	 a	 novel	 cuproptosis	 signature	
score	system.	For	each	sample	of	the	HNSCC	dataset,	the	cuprop-
tosis score was calculated using the following formula: cuprop-
tosis	 score	 (CS)	=	 ∑PC1i + PC2i.16,17 Furthermore, based on the 
cut-	point	 survival	 analysis,	patients	were	 regrouped	 into	 low-	CS	
and	high-	CS	groups.

2.7  |  Correlation of CSs and subtypes

The	 correlations	 of	 the	 cuproptosis	 clusters,	 gene	 clusters,	 CS	
groups	 and	 survival	 status	 are	 shown	 in	 the	 Sankey	 diagram.	
Subsequently,	 the	 differences	 in	 the	 survival	 status	 of	 the	 CSs	
were analyzed and compared. In addition, survival analysis was 
conducted	between	the	two	CS	groups	and	compared	in	accord-
ance with different clinical characteristics, including age (<60 

or	≥60),	gender	 (male	or	 female)	and	clinical	stage	 (stages	 I–	II	or	
stages	III–	IV).

2.8  |  Correlation of CSs and TMB

The	 20	 topmost	 mutated	 genes	 in	 both	 the	 low-	CS	 and	 high-	CS	
groups are shown in the waterfall plots. The total mutation counts 
of	each	HNSCC	sample	were	analyzed,	and	the	tumor	mutation	bur-
den	 (TMB)	 frequency	was	compared	between	 the	 two	CS	groups.	
Spearman's	correlation	analysis	was	applied	to	explore	the	relation-
ship	between	CS	and	TMB.	Survival	analysis	was	also	conducted	to	
investigate	and	compare	 the	OS	values	 for	patients	with	different	
CSs	and	TMB	frequencies.

2.9  |  Assessment of immunotherapy and 
chemotherapy

Subsequently,	 the	 efficacy	 of	 clinical	 immunotherapy	 and	 chemo-
therapy	was	further	explored.	The	correlation	between	CSs,	immune	
cells and immune functions was assessed by the Pearson correla-
tion	test	based	on	the	ssGESA	method.	In	addition,	the	expression	of	
ICI-	related	genes,	including	PD-	1,	PD-	L1	and	CTLA,	was	compared	
between	the	low-	CS	and	high-	CS	groups.	Tumor	immune	dysfunc-
tion	and	exclusion	 (TIDE)-	related	scores,	 including	TIDE	scores,	T-	
cell	dysfunction	scores	and	T-	cell	exclusion	scores,	were	predicted	
by the TIDE database and compared to evaluate the effectiveness of 
the immunotherapy response.

Four conventional chemotherapeutic agents, including cisplatin, 
paclitaxel, docetaxel and gemcitabine, were selected to predict the 
drug sensitivity and effectiveness of chemotherapy based on the 
value	of	half-	maximum	inhibitory	concentration	(IC50)	via	the	“pR-
Rophetic” R package.

3  |  RESULTS

3.1  |  Multiomics landscape analysis in the TCGA- 
HNSC cohort

With the utilization of the “limma” R package, the differentially ex-
pressed CRGs are shown in Figure 1A,	including	DLAT,	PDHB,	GLS	
and	 CDKN2A.	 Among	 them,	 GLS	 and	 CDKN2A	 were	 considered	
upregulated	in	tumor	samples;	nevertheless,	DLAT	and	PDHB	were	
downregulated.	Accordingly,	 the	overall	mutation	 rate	of	10	CRGs	
was	 22.75%,	 and	 CDKN2A	 appeared	 to	 have	 the	 highest	 muta-
tion rate (20% total). (Figure 1B)	In	addition,	CNV	analysis	revealed	
that	 FDX1,	 DLAT	 and	 CDKN2A	 perform	 copy	 number	 deletions	
(Figure 1C), and the locations of these 10 CRGs on the chromosomal 
rcircos are shown in Figure 1D.	Moreover,	 the	 interaction	 and	 in-
terconnection	of	10	CRGs	and	their	efficacy	on	the	patient	OS	are	
described in Figure 1E.
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F I G U R E  1 Multiomics	analysis	of	CRGs	in	TCGA-	HNSC.	(A)	Boxplots	of	differential	expressed	CRGs;	(B)	Tumor	mutation	frequency	of	
CRGs;	(C)	CNV	frequency	of	CRGs	in	TCGA-	HNSC	cohort;	(D)	The	location	of	PRGs	with	CNV	mutation	on	chromosomes;	(E)	Interaction	
among	CRGs	in	HNSCC	patients.
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3.2  |  Subtypes based on the expression of CRGs

Based	on	 the	expression	of	10	CRGs,	 patients	were	 subsequently	
divided into three clusters with the use of the “ConsensusCluster” 
R	package.	The	K-	M	survival	indicated	that	these	three	clusters	had	
significantly	different	OS	(p =	0.047),	which	suggested	that	patients	
in	cluster	A	had	the	worst	prognosis.	(Figure 2A) The heatmap plot 
reflected	 different	 expressions	 of	 CRGs,	 and	 the	 CDKN2A	 gene	
was	mostly	 upregulated	 in	 cluster	B	 but	 downregulated	 in	 cluster	
A.	(Figure 2B)	In	addition,	the	GSVA	analysis	determined	that	there	
were many more differentially enriched KEGG pathways between 
cluster	B	and	cluster	C.	(Figure 2C and Figures S1 and S2)	Moreover,	
according	 to	 the	 results	 of	 CIBERSORT,	 cluster	 B	 had	 more	 im-
mune cell infiltration, including CD8+ T cells, activated CD4+ T 
cells	and	M1	macrophages.	(Figure 2D)	The	results	of	ssGSEA	also	
supported	 the	CIBERSORT	analysis	and	determined	 that	cluster	B	
was	more	associated	with	APC	coinhibition;	nevertheless,	cluster	C	
was more associated with the activation of immune functions (e.g., 
CCR). (Figure 2E,F) In addition, referring to the application of the 
“estimate”	 R	 package,	 differences	 in	 the	 TME	 scores	 among	 the	
three cuproptosis clusters were investigated and are summarized in 
Figure 2G.	As	shown	in	the	boxplots,	patients	 in	cluster	C	had	the	
highest	 immune	scores	and	the	 lowest	tumor	purity,	and	cluster	B	
had the lowest stromal scores, but there were no significant differ-
ences	among	the	three	cuproptosis	clusters	for	the	ESTIMATE	score.

3.3  |  Gene clusters based on prognostic DEGs

According	 to	 the	Venn	diagram,	 there	were	112	DEGs	among	 the	
three clusters. (Figure S3) GO and KEGG enrichment analyses sug-
gested	that	these	112	DEGs	may	be	mostly	enriched	in	the	DNA	rep-
lication	of	BPs,	chromosomal	region	of	CCs,	catalytic	activity	acting	
on	DNA	of	MFs	and	DNA	replication	pathways.	(Figures	S4 and S5) 
Among	them,	eight	genes	were	considered	associated	with	patient	
survival,	including	CDKN2A,	PRELID2,	ANP32B,	MRPL47,	CCDC59,	
WDR90,	NLRX1	and	KCNK6.	 (Figure 3A)	Based	on	the	expression	
of	these	eight	DEGs,	the	HNSCC	patients	were	then	regrouped	into	
three	gene	clusters,	and	 the	K-	M	curves	suggested	significant	dif-
ferences	 in	OS	among	these	gene	clusters.	 (Figure 3B)	A	heatmap	
of the gene clusters showed the relationship among gene expres-
sion, cuproptosis clusters, gene clusters and clinical characteristics. 
(Figure 3C) In addition, the boxplot in Figure 3D reflected the CRG 
distribution	in	three	gene	clusters,	indicating	that	cluster	A	had	the	
highest	expression	of	GLS	and	cluster	C	had	the	highest	expression	
of	FDX1,	DLAT	and	MTF1.	However,	cluster	B	displayed	the	most	
high	 CRG	 expression,	 including	 LIAS,	 LIPT1,	 PDHA1	 PDHB	 and	
CDKN2A.	Furthermore,	as	 reflected	by	 the	 results	of	CIBERSORT	
and	 ssGSEA,	 cluster	 B	 and	 cluster	 C	 represented	much	more	 en-
riched immune infiltration and immune functions. (Figure 3E–	G)	By	
comparing	TME	scores	among	 the	 three	gene	clusters,	patients	 in	
gene	 cluster	 B	were	 assessed	 to	 have	 the	 lowest	 immune	 scores,	
stromal	 scores,	 ESTIMATE	 scores	 and	 the	 highest	 tumor	 purity;	

nevertheless,	there	was	no	difference	in	TME	scores	between	clus-
ters	A	and	C.	(Figure 3H).

3.4  |  Correlation of CSs and subtypes

Concerning	the	PCA,	patients	in	the	HNSCC	cohort	were	assessed	
with	the	cuproptosis	score	and	were	divided	into	low-	CS	and	high-
	CS	groups.	As	shown	in	the	Sankey	plot,	the	correlations	of	cuprop-
tosis	 clusters,	 gene	 clusters,	 CS	 groups	 and	 survival	 status	 were	
revealed. (Figure 4A)	The	K-	M	survival	analysis,	as	well	as	barplots	
and	 boxplots,	 suggested	 that	 patients	with	 high	CSs	 had	 a	worse	
prognosis. (Figure 4B,C)	Comparing	the	OS	between	the	low-	CS	and	
high-	CS	groups	with	different	clinical	characteristics,	patients	in	the	
low-	CS	group	exhibited	better	prognosis	with	clinical	features	of	age	
≥60,	males,	females	or	stages	III-	IV.	However,	there	were	no	differ-
ences	between	the	two	CS	groups	in	groups	of	age	<60 and stages 
I–	II.	(Figure 4D–	I).

3.5  |  Correlation between CSs and TMB

Waterfall	plots	of	 the	TMB	 in	 the	 low-	CS	and	high-	CS	groups	are	
shown in Figure 5A,B.	Based	on	the	Wilcoxon	signed-	rank	test	and	
Spearman's	correlation	analysis,	patients	in	the	low-	CS	group	had	a	
lower	TMB	than	those	in	the	high-	CS	group,	and	CSs	were	positively	
correlated	with	TMB.	(Figure 5C,D)	Moreover,	considering	the	sur-
vival	analysis	of	TMB,	patients	with	high	TMB	had	a	worse	progno-
sis,	especially	when	combined	with	high	CSs.	(Figure 5E,F).

3.6  |  TME, immunotherapeutic and 
chemotherapeutic response

As	suggested	by	the	CIBERSORT	algorithm,	the	CSs	exhibited	a	posi-
tive	correlation	with	naive	B	cells,	monocytes	and	activated	CD4+ 
memory T cells infiltration. In contrast, gamma delta T cells, acti-
vated dendritic cells, resting dendritic cells, neutrophils and plasma 
cells	were	negatively	associated	with	CSs.	(Figure 6A,B) The correla-
tion	analysis	based	on	ssGSEA	also	supported	the	CIBERSORT	re-
sults	regarding	immune	cell	infiltration,	which	showed	that	CSs	had	
a	positive	correlation	with	activated	B	cells,	CD4+ T cells and CD8+ 
T cells. (Figure 6C)	In	addition,	CSs	were	positively	correlated	with	
most immune functions. (Figure 6D) However, there were no sig-
nificant	differences	in	TME	scores	between	the	low-	CS	and	high-	CS	
groups. (Figure 6E) Regarding the expression of ICI genes, patients 
in	the	high-	CS	group	exhibited	higher	expression	of	PD-	1	and	CTLA4	
than	those	in	the	low-	CS	group.	(Figure 7A)	Moreover,	referring	to	
the	analysis	of	TIDE-	related	scores,	patients	with	high	CSs	had	sig-
nificantly higher exclusion scores, lower TIDE scores and lower T cell 
dysfunction	 scores	 than	 low-	CS	 patients.	 (Figure 7B) Given these 
findings,	patients	with	high	CSs	may	possibly	be	more	sensitive	to	
immunotherapy.
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Similarly,	we	also	assessed	the	drug	sensitivity	of	four	conventional	
chemotherapeutic	 agents.	 Based	 on	 the	 IC50	 values,	 the	 CSs	 were	
negatively correlated with the IC50 values of cisplatin, docetaxel, and 

gemcitabine,	which	indicated	that	patients	with	high	CSs	were	more	sen-
sitive	to	these	three	drugs.	However,	patients	in	the	low-	CS	group	exhib-
ited lower IC50 values and higher sensitivity to paclitaxel. (Figure 7C,D).

F I G U R E  2 Subtypes	based	on	the	expression	of	CRGs.	(A)	Kaplan-	Meier	survival	analysis	among	three	clusters;	(B)	Heatmap	of	CRGs,	
clinical	features	in	subtypes;	(C)	GSVA	analysis	between	cluster	B	and	C;	(D)	CIBERSORT	analysis;	(E)	Immune	cell	infiltration	based	on	
ssGSEA;	(F)	Immune	function	analysis	in	cuproptosis	clusters;	(G)	TME	scores	based	on	ESTIMATE	algorithm.
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4  |  DISCUSSION

Considering the poor prognosis and therapeutic efficacy for ad-
vanced	HNSCC	patients,	a	novel	accurate	prognostic	model	is	crucial	

to predict prognosis and guide individualized and precise treatment.1,2 
Previous studies have determined that the programmed cell death 
process is involved in metabolizing tumor cell biological processes 
of	proliferation,	migration	and	 invasion	and	the	TME,	which	can	be	

F I G U R E  3 Gene	cluster	based	on	prognostic	DEGs.	(A)	Forest	plot	of	prognostic	DEGs.	(B)	Kaplan-	Meier	survival	analysis	among	three	
gene clusters; (C) Heatmap of CRGs, clinical features, cuproptosis subtypes and gene clusters; (D) Expression of CRGs in gene clusters; (E) 
CIBERSORT	analysis	in	gene	clusters;	(F)	Immune	cell	infiltration	in	gene	clusters;	(G)	Immune	function	in	gene	clusters;	(H)	TME	scores	in	
gene clusters.
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considered novel prognostic biomarkers and potential therapeutic 
targets.18–	20 Referring to a recent study investigated by Tsvetkov 
et al.12	 cuproptosis	 was	 determined	 to	 be	 a	 novel	 copper-	induced	
cell death model and considered a potential therapeutic prospect for 
tumor patients. In this study, we explored the correlation between 
cuproptosis	and	HNSCC	and	constructed	a	novel	scoring	system	to	
predict the prognosis and therapeutic effects for patients.

Compared to conventional prognostic signatures, in this study, we 
focused	on	DEGs	among	cuproptosis	clusters	to	establish	the	CS	sys-
tem	instead	of	the	differential	expression	of	CRGs	in	HNSCC	patients.	
The multiomics analysis revealed a comprehensive landscape of the 
somatic	mutation,	CNV	frequency,	chromosome	location	and	interac-
tion	associated	with	CRGs	in	the	TCGA-	HNSC	cohort.	After	dividing	
patients into three subtypes based on the expression of CRGs, the 
three cuproptosis clusters exhibited different survival and outcomes 
and	biological	function	activity	in	HNSCC.	As	indicated	by	the	GSVA	
analysis, most of the different pathways among the three cupropto-
sis	 subtypes	were	associated	with	DNA	replication	and	metabolism,	
which	are	considered	to	play	important	roles	in	tumors.	Based	on	the	
ESTIMATE,	CIBERSORT	and	ssGSEA	algorithms,	diverse	TME	charac-
terizations	identified	that	cuproptosis	cluster	A	possibly	exhibited	the	

worst immunotherapeutic response with lower immune scores, less 
immune cell infiltration and enriched immune functions.21,22

To further assess the effects of 10 CRGs, three gene clusters 
were	 identified	as	cuproptosis	patterns	for	HNSCC	patients	based	
on	 eight	 DEGs.	 The	 survival	 analysis	 revealed	 different	 OS,	 and	
immune-	related	 analysis	 reflected	 a	 distinct	 tumor	 immune	 mi-
croenvironment.	 Among	 the	 eight	 DEGs,	 CDKN2A	 was	 consid-
ered	the	prognostic	CRG	that	was	upregulated	in	HNSCC	samples.	
Previous	studies	determined	 that	 the	CDKN2A	gene	 is	a	common	
mutation	of	the	tumor	suppressor	and	checkpoint	mediator	in	HPV-	
negative	 HNSCC.23	 Similarly,	 CDKN2A	 inactivation	 also	 appears	
with	frequent	copy	number	alterations	in	smoking-	related	HNSCCs.	
Therefore,	 CDKN2A	 plays	 important	 roles	 in	 the	 prognosis	 of	
HSNCC	patients.24

Based	 on	 the	 PCA,	 each	 HNSCC	 patient	 was	 assessed	 with	
CSs	and	regrouped	into	low-	CS	and	high-	CS	groups.	As	indicated,	
K-	M	 survival	 analysis	 revealed	 that	 high	CSs	 increased	 the	 risks	
and	led	to	worse	prognosis	for	HNSCC	patients.	The	clinical	sub-
group comparisons of age, sex and clinical stage suggest that the 
prognostic patterns were effective in all subgroups except the age 
<60	and	stage	 I-	II	 subgroups,	which	may	be	caused	by	 low	case	

F I G U R E  4 Correlation	of	CSs	and	subtypes.	(A)	Sankey	plot	revealing	the	relationship;	(B)	K-	M	analysis	between	the	low-	CS	and	high-	CS	
groups.	(C)	The	survival	distinction	of	patients	in	the	CS	groups.	(D–	I),	Relationship	between	CSs	and	clinical	subtypes	of	HNSCC	patients.
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samples. Concerning the above results, this novel scoring system 
served as a reliable prognostic biomarker with universal prognos-
tic patterns.

Reportedly,	 previous	 studies	 have	 determined	 that	 TMB	
plays crucial roles influencing prognosis and immunotherapy 

response.25–	27	We	explored	the	correlation	between	CSs	and	TMB	
and	verified	 that	CS	was	 strongly	associated	with	TMB.	Both	 fac-
tors can enhance the risks and shorten the survival time for patients. 
These	results	suggested	that	the	CS	could	be	a	preferable	marker	in	
predicting genomic aberrations.

F I G U R E  5 Tumor	mutation	burden	analysis.	(A)	Waterfall	plots	of	mutation	in	the	low-	CS	group;	(B)	Waterfall	plots	of	mutation	in	the	
high-	CS	group;	(C)	Comparison	of	TMB	between	two	groups;	(D)	Correlation	of	TMB,	CSs	and	gene	clusters;	(E)	survival	analysis	between	
high	and	low	TMB	cohorts;	(F)	survival	analysis	for	patients	based	on	TMB	and	CSs.
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Importantly,	 we	 also	 assessed	 the	 TME	 of	 HNSCC	 patients	
with	 the	assistance	of	 the	CS	system.	Accordingly,	patients	with	
high	CSs	exhibited	more	immune	cell	infiltration,	especially	CD8+ 
T cells, which can eliminate tumor cells, disrupt immune tolerance 
and	 enhance	 the	 immunotherapy	 response	 via	 the	 PD-	1/PD-	L1	
immune inhibitory axis.28,29	 The	 correlation	 analysis	 of	 ssGSEA	
suggested	that	patients	in	the	high-	CS	group	exhibited	a	high	im-
munotherapeutic response to ICI therapy, which coincided with 
the	TMB	analysis.	In	addition,	the	comparative	expression	of	PD-	1	
and	CTLA4	also	supported	the	results	that	the	high-	CS	group	ex-
hibited higher immune checkpoint gene expression.30,31	Moreover,	
patients	 in	 the	 low-	CS	 group	 with	 an	 immunosuppressive	 TME	
may	 easily	 suffer	 from	 immune	 escape	 based	 on	 the	 TIDE-	
related scores.32	 Although	 there	were	 no	 significant	 differences	
in	 TME	 scores	 between	 the	 two	 groups,	 other	 immune-	related	

assessments	predicted	and	indicated	that	patients	with	high	CSs	
displayed a better immunotherapy response than those with low 
CSs.(31,33) Given these findings, cuproptosis could affect the re-
sponse	 to	 immunotherapy	 in	 HNSCC	 patients,	 and	 CSs	 can	 be	
considered effectively to predict the prognosis of immunotherapy. 
Moreover,	we	also	explored	the	relationship	between	CSs	and	four	
therapeutic drugs. The results of drug sensitivity may promote the 
development of individualized treatment combined with immuno-
therapy and chemotherapy.2

Although	we	established	a	novel	scoring	system	to	assess	the	
effects	of	cuproptosis	on	HNSCC	patients,	there	are	several	limita-
tions in our study, including the lack of understanding of the mech-
anism of the effects of cuproptosis patterns on immune infiltration 
and	chemotherapy	 in	HNSCC.	Further	studies	with	 large	samples	
are required to test the results of these bioinformatics analyses.

F I G U R E  6 TME	analysis	between	the	low-	CS	and	high-	CS	groups.	(A)	Comparison	of	immune	cell	infiltration	based	on	CIBERSORT.	(B)	
Correlation	of	CSs	and	immune	cells	based	on	CIBERSORT;	(C)	Correlation	of	CSs	and	immune	cells	according	to	ssGSEA;	(D)	Correlation	of	
CSs	and	immune	functions	according	to	ssGSEA;	(E)	Comparison	of	TME	scores	between	the	two	groups.
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5  |  CONCLUSION

In	 conclusion,	 we	 established	 a	 novel	 cuproptosis-	related	 scoring	
system	to	predict	the	prognosis	and	immune	landscape	of	HNSCC	
patients. This signature exhibits satisfactory predictive effects and 
the potential to guide comprehensive treatment for patients.

AUTHOR CONTRIBUTIONS
All	persons	designated	as	the	authors	have	participated	sufficiently	in	
the work to take public responsibility for the content of the manuscript.

ACKNOWLEDG EMENT
This	study	was	supported	by	the	National	Natural	Science	Foundation	
of	 China	 (No.	 81670920),	 Zhejiang	 Provincial	Medical	 and	Health	
Science	 Research	 Foundation	 (No.	 2020RC107,	 No.	 2020KY274	
and	 No.	 2022KY1086),	 Ningbo	 Natural	 Science	 Foundation	 (No.	
2018A610363),	 and	 Ningbo	 Public	 Science	 Research	 Foundation	
(No.	2021S170).

CONFLIC T OF INTERE S T
There are no conflicts of interests.

F I G U R E  7 Assessment	of	immunotherapy	and	chemotherapy.	(A)	Comparative	expression	of	PD-	1,	PD-	L1	and	CTLA4	between	the	
low-	CS	and	high-	CS	groups;	(B)	TIDE-	related	scores	in	two	groups;	(C)	Comparison	of	IC50	value	of	cisplatin,	paclitaxel,	docetaxel,	and	
gemcitabine;	(D)	Correlation	between	CSs	and	IC50	values	of	cisplatin,	paclitaxel,	docetaxel,	and	gemcitabine.



12 of 12  |     HUANG et al.

DATA AVAIL ABILIT Y S TATEMENT
The data used to support the findings of this study comes from the 
public database and are available from the corresponding author 
upon request.

ORCID
Juntao Huang  https://orcid.org/0000-0002-0206-9365 
Chongchang Zhou  https://orcid.org/0000-0002-8728-6819 

R E FE R E N C E S
	 1.	 Bray	 F,	 Ferlay	 J,	 Soerjomataram	 I,	 Siegel	 RL,	 Torre	 LA,	 Jemal	 A.	

Global	cancer	statistics	2018:	GLOBOCAN	estimates	of	incidence	
and mortality worldwide for 36 cancers in 185 countries. CA Cancer 
J Clin.	2018;68:394-	424.

	 2.	 Huang	J,	Xu	Z,	Teh	BM,	et	al.	Construction	of	a	necroptosis-	related	
lncRNA	signature	to	predict	the	prognosis	and	immune	microenvi-
ronment of head and neck squamous cell carcinoma. J Clin Lab Anal. 
2022;36(6):e24480.

	 3.	 Kaidar-	Person	O,	 Gil	 Z,	 Billan	 S.	 Precision	medicine	 in	 head	 and	
neck cancer. Drug Resist Updat.	2018;40:13-	16.

	 4.	 Canning	M,	Guo	G,	Yu	M,	et	al.	Heterogeneity	of	the	head	and	neck	
squamous cell carcinoma immune landscape and its impact on im-
munotherapy. Front Cell Dev Biol.	2019;7:52.

	 5.	 Samra	B,	Tam	E,	Baseri	B,	Shapira	I.	Checkpoint	inhibitors	in	head	
and neck cancer: current knowledge and perspectives. J Invest Med. 
2018;66:1023-	1030.

	 6.	 Muzaffar	J,	Bari	S,	Kirtane	K,	Chung	CH.	Recent	advances	and	fu-
ture directions in clinical management of head and neck squamous 
cell carcinoma. Cancer. 2021;13:338.

	 7.	 Ferris	RL,	Blumenschein	G,	Fayette	 J,	 et	 al.	Nivolumab	 for	 recur-
rent	squamous-	cell	carcinoma	of	the	head	and	neck.	N Engl J Med. 
2016;375:1856-	1867.

	 8.	 Gillison	ML,	Blumenschein	G,	Fayette	J,	et	al.	CheckMate	141:	1-	
year	update	and	subgroup	analysis	of	nivolumab	as	first-	line	ther-
apy in patients with recurrent/metastatic head and neck cancer. 
Oncologist.	2018;23:1079-	1082.

	 9.	 Seiwert	TY,	Burtness	B,	Mehra	R,	et	al.	Safety	and	clinical	activity	of	
pembrolizumab for treatment of recurrent or metastatic squamous 
cell	 carcinoma	 of	 the	 head	 and	 neck	 (KEYNOTE-	012):	 an	 open-	
label, multicentre, phase 1b trial. Lancet Oncol.	2016;17:956-	965.

	10.	 Ferris	RL,	Whiteside	TL,	Ferrone	S.	Immune	escape	associated	with	
functional	 defects	 in	 antigen-	processing	 machinery	 in	 head	 and	
neck cancer. Clin Cancer Res.	2006;12:3890-	3895.

	11.	 Deng	H,	Wei	Z,	Qiu	S,	et	al.	Pyroptosis	patterns	and	immune	infil-
trates characterization in head and neck squamous cell carcinoma. 
J Clin Lab Anal.	2022;36(4):e24292.

	12.	 Tsvetkov	P,	Coy	S,	Petrova	B,	et	al.	Copper	induces	cell	death	by	tar-
geting	lipoylated	TCA	cycle	proteins.	Science.	2022;375:1254-	1261.

	13.	 Tang	D,	Chen	X,	Kroemer	G.	Cuproptosis:	a	copper-	triggered	mo-
dality of mitochondrial cell death. Cell Res.	2022;32:417-	418.

	14.	 Cobine	PA,	Moore	SA,	Leary	SC.	Getting	out	what	you	put	in:	cop-
per in mitochondria and its impacts on human disease. Biochim 
Biophys Acta Mol Cell Res.	2021;1868:118867.

	15.	 Hänzelmann	S,	Castelo	R,	Guinney	J.	GSVA:	gene	set	variation	analy-
sis	for	microarray	and	RNA-	seq	data.	BMC Bioinformatics.	2013;14:7.

	16.	 Zhang	B,	Wu	Q,	Li	B,	Wang	D,	Wang	L,	Zhou	YL.	m6A	regulator-	
mediated methylation modification patterns and tumor microenvi-
ronment infiltration characterization in gastric cancer. Mol Cancer. 
2020;19(1):53.

	17.	 Yang	Z,	Ming	X,	Huang	S,	Yang	M,	Zhou	X,	Fang	J.	Comprehensive	
analysis	of	mA	regulators	characterized	by	the	immune	cell	infiltra-
tion in head and neck squamous cell carcinoma to aid immunother-
apy and chemotherapy. Front Oncol.	2021;11:764798.

	18.	 Snyder	AG,	Hubbard	NW,	Messmer	MN,	 et	 al.	 Intratumoral	 acti-
vation of the necroptotic pathway components RIPK1 and RIPK3 
potentiates antitumor immunity. Sci Immunol.	2019;4:eaaw2004.

	19.	 Yang	Z,	Jiang	B,	Wang	Y,	et	al.	2-	HG	inhibits	necroptosis	by	stimu-
lating	DNMT1-	dependent	hypermethylation	of	the	RIP3	promoter.	
Cell Rep.	2017;19:1846-	1857.

	20.	 Yatim	N,	Jusforgues-	Saklani	H,	Orozco	S,	et	al.	RIPK1	and	NF-	κB	
signaling	 in	dying	cells	determines	cross-	priming	of	CD8+ T cells. 
Science.	2015;350:328-	334.

	21.	 Frankel	T,	Lanfranca	MP,	Zou	W.	The	role	of	tumor	microenviron-
ment in cancer immunotherapy. Adv Exp Med Biol.	2017;1036:51-	64.

	22.	 Pitt	JM,	Marabelle	A,	Eggermont	A,	Soria	JC,	Kroemer	G,	Zitvogel	
L. Targeting the tumor microenvironment: removing obstruction 
to anticancer immune responses and immunotherapy. Ann Oncol. 
2016;27:1482-	1492.

	23.	 Leemans	CR,	Snijders	PJF,	Brakenhoff	RH.	The	molecular	landscape	
of head and neck cancer. Nat Rev Cancer.	2018;18:269-	282.

	24.	 Network	CGA.	Comprehensive	genomic	 characterization	of	head	
and neck squamous cell carcinomas. Nature.	2015;517:576-	582.

	25.	 Liu	L,	Bai	X,	Wang	J,	et	al.	Combination	of	TMB	and	CNA	strati-
fies prognostic and predictive responses to immunotherapy across 
metastatic cancer. Clin Cancer Res.	2019;25:7413-	7423.

	26.	 Zhang	L,	Li	B,	Peng	Y,	et	al.	The	prognostic	value	of	TMB	and	the	
relationship	 between	 TMB	 and	 immune	 infiltration	 in	 head	 and	
neck	squamous	cell	carcinoma:	a	gene	expression-	based	study.	Oral 
Oncol.	2020;110:104943.

	27.	 George	S,	Miao	D,	Demetri	GD,	et	al.	Loss	of	PTEN	 is	associated	
with	resistance	to	anti-	PD-	1	checkpoint	blockade	therapy	in	meta-
static uterine leiomyosarcoma. Immunity.	2017;46:197-	204.

 28. Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up 
the tumor microenvironment. Trends Cancer.	2020;6:605-	618.

	29.	 McGranahan	N,	Furness	AJS,	Rosenthal	R,	et	al.	Clonal	neoantigens	
elicit T cell immunoreactivity and sensitivity to immune checkpoint 
blockade. Science.	2016;351:1463-	1469.

	30.	 Yan	L,	Song	X,	Yang	G,	Zou	L,	Zhu	Y,	Wang	X.	 Identification	and	
validation of immune infiltration phenotypes in laryngeal squamous 
cell	 carcinoma	by	 integrative	multi-	omics	analysis.	Front Immunol. 
2022;13:843467.

	31.	 Zheng	Y,	Tian	H,	Zhou	Z,	et	al.	A	novel	immune-	related	prognostic	
model for response to immunotherapy and survival in patients with 
lung adenocarcinoma. Front Cell Dev Biol.	2021;9:651406.

	32.	 Jiang	 P,	 Gu	 S,	 Pan	D,	 et	 al.	 Signatures	 of	 T	 cell	 dysfunction	 and	
exclusion predict cancer immunotherapy response. Nat Med. 
2018;24:1550-	1558.

 33. Immunotherapy in head and neck cancers: a new challenge for 
immunologists, pathologists and clinicians. Cancer Treat Rev. 
2018;65:54-	64.

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Huang J, Xu Z, Yuan Z, Cheng L, Zhou 
C,	Shen	Y.	Identification	of	cuproptosis-	related	subtypes	and	
characterization of the tumor microenvironment landscape in 
head and neck squamous cell carcinoma. J Clin Lab Anal. 
2022;36:e24638. doi: 10.1002/jcla.24638

https://orcid.org/0000-0002-0206-9365
https://orcid.org/0000-0002-0206-9365
https://orcid.org/0000-0002-8728-6819
https://orcid.org/0000-0002-8728-6819
https://doi.org/10.1002/jcla.24638

	Identification of cuproptosis-related subtypes and characterization of the tumor microenvironment landscape in head and neck squamous cell carcinoma
	Abstract
	1|INTRODUCTION
	2|METHODS AND MATERIALS
	2.1|Obtaining HNSCC datasets and clinical data
	2.2|Multiomics landscape analysis based on CRGs in the TCGA-HNSC dataset
	2.3|Molecular subtypes based on the expression of CRGs
	2.4|Functional enrichment analysis
	2.5|Assessment of the immune landscape of cuproptosis clusters
	2.6|Establishment of cuproptosis-related DEG clusters and cuproptosis scores
	2.7|Correlation of CSs and subtypes
	2.8|Correlation of CSs and TMB
	2.9|Assessment of immunotherapy and chemotherapy

	3|RESULTS
	3.1|Multiomics landscape analysis in the TCGA-HNSC cohort
	3.2|Subtypes based on the expression of CRGs
	3.3|Gene clusters based on prognostic DEGs
	3.4|Correlation of CSs and subtypes
	3.5|Correlation between CSs and TMB
	3.6|TME, immunotherapeutic and chemotherapeutic response

	4|DISCUSSION
	5|CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENT
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


