
nutrients

Article

Identification of Cyclopropane Fatty Acids in Human
Plasma after Controlled Dietary Intake of
Specific Foods

Veronica Lolli 1 , Margherita Dall’Asta 2,* , Daniele Del Rio 3,4 and Augusta Caligiani 1

1 Department of Food and Drug, University of Parma, 43124 Parma, Italy; veronica.lolli@unipr.it (V.L.);
augusta.caligiani@unipr.it (A.C.)

2 Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore,
29122 Piacenza, Italy

3 Department of Veterinary Science, University of Parma, 43126 Parma, Italy; daniele.delrio@unipr.it
4 School of Advanced Studies on Food and Nutrition, University of Parma, 43124 Parma, Italy
* Correspondence: margherita.dallasta@unicatt.it

Received: 14 October 2020; Accepted: 27 October 2020; Published: 30 October 2020
����������
�������

Abstract: Cyclopropane fatty acids (CPFAs) are an investigated class of secondary fatty acids
of microbial origin recently identified in foods. Even though the dietary daily intake of
this class of compounds it has been recently estimated as not negligible, to date, no studies
specifically have investigated their presence in human plasma after consumption of CPFA-rich
sources. Therefore, the aims of this study were (i) to test CPFAs concentration in human plasma,
thus demonstrating their in vivo bioaccessibility and potential bioavailability, (ii) to investigate a
dose-response relationship between medium term chronic intake of CPFAs-rich foods and both
CPFAs and plasma total fatty acid profiles in healthy subjects. Ten healthy normal weight adults
were enrolled for conducting an in vivo study. Participants were asked to follow a CPFA-controlled
diet for 3 weeks, consuming 50 g of Grana Padano cheese (GP) and 250 mL of whole cow milk,
which correspond to a total of 22.1 mg of CPFAs. Fasting CPFAs concentration were monitored for
eight timepoints during the whole study and plasma total fatty acids composition was determined
by GC-MS. CPFAs, mainly dihydrosterculic acid (DHSA), were identified in plasma total fatty
acids profile at the beginning of the study and after dietary treatment. A significant (p < 0.05)
increase of CPFAs mean plasma concentration (n = 10) were observed at the end of the dietary
intervention. Contrarily, the total fatty acids composition of the general plasma fatty acids profile did
not significantly change (p ≥ 0.05) during the dietary intervention period. This is the first investigation
demonstrating that CPFAs are bioaccessible in vivo and, as expected, their plasmatic concentration
may be affected by consumption of CPFAs-rich foods. This research will open the door to further
detailed research, which may better elucidate the role of these compounds in human health.

Keywords: dihydrosterculic acid; food intake; dairy foods; Grana Padano cheese; GC-MS;
in vivo bioaccessibility

1. Introduction

Cyclopropane fatty acids (CPFAs), as dihydrosterculic (cis-9,10-methyleneoctadecanoic) (DHSA)
and lactobacillic (cis-11,12-methyleneoctadecanoic) acids, are unusual alicyclic fatty acids that occur in
plants, fungi, and both Gram-negative (e.g., Escherichia coli) and Gram-positive (e.g., Lactobacillus sp.)
microorganisms, as well as Protozoa and Myriapoda [1–4]. Some papers suggest that CPFAs are
involved in the bacterial pathogenesis of infections and in the resistance of some bacterial strains such
as Lactobacillus sp., Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Pseudomonas to
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different environmental stresses (e.g., temperature changes, high osmolarity, solvents, acid pH and
others), as the presence of antibiotics or heavy metals in the culture medium [5,6]. However, the real
significance of these fatty acids in their natural context is poorly known, as well as their occurrence in
higher animals. Recently, CPFAs were detected in significant amounts, especially in cow milk and
several dairy products (ranging between 9.0–30.0 mg/100 g) and in bovine meat (ranging between
0.7–4.0 mg/100 g) but also in some species of fish and mushrooms [7–10]. The occurrence of CPFAs in
foods has been suggested to mainly derive from the use of silages in animal feeding, where CPFAs
can be released by epiphytic lactic acid bacteria (LAB) during the ensiling process [7]. All these
previous data indicated that the environmental conditions developed in maize silos are essential for the
production and release of CPFAs from LAB in cow milk, whereas rumen digestion and food processing
did not affect CPFAs content [7,8,10]. Our previous results [10] also showed that the most important
CPFAs food sources in the Italian diet were dairy products and bovine meat. CPFAs daily intake
from these food items was not negligible, and worth studying to investigate their potential biological
effects on humans. Furthermore, we recently reported CPFAs digestibility after in vitro simulated
human gastrointestinal digestion [11], so their potential bioaccessibility and distribution in human
tissues. Existing human studies identified CPFAs (mainly cyclopropaneoctanoic acid 2-hexyl) in both
human serum and adipose tissue [12,13], suggesting that these fatty acids are efficiently absorbed and
may play a physiological role in the human body. Moreover, fatty acids containing cyclopropenoid
rings (especially the unsaturated analogues) have been reported to influence lipid metabolism, kidney
function, inflammation, and enzymes activity as cyclooxygenase and stearoyl-CoA desaturase [14–19].
To the best of our knowledge, no information is present in the literature about the fate of CPFAs
within the human body, and a thorough investigation on CPFAs in vivo bioaccessibility and how they
accumulate and are metabolized in humans is needed. Therefore, any data about their occurrence
in vivo are particularly useful, to give a further understanding of the interrelationship between diet,
bioaccessibility, and human health. This work deals with a pilot investigation to determine CPFAs
in human plasma after the administration of tested CPFA-containing foods, in order to assess their
plasmatic concentration, proving their presence in human plasma, and possibly to correlate their
presence with the medium-term chronic exposure to CPFAs-rich foods.

2. Materials and Methods

2.1. Ethics

The study was conducted according to the guidelines of the Declaration of Helsinki and the
research protocol was approved by IRB—Institutional Review Board of the University of Parma
(Prot. n. 0081/2017) and registered on www.clinicaltrial.gov (ID: NCT03612700) before the starting.
All subjects gave written informed consent to participate in the study.

2.2. Participant Characteristics

A total of ten (n = 10) healthy subjects were recruited and they attended a screening visit to
determine eligibility for the study. The exclusion criteria were age (<18), BMI < 19 kg/m2 or ≥30 kg/m2,
any gastrointestinal diseases (e.g., irritable bowel syndrome, infections, diverticular diseases, colitis,
colon polyps, autoimmune intestinal diseases and cancer), coeliac disease, hypertriglyceridemia
(>150 mg/dL) and hypercholesterolemia (>200 mg/dL), use of food supplements or medicaments
interfering with lipid metabolism, pregnancy, and breastfeeding.

Characteristics of the subjects enrolled at the baseline are presented in Table 1.

www.clinicaltrial.gov
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Table 1. Characteristics of study participants (n = 10).

Characteristics of Subjects Mean ± SD

Age, years 29 ± 6
Weight, kg 69 ± 15
BMI, kg/m2 23.4 ± 3.0

SD: Standard Deviation; BMI: body mass index.

2.3. CPFAs-Rich Foods

GP (24 months of ripening) and whole UHT cow milk (3.5% of fat) of the same brand from the
same batch were purchased from the same Italian retailer and provided to each participant for the entire
duration of the study. Before the study, the CPFAs content of these selected foods was tested following
the previously validated method published by Caligiani et al. 2016 [20]. CPFAs concentrations ranged
between 100.4 and 110.5 mg/100 g total fat for cheese, and 77.8 and 84.4 mg/100 g total fat for whole
milk, in accordance with the previous data [20]. The nutritional values and CPFAs mean content per
portion consumed by each participant are reported in Table 2.

Table 2. Nutritional values and cyclopropane fatty acids (CPFAs) content (mean ± SD) per portion of
CPFAs-rich foods supplied to the volunteers.

Grana Padano (50 g) 2 Whole UHT 3 Cow Milk (250 mL) 2

Energy (kcal) 196 155
Fats (g) 14.5 8.8

Carbohydrates (g) 0.0 11.6
Fiber (g) 0.0 0.0

Proteins (g) 16.5 8.3
Cyclopropane fatty acids (mg) 1 15.3 ± 1.0 6.8 ± 0.4

1 Cyclopropane fatty acids refer to the sum of two isomers, namely dihydrosterculic acid (DHSA) and lactobacillic
acid, calculated as previously reported by Caligiani et al. (2016) [20], and expressed as mean ± SD of duplicates
from two independent extractions; 2 Portion size fixed according to the Italian Nutrition Society recommendations
for milk and cheese [21]; 3 UHT: Ultra-High Temperature.

2.4. Dietary Intervention

Prior to the dietary intervention, each subject was asked to refrain any CPFAs source for 1 week in
order to avoid any confounding factors. After 1 week of washout, each participant was asked to follow
a free-living diet, with a controlled CPFAs intake. A list of permitted and forbidden foods was supplied
to the participants. Additionally, the compliance to the recommended diets was monitored. Subjects
were asked to daily report the consumption of foods included in the “permitted” or “forbidden” lists,
in addition to any changes that occurred during the study, for monitoring the exact amount of CPFAs
ingested both during the 1-week of restricted diet and the 3-week CPFA-controlled intake. The CPFAs
controlled daily intake consisted of 15.3 ± 1.0 mg of CPFAs from 50 g of GP and 6.8 ± 0.4 mg of CPFAs
from 250 mL of whole UHT cow milk, for a total of about 22.1 mg of CPFAs/day.

Capillary whole blood of each volunteer was collected by finger-prick at fasting state at eight
timepoints during the study: (a) t00 (baseline): after the enrolment; (b) t0: after a 1-week washout
period (dairy products and bovine meat restricted diet); (c) t1, t2, t3, t4, t5, t6: twice a week during the
dietary treatment under a free-living diet with a controlled CPFAs intake for three weeks. All capillary
blood samples were collected in heparin fluoride tubes, centrifuged for 2 min at 10,000 rpm (Centrisart®

A-14 Micro-Centrifuge, Sartorius GmbH, Göttingen, Germany). Finally, the upper plasma layer was
withdrawn and divided into two aliquots (240 µL), dried under vacuum and stored at −80 ◦C until
fatty acids analysis. The study design is shown in Figure 1.
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Figure 1. Graphical representation of the study design. CPFAs: cyclopropane fatty acids; DHSA:
dihystrosterculic acid; FAME: fatty acids methylesters.

2.5. Post-Prandial CPFAs Response

Prior to the intervention study, one subject was asked to perform an acute pilot post-prandial
study for investigating the CPFAs blood response curve after consumption of a portion of GP cheese.
Following a standard diet for 24 h without any source of CPFAs-rich foods, the volunteer was asked
to consume at fasting state either a portion (160 g) of GP with one package of cracker and a cup of
coffee or the same meal without any CPFA-rich source (control meal). Capillary blood was collected,
applying the same method described for chronic study, at fasting state and after 1 h, 2 h, 3 h, 4 h, 6 h,
8 h, and 24 h after GP intake.

2.6. Plasma Sample Preparation

Total fatty acids methyl esters (FAME) were obtained from plasma samples according to the
protocol reported by Han et al. (2011) [22] with some modifications. Each aliquot of dried plasma
(240 µL) was treated with 1 mL of 5% HCl/CH3OH at 70 ◦C for 30 min. After cooling, 200 µL of distilled
water and 5 µL of tetracosane (Sigma Aldrich, St. Louis, MO, USA; purity 99%) standard solution at
100 µg/g, as internal standard, were added. Finally, FAME were extracted twice with 1 mL of hexane,
the final aliquots collected and evaporated to dryness in a stream of nitrogen. One sample of FAME
extract (at t00) was spiked with DHSA pure standard methylester (Abcam, Cambridge, UK, purity
>98%) as reference material for CPFAs identification.

2.7. GC-MS Analysis

GC-MS analysis of FAME was performed following the conditions in reference to Caligiani et al.
(2016) [20], slightly adapted. FAME (1 µL, split mode 20:1) were analyzed with a Thermo Scientific
Trace 1300 gas-chromatograph coupled to a Thermo Scientific Trace ISQ mass spectrometer (Thermo
Scientific, Waltham, Massachusetts, USA). A low-polarity capillary column (SLB-5ms, 30 m × 0.25 mm,
0.25 µm of thickness, Supelco, Bellafonte, PA, USA) was used. The chromatogram was recorded in the
sim/scan mode (SCAN: 40–500 m/z; SIM: 55, 74, 87, 278, 282, 270, 298, 310 m/z) with a programmed
temperature from 60 ◦C to 280 ◦C. The initial oven temperature was 60 ◦C, held for 2 min, subsequently
increased to 220 ◦C at a rate of 10 ◦C min−1, maintained for 8 min, increased to 280 ◦C at a rate of 20 ◦C
min−1 and held isothermal for 17 min. The ion source temperature was set at 230 ◦C. Peak identification
of CPFAs was performed based on the mass spectrum previously published (characteristic ions
for lactobacillic and dihydrosterculic methylesters m/z 278; M +: m/z 310) [7] and on the reference
library (NIST 11), then compared with the mass spectrum and retention time of DHSA pure standard
methylester in the calibration solution [20]. For further certainty, the identification of CPFAs signal
was supported by the spike of a sample of FAME extract from plasma (see above) by DHSA standard
methylester. Quantification was performed as described by Caligiani et al. [20], considering the area
ratio between the analyte and the internal standard tetracosane, and volume of plasma used for the
procedure. Finally, CPFAs concentration was expressed as µmol/L. In addition, three timepoints were
chosen to compare the effect of the three dietary patterns: (i) before dietary treatment (t00 as baseline);
(ii) wash out (t0); (iii) dietary treatment end (t6), on the general fatty acid composition of human plasma
expressed as relative percentage mean of total lipids of all subjects.
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2.8. Statistical Analysis

No previous study specifically investigated the bioavailability of DHSA and lactobacillic acids
in humans. Therefore, samples size of this pilot study was fixed according to the number of subjects
normally included for studies investigating bioavailability of dietary compounds [23,24]. Statistical
analyses were performed utilizing SPSS statistical software (Version 25.0, SPSS Inc., Chicago, Illinois,
USA) and differences were considered significant at p < 0.05. All data collected were assessed
for normality using the Kolmogorov-Smirnov test, and the normal distribution was confirmed.
All results are reported as mean values ± standard error of the means (SEMs), unless otherwise stated.
Comparison between CPFAs mean concentration after washout (t0) and at each timepoint during the
dietary treatment (t1; t2; t3; t4; t5; t6) was performed using the paired samples T-test. One-way analysis
of variance (ANOVA) (with repeated measures and Bonferroni post-hoc) was applied on the general
fatty acid plasma profile at three selected time points (t00, t0 and t6).

3. Results

3.1. CPFAs Detection and Quantification in Human Plasma

CPFAs, have been detected and quantified by GC-MS according to Caligiani et al. (2016) [20] as the
sum of two isomers (DHSA and lactobacillic acids) and as minor components in the total plasma fatty
acid profile of all volunteers and at each timepoint. The identification of CPFAs signal (see Figure 2)
was supported by the retention time and the full SCAN mass spectrum of CPFAs signal detected in
human plasma samples, that are identical to those detected in the spiked sample of the FAME extract
from plasma by DHSA pure standard methyl ester (the major isomer).
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Figure 2. GC-MS detection of cyclopropane fatty acids in human plasma. DHSA: dihydrosterculic acid.
(A) zoom of the elution zone (retention time: 22.98 min) of DHSA methyl ester in spiked plasma fat at
t00 (black) compared with that detected in human plasma of one subject at t6 (red); (B) DHSA chemical
structure and mass spectrum detected in human plasma sample at t6 (full SCAN mode; characteristic
ion: m/z 278; M +: m/z 310).
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3.2. Chronic Study

A total of ten (n = 10) healthy subjects (6 females) started and concluded the study without any
violation of the protocol. All participants consumed all the provided meals (GP and whole UHT
cow milk) daily for 3 weeks, according to the study protocol and plasma samples were analyzed for
CPFAs and lipid profile. The body weight was monitored throughout the study for verifying potential
changes during the treatment, and no significant changes (one way ANOVA, p ≥ 0.05) were observed
(change of body weight at t6 compared to t00 was 1.1 ± 2.4 kg).

Results of CPFAs mean plasmatic concentrations (n = 10) at baseline (t00), after one-week wash
out (t0) and during the 3-week dietary intervention (t1, t2, t3, t4, t5, t6) are shown in Figure 3.Nutrients 2020, 12, x FOR PEER REVIEW 6 of 10 
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Figure 3. Plasma CPFAs mean concentrations (µmol/L, mean ± SEMs) over time for all the subjects
(n = 10) consuming daily portions of GP and whole cow milk for three weeks after 1 week of restricted
CPFAs diet (baseline t00 and washout t0); data are expressed as mean ± SEM; * p < 0.05 after paired
samples T-test between each timepoint (t1, t2, t3, t4, t5, t6) vs. t0. CPFAs: cyclopropane fatty acids;
it refers to the sum of two isomers, namely dihydrosterculic acid (DHSA) and lactobacillic acid [20].

Data indicate there was a relatively large inter-subject variation (% CV) in plasma CPFAs levels,
falling in the range between 60–90% at each timepoint.

After one-week of diet with low CPFAs intake, the plasma CPFAs mean concentration
decreased (t0, 0.08 ± 0.02 µmol/L) but was not significantly different (p ≥ 0.05) from the basal
level (t00, 0.16 ± 0.03 µmol/L). On the contrary, significant changes (p < 0.05) were observed after
CPFAs controlled intake when compared to that measured after the washout (t0), peaking at t4
(0.31 ± 0.08 µmol/L) and at t5 (0.31 ± 0.08 µmol/L) after two weeks of dietary treatment. Moreover,
CPFAs plasma level was significantly higher (p < 0.05) at last timepoint (t6, 0.26 ± 0.06 µmol/L) than
the concentration measured at t0 (washout).

3.3. Acute Study

A very preliminary pilot in vivo acute test was conducted with one volunteer, in order to evaluate
a CPFAs response curve after a single dose of GP providing 50 mg of CPFAs compared to control
(no treatment). As expected, results showed an increase of CPFAs concentration after 4 h for the test
meal but not in the control meal, reaching the maximum concentration after 8 h (11.34 ± 0.02 µmol/L,
+11.22 µmol/L compared to the starting concentration at fasting state), and turning back to the baseline
level (0.09 ± 0.01 µmol/L) after 24 h as shown in Table 3.
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Table 3. CPFAs 1 concentrations in human plasma after a test meal (a single dose of GP) and control
meal (without CPFAs).

Plasma CPFAs 1 (µmol/L)

Time (h) Test Meal 2 Control Meal 3

0 0.12 ± 0.01 0.12 ± 0.01
1 0.12 ± 0.01 0.12 ± 0.01
2 0.07 ± 0.01 0.12 ± 0.01
3 0.15 ± 0.01 0.12 ± 0.01
4 0.23 ± 0.01 0.12 ± 0.01
6 4.04 ± 0.01 0.12 ± 0.01
8 11.34 ± 0.02 0.12 ± 0.01

24 0.09 ± 0.01 0.12 ± 0.01
1 CPFAs: cyclopropane fatty acids; it refers to the sum of two isomers, namely dihydrosterculic acid (DHSA) and
lactobacillic acid [20]; 2 Test Meal = breakfast with single dose (160 g) of GP (providing 50 mg of CPFAs); 3 Control
Meal = breakfast without any CPFAs sources. Values are expressed as means ± SEMs of two duplicates.

3.4. Effect of the Treatment on Total Fatty Acids Composition in Human Plasma

The total fatty acids composition of the general plasma lipid profile resulted comparable in all
subjects prior to the study and did not change significantly (p ≥ 0.05) during the dietary intervention
period, except for CPFAs concentration (p < 0.05), as previously described. Table 4 reports the amounts
of the main fatty acids (FA) determined at basal level (t00), after one-week restricted CPFAs diet (t0)
and at the end of the dietary intervention (t6) and expressed as a relative percentage (%) ± SD of the
total FA.

Table 4. General fatty acids composition (g/100 g) of total fatty acids methyl esters (FAME) detected in
human plasma at the selected timepoints (t00, t0, t6).

g/100 g Total FAME

FAME t00 t0 t6

C12:0 Lauric 0.53 ± 0.11 0.32 ± 0.07 0.40 ± 0.08
C14:0 Myristic 3.18 ± 0.65 2.10 ± 0.37 2.62 ± 0.51
C16:0 Palmitic 16.13 ± 0.70 24.33 ± 1.16 14.68 ± 0.64
C18:0 Stearic 11.36 ± 1.72 9.21 ± 1.60 9.87 ± 1.48

Other SFA 3.76 ± 0.60 4.42 ± 2.22 7.45 ± 4.95
Total SFA 34.97 ± 3.77 40.37 ± 5.42 35.02 ± 7.65

C14:1 0.34 ± 0.07 0.17 ± 0.04 0.22 ± 0.04
C16:1 Palmitoleic 5.02 ± 0.83 3.98 ± 0.61 3.83 ± 0.55

C18:1 Oleic 36.16 ± 0.38 33.93 ± 0.46 37.87 ± 0.66
Other MUFA 1.08 ± 0.19 0.94 ± 0.15 0.75 ± 0.10
Total MUFA 42.61 ± 1.50 39.01 ± 1.26 42.67 ± 1.35

C18:2 Linoleic 8.66 ± 1.24 8.30 ± 1.43 9.50 ± 1.65
Other n-6 PUFA 5.94 ± 1.43 5.63 ± 1.17 5.79 ± 0.94
Total n-3 PUFA 1.17 ± 0.28 1.06 ± 0.30 0.90 ± 0.18

Total PUFA 22.40 ± 4.15 20.60 ± 3.92 22.28 ± 3.56
CPFAs 1 0.03 ± 0.01 a 0.01 ± 0.01 b 0.03 ± 0.01 a

1 CPFAs: cyclopropane fatty acids; it refers to the sum of two isomers, namely DHSA and lactobacillic acid, according
to Caligiani et al. [20]. Values are expressed as means ± SEMs (n = 10). Values in a row with different letters
(when reported) are significantly different (p < 0.05; one-way ANOVA with repeated measures, post-hoc Bonferroni).
SFA: Saturated Fatty Acids; MUFA: Monounsaturated Fatty Acids; PUFA: Polyunsaturated Fatty Acids.

4. Discussion

In the present pilot in vivo study, GC-MS analysis was carried out to characterize the total fatty
acid profile of human plasma focusing on the determination of CPFAs levels before and after a
medium-term consumption of CPFAs-rich foods, especially dairy products.
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To the best of our knowledge, no previous intervention studies have been specifically conducted
for investigating DHSA bioaccessibility in humans after consumption of DHSA-rich foods, and no
proper methodologies were available to accurately detect and quantify this marker in human plasma.
To date, previous findings [12,13] reported the presence of cyclopropaneoctanoic acid 2-hexyl, namely
cis-9,10-methylenhexadecanoic (two carbon shorter chain than DHSA), both in the adipose tissue
(stored as triglycerides) and in serum of obese women, but DHSA was not identified because its
concentration was lower than their analytical limit of detection. They also suggested that serum
levels of that CPFAs were affected by food intake in rats and positively related to high serum
triglyceride concentrations observed in obese patients with chronic kidney disease. However, no data
about the influence of CPFAs on cellular metabolism in humans were reported. The catabolism
of CPFAs in mammals was investigated by Wood and Reiser (1965) [1], who synthesized cis- and
trans-9,10-methyleneoctadecanoate and fed weanling rats these molecules for five weeks. The presence
of cis- and trans-3,4-methylene dodecanoic acids in rat adipose tissue suggested the inability of the
β-oxidation enzyme system to proceed past the cyclopropane ring. In this regard, it cannot be excluded
the presence of other plasmatic CPFAs metabolites, related to DHSA, that have not been identified
in our experimental conditions. The present pilot study suggested that mainly DHSA, deriving
from dairy products, is present in human plasma of healthy normal weight subjects, thus being
potentially bioaccessible, and its plasmatic concentration is positively associated with the consumption
of CPFAs-rich foods within the diet. Additionally, DHSA was detected in the plasma of all ten volunteers
before the dietary intervention, demonstrating that the exposure to CPFAs is quite common and a
detectable level is expected to be observed at baseline in the population. Furthermore, these results are
supported by preliminary data obtained in the acute study on one subject, which certainly need to
be further explored in the future. DHSA was detected after the ingestion of a single dose of Grana
Padano cheese, peaking at 8 h (+11.22 µmol/L compared to the starting concentration at fasting state)
and going back to baseline level at 24 h. Certainly, it must be pointed out that some population
(i.e., in this case from the Northern Italy) might be more exposed to CPFAs than others, in relation to
their dietary habits (as a high consumption of dairy foods), in particular on the intake of CPFA-rich
sources. Finally, CPFAs have been reported to be produced by specific intestinal bacteria as Lactobacillus
reuteri [14], making it possible to observe a baseline level of these compounds due to their production
and subsequent absorption at colonic level. Different microbiota, besides different dietary habits, may
then obviously explain part of the observed variability at t00 in our study. CPFAs are minor fatty
acids in the framework of the human plasmatic lipid profile representing around 0.03% of the total FA.
However, their amount is comparable to that of other secondary FA, largely studied for their biological
effects and putative benefits for human health, like conjugated isomers of α-linolenic acid [25,26].
In this regard, and with rising attention to the health-related effects of dairy lipids, the association of
CPFAs with factors linked to human health and disease is becoming paramount. To properly address
this matter, we hope that our pilot study may pave the way for bigger and more detailed interventions
aimed at understanding the absorption, metabolism, and perhaps the microbiota contribution to the
CPFAs circulating panel. Surely, the need remains to systematically investigate CPFAs bioavailability,
including in which chemical form they are present in the blood stream and factors influencing their
absorption (e.g., dietary components, food formulation).

5. Conclusions

The present pilot in vivo investigation described the presence of CPFAs, mainly DHSA, as minor
fatty acids in human plasma (0.03 ± 0.01% on total fatty acids) and suggested that their plasmatic levels
were dose-dependent: DHSA concentration decreased by 50% after the washout, whereas significantly
increased (p < 0.05) by about 30% at the end of the 3-week dietary intervention with cow whole milk
and Grana Padano cheese. Finally, besides the differences detected for CPFAs, the treatment did not
significantly affect (p ≥ 0.05) the plasma general fatty acids profile when compared with the profile
after one week of CPFAs refrain (washout). Therefore, the results obtained prove that DHSA plasmatic
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concentration can be strongly affected by the dietary intake of foods containing CPFAs, such as dairy
products. The potential biological role of CPFAs within the human body is still unknown. Therefore,
future studies should focus on their bioaccumulation in tissues and metabolism in order to establish
their role in human health.
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