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It is well established that MHC-restricted T cell responses decisively influence
the outcome ofvirus infection (1-3) . In the rejection of murine leukemia virus-in-
duced lymphomas, Th and cytotoxic T (Tc) t cells are considered essential effector
cells, besides the effects of MuLVspecific antibodies, which can neutralize the virus
and inhibit its spread (reviewed in reference 4) . Many attempts have been made
to characterize the viral antigens that are important in recognition by murine leukemia
virus (MuLV)-specific T cells . The presence of viral proteins on the cell surface of
MuLVinduced tumor cell lines has been documented in a number of serological
studies. These cell surface viral proteins, which in processed form are potential target
molecules for recognition by Th and Tc cells (5), include the viral env gene-encoded
products gPr85env, gp70, and p15(E) andthe gag gene-encoded gP95g°g, gP85g°g, p10,
pp12, p30, and p15 (reviewed in reference 6) . In addition to this, recent data indicate
that viral proteins that are not detectable at the surface of cells by serology can also
serve as targets for T cells (7). DNA-mediated gene transfer experiments, in which
single MuW viral antigens together with particular MHC class I antigens were ex-
pressed in heterologous cell lines, and the availability of Tc clones have provided
a more subtle analysis of MHC and viral antigen recognition (8, 9) . A highly com-
plex picture emerged from these studies, which collectively indicate that both MHC
and non-MHC genes determine which viral antigens are recognized in the context
of MHC.

Recently, substantial progress has been made in the understanding of MHC-
restricted recognition ofantigens by Tcells. It now appears that Tcells usually recog-
nize relatively short antigenic peptides, derived by processing of the native antigen
(10, 11). This holds for MHC class II-restricted antigen recognition at the surface
of APC by Th cells, but also for MHC class I-restricted antigen recognition by Tc
cells, which results in lysis ofthe antigenic peptide-bearing cells (7, 12). The MHC-
peptide interaction required for T cell recognition is rather MHC allele specific,
which implies that the nature of viral antigens preferentially recognized differs from
individual to individual (7, 13-17) .
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I Abbreviations used in this paper. BFA, buffered formaldehyde acetone ; CFG, cytofluorography; HPS,
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virus; Tc, cytotoxic T cells.
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IMMUNOSELECTION OF VIRAL ANTIGEN-NEGATIVE T LYMPHOMAS

MuLVinduced lymphomagehesis results from acomplex series ofoncogenic events
in virus-infected cells (18) The development of lymphomas is strongly influenced
by the H-2 complex, which probably reflects the fact that virus-infected cells will
not grow out to overt lymphomas in the presence of H-2-restricted MuLVspecific
Th and Tc responses. However, T cell immunosurveillance will fail if tumor cells
do not express the relevant MHC and/or viral peptide at the cell surface . Indeed,
various examples have been described of so-called virus-negative variant murine lym-
phoma cell lines that appeared to be resistant against T cell effector mechanisms .
These variants, however, all arose in rather artificial situations, e.g ., long-term in
vitro culture of tumor cells (19) or under selective pressure of exogenously added
Tc therapy (20) . The important role ofclass I MHC gene expression in more natural
conditions, i.e ., in tumorigenesxs and metastasis, follows from a number of studies
(21, 22) . Low surface expression of class I MHC antigens in MuLVinduced lym-
phomas has been observed incidentally, e.g ., on an AKR thymoma-derived cell line
(22), certain radiation leukemia virus-induced lymphomas (23), and Moloney MuLV
(MoMuLV)-induced T cell lymphomas (24) .
We are interested in the in vivo biological relevance of the proposed selection mech-

anisms for tumor cells with respect to viral antigen and MHC cell surface expres-
sion . We previously described that the H-2 complex strongly influences lymphoma
incidence after neonatal infection of C57BL/10 and C57BL/6 mice with mink cell
focus-inducing (MCF) MuLV, MCF 1233 virus (25) . T cell tumor resistance is dom-
inant, maps to the class II MHC-encoding I-A region, and is associated with high
titers ofanti-MuLV antibodies, which develop in the presence ofan adequate I-A-reg-
ulated antiviral Th response . 64% of animals of susceptible, so-called nonresponder
strains (H-2 I-Al ,

d) developed T cell lymphomas (mean latency, 37 wk). In contrast,
only 14% of resistant, so-called responder stains (H-2 I-Ab,bmt2,b/k) developed T cell
lymphomas, the mean latency of which (57 wk)was significantly longer. We decided
to compare the antigenic profiles, including both viral antigens and MHC antigens,
of the many MCF 1233 MuLVinduced T cell lymphomas that arose in the absence
of a MHC class II-regulated immune response with those of the few T cell lym-
phomas that came up in spite of the presence of a good class II-regulated immune
response, reasoning that the latter lymphomas, in contrast to the former, were sub-
jected to strong immunoselective pressure.
Our results show indeed the absence ofparticular env and/orgag proteins, or more

rarely of particular MHC class I antigens on the cell surface of all responder T cell
lymphomas tested, in sharp contrast to the abundant expression of both env and
gag proteins and MHC antigens on nonresponder T cell lymphomas. Additionally,
in a limited study surface, expression differences were confirmed at the RNA level .

Materials and Methods
Mice, Virus, and Lymphomas.

	

Primary lymphomas were induced by injection of newborn
mice ofC57BL/10 or C57BL/6 background, carrying various H-2 haplotypes as listed in Table
1, with MCF 1233 MuLV as described (25) . The origin and characteristics of MCF 1233
were described previously (26) . This dualtropic B-tropic MuLV was biologically cloned from
aT cell tumor, which arose in a B10.A mouse after milk transmission of a naturally occurring
B-tropic ecotropicMuLV (27) . At autopsy ofmoribund mice, affected lymphoid organs were
removed and handled in three ways . For histologic evaluation, part of the tumor was fixed
in formalin (10% in PBS) . Part of the tumor was cryopreserved as a viable cell suspension
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in liquid nitrogen in 10°Jo DMSO as described previously (28) . The remainder of the tumor
tissue was frozen in liquid nitrogen and stored at - 70°C for DNA and RNA isolation proce-
dures. Lymphomas were classified according to combined phenotypic, histologic, and geno-
typic criteria as described (29) . In vivo passages of lymphomas were carried out by in-
traperitoneal inoculation of 5-10 x 106 viable cells recovered after thawing of cryopreserved
tumor cell suspensions . C57BL/10,B6.C-H-26-14 and C57BL/6.Kh nu/nu mice used in trans-
plantation experiments were obtained from the animal department ofthe Netherlands Cancer
Institute, Amsterdam .

Immunofluorescence Studies.

	

After thawing, tumor cell suspensions were incubated at 37°C
for 2.5 h in Iscove's modified Dulbecco medium supplemented with 10% heat-inactivated
FCS, penicillin (100 Wg/ml), kanamycin (100 kg/ml), glutamine (2 mM), and 2-ME (20 p.M).
To remove nonviable cells and erythrocytes, we centrifuged 2 ml of cell suspension (containing
a maximum of 108 cells) at 1,000 g for 15 min on a 4-ml cushion of Ficoll-Hypaque (1.079
g/cm3) . Consistently, >90% of tumor cells recovered this way were viable . In vivo passaged
lymphomas were tested either directly ex vivo or after thawing of cryopreserved cells as de-
scribed above.
Membrane Fluorescence.

	

After washing, cells were resuspended in cytofluorography buffer
(CFG buffer: PBS with 2% BSA and 0.1% sodiumazide) . We used mAbs against Thy-1 (59
AD2.2), Lyt-2 (53-6.7) (30), L3T4 (H129.19) (31), and Pgp-1 (142/5) (32) . The following anti-
MHC mAbs were used: B8.3.24 (anti H-2Kb,bm1) (33), Cl 11.4.1 (anti H-2Kk) (34), 27-11-13
(anti H-2Db ,d .bmi 4) (35), and 17/227R7 (anti H-2 I-Ab,k .d) (36) .
mAb 35/56, a rat IgG2a antibody derived from hybridoma C2346, reacts with the highly

conserved gp70' epitope, expressed by ecotropic and MCF MuLV virions, and on ecotropic
or MCF MuLVinfected cells (37, 38) . mAb 19-F8, a mouse IgG2b antibody derived from
hybridoma C2429, reacts with the highly conserved p15(E)1 epitope, expressed by ecotropic
and MCF MuLV virions and on ecotropic or MCFMuLVinfected cells (39). Hy-13, a mouse
IgM antibody, reacts with a conformational determinant formed by the gp70-pl5(E) com-
plex, and with the env precursor polyprotein gPr85e"° of MCF MuLV which are both ex-
pressed on MCF MuLVinfected cells (40) . The origins and characteristics of these antiviral
mAbs have been described in detail (37-40) . The polyclonal goat serum prepared against
p30 protein of Rauscher MuLV was obtained from the Viral Oncology Program of the Na-
tional Cancer Institute (Bethesda, MD) . Both ecotropic and MCFgag antigens are detected
by this serum, as the gag region is highly conserved between ecotropic and MCF MuLV
(reviewed in reference 6) .
We incubated 2 x 105 cells with 25 pl antibody for 30 min at 4°C . After washing once

in CFG buffer, 25 jal of a second antibody was added, followed by an incubation of 30 min
at 4°C. As second antibodies, the following FITC-labeled antisera were used : rabbit anti-rat
Ig (1 :30 ; Organon Teknika, Malvern, PA), goat anti-mouse Ig (1 :20 ; Central Laboratory
of the Blood Transfusion Service [CLB], Amsterdam), and rabbit anti-goat Ig (1 :20 ; CLB) .
After two additional washsteps the tumor cells were analyzed for fluorescence on a FACScan
(Becton Dickinson & Co., Mountain View, CA) fitted with a four-decades logarithmic amplifier.
All cell populations were at least 75% viable as determined by trypan blue uptake and low-angle
light scatter at the time of fluorescence. Nonviable cells were gated out .
BFA Fixation of Tumor Cells and Fluorescence Studies on Intracellular Antigens.

	

After washing,
1-5 x 106 cells were resuspended in 1 ml of freshly prepared buffered formaldehyde acetone
(BFA) (1 .12 mM Na2HP04, 7.35 mM KH2PO4, 45% vol/vol acetone, 9.25% vol/vol form-
aldehyde (37%), pH 7.3) for 2 s at room temperature . Subsequently, 5 ml Iscove's medium
supplemented as described above were added. After two wash steps in chilled PBS supplemented
with 20% human pool serum (HPS), 2 x 105 cells per sample were stained as described for
membrane fluorescence studies, however, 50 p,l of antibody supplemented with 20% HPS
was used per sample and wash steps were carried out in PBS with 20% HPS . Fluorescence
analyses with the FACScan were performed as described for membrane fluorescence analyses .

Removal of Cell Surface Antigens by Trypsin Digestion.

	

Cells were washed once in PBS and
subsequently preincubated at a concentration of 2 x 106 cells/ml in PBS at 37°C for 5 min .
Then an equal volume oftrypsin (17 .5 U/ml in PBS) was added . Digestion at 37°C was stopped
at various timepoints by adding chilled Iscove's medium supplemented with 10% vol/vol BSA,
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penicillin (100 hg/ml), kanamycin (100 ttg/ml), glutamine (2 mM), and 2-ME (20 /AM) . After
two washsteps in supplemented Iscove's medium, the trypsin-treated cells were divided into
two portions : cells were stained either for membrane immunofluorescence or, after an addi-
tional BEA fixation step, for intracellular fluorescence as described .
DNA andRNAAnalyses .

	

Cellular DNAs were isolated and analyzed by Southern blotting
as described (29) . Restriction enzymes were used as described by the manufacturer (Boehringer
Mannheim Biochemicals, Indianapolis, IN) .

For RNA isolation, frozen tissues were homogenized with a polytron (1 min, full speed)
at 0°C in 3 M LiCl, 6 M urea, and maintained overnight at 0°C . After centrifugation (4°C,
10,000 g, 60 min) the pellet was dissolved in 2 ml of 10 mM Tris.Cl, pH 7.4, supplemented
with 50 wg/ml proteinase K and 0.5% wt/vol SDS and incubated at 37°C for 30 min . Then,
2 ml of fenol equilibration buffer solution (0 .1 M NaCl ; 10 mM Tris.Cl, pH 9.0 ; 0 .5 170 wt/vol
SDS; 5 mM EDTA) were added . Subsequently the RNA was deproteinized by two successive
phenol/chlorophorm/isoamylalcohol (50:48 :2) and two chlorophorm/isoamylalcohol (99:1)
extractions and precipitated in 0.3 M NaAc by adding 2.5 vol of ethanol (-20°C) . Northern
blot analysis of RNA with formaldehyde-treated 0.8 0/c agarose gels was performed as de-
scribed (21) .

Probes were nick translated with 12P-dCTP to specific activities of 7-8 x 10 8 cpm/Feg . The
isolation and characterization ofthe MuLVspecific hybridization probes have been described
(41-43) . Probes corresponding to the middle and COOH-terminal region ofp15E ofecotropic
AKVMuLV (MCp15E probe), the U3LTR of ecotropic AKVMuLV (AKVLTR probe),
the NH2-terminal part of the gp70 region of ecotropic AKVMuLV (eco gp70 probe), and
the NH2-terminal part of the gp70 region of MCF-MuLV (MCF gp70 probe) were used .
The MoVl-gag probe, corresponding to the gag region ofMoMuLV, was obtained by isolating
the .5-3.4 Kpnl fragment of MoMuLV clone la (44 ; courtesy of Dr. A . Berns, Netherlands
Cancer Institute) . These MuLV hybridization probes are schematically listed in Fig . 1, in
which their ecotropic and/or MCF specificities are given as well .
The y actin probe, a hamster cDNA, was a gift of Dr. R . Nusse, Netherlands Cancer Insti-

tute . The N-myc probe was a 3.1-kb Pst-1 fragment of the mouse N-myc gene (courtesy of
Dr. A . Berns) .
TCR (3 chain probes 86T5, hybridizing to the constant regions, and J15, hybridizing to

the J/32-C02 intron, have been described previously (29) .

Results
Viral env and gag Antigen Tumor Cell Surface Expression.

	

Primary T cell lymphomas
of both H-2 I-A' (nonresponder) mice (n = 17) and H-2 I-Ab , bik (responder) mice
(n = 11) were analyzed in membrane immunofluorescence experiments for the cell
surface expression of MuLV env and gag antigens . We previously documented that
the H-2 I-Ak (nonresponder) strains 1310.A, B10.A(2R), and B10.A(4R) are equally
susceptible to T cell lymphoma induction by neonatal infection with MCF 1233 MuLV
(T lymphoma incidence 64%, mean latency 37 wk) . H-2 I-Ab ,bik (responder) strains
1310, B10.A(5R), (1310 x B10.A)Fi, B6, bm1, and bm14 are relatively resistant to
MCF1233-induced T cell lymphomagenesis (T lymphoma incidence 14%, mean
latency 57 wk) (25) . In the present study, nonresponder tumors were randomly chosen
out of a large panel of nonresponder tumors, whereas all responder tumors that were
available have been tested . Tables I and II summarize the data obtained for the two
series of lymphomas . A polyclonal goat anti-p30 serum (reactive with p30 and its
precursor polyproteins) was used in addition to a panel of mAbs reactive with env
proteins : anti-gp70f mAb 35/56, and anti-p15E" mAb 19-F8 react with a highly con-
served gp70 and p15E epitope, respectively. These epitopes are expressed by both
MCF and ecotropic virions and on the cell surface ofMCF and ecotropic virus-infected
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Location of MuLVspecific hybridization probes (derived from references 41-44) . The
positions of some restriction sites are indicated (in kb): K, Kpnl, B, Barn HI; Sm, Sma I, R,
Eco RI, Sa, Sau 3a ; P, Pst 1 . The Bam HI and Eco RI sites indicated with dotted lines are found
in MCFMuLV only (46). Donor (d) and acceptor (a) splice sites are indicated with arrows . Virus-
specificity : +, probe hybridizes to (MCF or ecotropic) sequences of the majority of exogenous
MuLV; -, probe does not hybridize to (MCF or ecotropic) sequences of the majority of exoge-
nous MuLV (41-44) .

cells (37-39). The anti-gp70-pl5(E) mAb Hy-13 reacts with an epitope formed by
the gp70-pl5E complex of MCF MuLV (40) .
A high percentage (90-100%) of the lymphoma cells of all nonresponder T lym-

phomas (n = 17), which arose in the absence of a demonstrable antiviral antibody
response, showed bright fluorescence with both env- and gag-specific antiviral sera
(Table I) . All nonresponder T cell lymphomas stained with the anti-gp70f mAb
(35 :56) and the anti-p15(E)c mAb (19-F8). Two tumors (2554 and 2594) lacked the
expression of the Hy-13-reactive MCFenv determinant. An additional test with a
panel of anti-gp70 mAbs (anti-gp70a-e) (39) indicated that these Hy-13- tumors ex-
pressed various ecotropic gp70 determinants (data not shown) .

In the responderT cell lymphomas (n = 11) a different picture was found (Table
11). 6 of 11 tumors tested did not express gag antigens at the cell surface, as con-
cluded from the complete absence of membrane fluorescence after incubation with
the polyclonal anti-p30 serum. On one of these six gag-negative lymphomas (2769),
hardly any envelope viral antigens were detected ; only the anti-gp70e mAb was
weakly positive (data not shown). One tumor (2498) showed minimal gag expres-
sion, and, moreover, lacked the gp70f epitope (which was ubiquitously found on the
nonresponder lymphomas) . Three lymphomas (2875, 2402, and 2810) that did ex-
press gag did not express the gp70f epitope. The last tumor of this series ofresponder
T cell lymphomas (2558) was the only one to express both gp70 f env and gag an-
tigens, but, as will be discussed below, this very lymphoma lacked H-2 class I K
expression .
When tested for the expression of the Hy-13-reactive gp70/p15E determinant, only

two responder T cell lymphomas (2498, gp70f-negative and 5045, p30-negative)
showed bright fluorescence, one tumor (2558) showed dull fluorescence, whereas
eight lymphomas did not stain. Staining of responder lymphomas with the pl5(E)-
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TABLE I
Viral Antigen Expression in Primary MCF 1233 MuLV-induced T Cell Lymphomas

of H-2 Nonresponder-type Mice : Nonresponder T Lymphomas

Fluorescence analyses of viral and MHC antigen expression in primary MCF 1233-induced T cell lym-
phomas of H-2I-A nonresponder-type mice . Nonresponder H-2I-A mice were defined in reference 1 .
All lymphomas stained strongly positive for Thy-1 antigen expression . Both double-positive (L3T4', Ly-2' )
and helper phenotype (L3T4', Ly-2 - ) lymphomas were observed .

l The intensity of fluorescence staining of lymphoma cells observed with virus- or MHC-specific antisera
(as described in detail in Materials and methods) was related to the intensity of fluorescence observed when
control stained, For each individual lymphoma, negative controls constituted lymphoma cells incubated
first with indifferent culture supernatant or mouse ascites, followed by a second incubation step with an
appropriate FITC-labeled anti-Ig serum . In case of p30 (tested with a polyclonal goat antiserum) normal
goat serum was used in the fast incubation as a negative control . The observed staining intensity was quantified
as follows . Negative control, mean fluorescence intensity k, standard deviation of the mean s . Fluorescence
score for virus or MHC antigen expression : 3, strongly positive ; mean fluorescence intensity > El + 4 s ;
2, positive ; to + 2 s < mean fluorescence intensity < IL + 4 s ; 1, weakly positive ; ji + s < mean fluores-
cence intensity 4 A + 2 s ; 0, negative ; mean fluorescence intensity < A + s .

reactive mAb was somewhat more heterogeneous, but in general, only dull fluores-
cence was seen when compared with nonresponder T cell lymphomas. Four gp70f-
negative lymphomaswere negative or only weakly positive with the anti-pl5(E) mAb,
whereas one gp70 f-negative lymphoma (2875) was clearly positive .
Thus, in summary on all 17 nonresponder tumors, abundant gag and ena expres-

sion was found, whereas 10 of 11 responder tumors lacked gag and/or ena determinants
on their cell surfaces .
MHC Class land II Tumor Cell Surface Expression .

	

Cell surface expression of MHC
class I (K,D) and class II (I-A) antigens on the T cell lymphomas was determined
in immunofluorescence analyses with the use of H-2K, -D, and -I-A-specific mAbs .
In the series of(virus expressing) nonresponder T cell tumors, 15 of 17 tumors tested
showed high expression of both K and D. One tumor (2873) had weak H-2K and

Strain K
H-2
I-A

type
I-E D Tumor' gp70f

Viral
envelope

pl5(E)

antigensl

gp70-p15(E)
core
p30

Class
Kk

MHC
I

Db,d

antigenst
Class II
I-A k

B10.A k k k d 2873 3 3 3 3 1 1 1
2894 3 3 3 3 3 3 0
3666 3 2 1 2 0 0 0
3906 3 2 1 2 3 3 1

B10.A(4R) k k b b 2456 3 2 2 2 3 3 0
2522 3 2 3 3 3 3 0
2877 3 1 1 1 3 3 0
2554 3 3 0 3 3 3 0
2985 3 2 3 3 3 3 0
3817 3 3 3 3 3 3 0
3846 3 2 2 2 3 3 ND
5167 2 2 2 2 3 3 ND

B10.A(2R) k k k b 2508 3 2 2 2 3 3 0
2543 3 2 2 3 3 3 0
2594 3 1 0 3 3 3 ND
2639 3 3 3 2 3 3 0
2648 3 3 3 3 2 3 0
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Decreased Viral Antigen Expression in Primary MCF 1233 MuLV-induced
T Cell Lymphomas of H-2 Responder-type Mice: Responder T Lymphomas

1239

Fluorescence analyses of viral and MHC antigen expression in primary MCF 1233-induced T cell lym-
phomas of H-2I-A responder-type mice . Responder H-2I-A mice were defined in reference 1 .
All lymphomas stained strongly positive for Thy-1 antigen expression . Both double-positive (L3T4', Ly-2' )
and helper phenotype (L3T4', Ly-2 - ) lymphomas were observed .

i The intensity of fluorescence staining of lymphoma cells observed with virus- or MHC-specific antisera
(as described in detail in Materials and Methods) was related to the intensity of fluorescence observed when
control stained . For each individual lymphoma, negative controls constituted lymphoma cells incubated
first with indifferent culture supernatant or mouse ascites, followed by a second incubation step with an
appropriate FITC-labeled anti-Ig serum . In case of p30 (tested with a polyclonal goat antiserum) normal
goat serum was used in the first incubation as a negative control . The observed staining intensity was quantified
as follows . Negative control, mean fluorescence intensity Ft, standard deviation of the mean s . Fluorescence
score for virus or MHC antigen expression : 3, strongly positive ; mean fluorescence intensity > 1A + 4 s ;
2, positive ; it + 2 s < mean fluorescence intensity < F+ + 4 s ; 1, weakly positive ; F+ + s < mean fluores-
cence intensity < u + 2 s; 0, negative ; mean fluorescence intensity < it + s .

S Fluorescence analyses have been performed on BFA-fixed cells as well, thus additionally indicating the ab-
sence of viral antigen intracellularly .

H-2D expression, whereas another tumor (3666) hadminimal ifany detectable H-2K
and -D antigens . When tested for the expression of Pgp-1, an antigen that is assumed
to be related with the IFN-y producing potential of Tcells (45), these very two tumors
showed dull Pgp-1 expression in contrast to the 15 high H-2K- and D-expressing
lymphomas, which with one exception (2648) had bright Pgp-1 reactivity (data not
shown) . In the series ofresponderTcell lymphomas, also, the majority (9 of 11 tumors
tested) had high H-2K and -D expression . As already mentioned above, one tumor
(2558) that, by exception in the responder series, expressed both env and gag viral
antigens at the membrane, had no detectable H-2K6 cells surface antigen, whereas
H-2Dd expression was relatively low. One other lymphoma (3993) did not show
H-2Kb expression but had high Dd expression . This latter Kb-/Dd+ tumor showed
bright Pgp-1 expression whereas tumor 2558 (Kb- /Ddt) had a relatively dull Pgp-1
expression (data not shown) .
None oftheTcell tumors in either series, nonresponder and responder, expressed

significant levels of H-2 class II I-A molecules.

Strain K

H-2 type
I-A I-E D Tumor' gp70 f

Viral antigens$
envelope

p15(E) gp70-pl5(E)
core
p30

Class
Kb,k

MHC antigens$
I Class II

Db,d I -Ab .k

BIO b b b b 2498 0 1 2 1 2 3 0
2729 2 0S 04 OS 3 3 0
2875 0 2 0 3 3 3 0

B6 b b b b 2997 3 2 0 0 3 3 ND

bml bml b b b 2402 0 0 0 3 2 3 0

bm14 6 6 b bml4 2769 OS OS 0 , OS 3 3 0

B10.A(5R) b b k d 2558 3 2 1 2 0 1 0
3393 3 1 0 0 0 3 0

(B10.A x Bl0)F1 k/b k/b k/b k/b 2810 0 1 0 3 2 3 0

(B10 x BIO.A)F1 b/k b/k b/k b/k 3915 3 0 0 0 3 3 0
5045 2 2 3 O 3 3 0
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Intracellular Expression of Viral Proteins.

	

We tested a small number of lymphomas
for the intracellular presence of viral proteins in an immunofluorescence assay, by
incubation of BFA-fixed lymphoma cells with a selected panel of the aforementioned
antiviral sera .

First, we showed that, as illustrated for p30-gag in Fig. 2, after cleavage of the
protein of interest at the membrane by trypsin, the intracytoplasmic viral antigen
remained detectable . With this method no discrepancies were found between the
cell surface and intracellular expression of anti-p30-, anti-pl5Ec-, anti-gp70/pl5E-,
and anti-gp70t-reactive viral proteins in tumors 2729, 2769, and 2522 (Tables I and
II) . Thus, the cell surface expression of viral antigens correlated strictly with the
presence or absence of these viral antigens intracellularly.

wm
z
JJW
U

FLUORESCENCE INTENSITY (ARBITRARY UNITS)

FIGURE 2 .

	

Intracellular fluorescence of BFA-fixed tumor cells after removal ofp30 viral antigen
from the cell surface by trypsin exposure . Lymphoma cells (2522, nonresponder type) were ana-
lyzed in indirect fluorescence staining for p30 antigen expression by incubation with anti-p30-
reactive goat serum, followed by FITC-labeled anti-goat Ig serum. Dotted lines represent nega-
tive control-stained cells (first incubation step with with normal goat serum) . (I) Cells before
trypsin treatment; (IA) membrane fluorescence; (I B) intracellularfluorescence of BFA-fixed cells .
(II) Cells after 15 min of trypsin (17 .5 U/ml) exposure ; (II A) membrane fluorescence ; (li B)
intracellular fluorescence of subsequently BFA-fixed cells .
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Proviral Integrations.

	

Tlymphomas of nonresponder and responder mice were ana-
lyzed for the presence of newly acquired proviruses . Lymphoma DNAs were cut
with Eco RI, which has no restriction site in a full-length ecotropic MuLV provirus
and a single site in MCF MuLV at 6.9 kb (46) . Hybridizations were carried out
with the use of an (MCF and eco-reactive) U3LTR probe and an eco-specific gp70
probe (Fig . 1) . The results (Fig . 3) indicate that both nonresponder and responder

FIGURE 3.

	

(A)Integrated MuLV genomes in the DNAofa representative panel ofnonresponder
and responder type T cell lymphomas induced by MCF1233 . DNA samples (12 jig) were digested
with Eco RI and after Southern blotting hybridized first to the MuLV-specific U3LTR probe
(A), subsequently to the eco-specific gp70 probe (A), and finally to the N-myc probe (B) . Rehybridi-
zations were preceded by rinsing the filter with alkali . DNAs were obtained from tumors num-
bered as indicated at the top ofthe lanes. Characteristics of viral and MHC antigen cell surface
expression on these tumors are given in Table I (nonresponders) and Table II (responders) . (B)N-
myc rearrangements in two responder T cell lymphomas. Control, B10 liver DNA. The 31-kb
Eco RI virus-reactive fragment (A) represents theendogenous ecotropic provirus ofC57BLmice,
the 3 .4-kb fragment seen in the U3LTR hybridization unfortunately is due to plasmid contami-
nation of the control liver DNA, aswas concluded from itshybridization to a large panel ofplasmid-
containing probes (data not shown) .
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T cell lymphoma DNAs contained multiple, predominantly MCFlike proviruses .
A few exceptions were observed ; e.g ., tumor 2729 seems to contain only one extra
clonal fragment (N20 kb) reactive with both MuLV probes, indicating its ecotropic
origin . In search of possible oncogene rearrangements due to proviral integrations,
we hybridized Eco RI-digested lymphoma DNAs with a panel of oncogene probes ;
we found no c-myc rearrangements, but in two nonresponder lymphomas (2894 and
3666) and three responder lymphomas (2402, 2498, and 2875), pim-1 rearrange-
ments were found (data not shown) . N-myc rearrangements were detected in one
nonresponder tumor (3846) (data not shown) and two responder tumors (2729 and
2997) (Fig . 3 B) . The pim-1- and N-myc-reactive rearranged fragments comigrated
with U3LTR-reactive DNA fragments, probably indicating that the oncogene rear-
rangements were due to proviral integrations nearby.
RNA Analyses .

	

To reveal whether the absence of particular viral antigens at the
cell surface of responder T cell lymphomaswas correlated with quantitative or qualita-
tive changes in viral RNA species found in the tumor cells, we performed Northern
blot analyses for a small number of lymphomas (Fig . 4) . We had to make use of
first transplant generation tumors, because primarytumor tissues had not been con-
served adequately forRNA isolation procedures . The phenotypes of these syngeneic
in vivo passaged lymphomas remained completely stable (shown for 2769 in Fig.
5) . Various probes hybridizing to U3LTR, p15E, and gp70, and gag sequences of
MCF and/or ecotropic origin (Fig . 1) were used . Four nonresponder T cell lym-
phomas, bearing gag and env antigen at their cell surfaces, showed high amounts
of viral RNAs of the expected sizes : 8.2-kb genomic RNA, from which the gag and
pol products are ultimately derived and 3.2-kb spliced mRNA, which yields the env
products (6) . In contrast, only minimal amounts ofboth 8.2- and 3.2-kb RNAs were
found in two responder T cell lymphomas, in various individual transplants.

In tumor 2729, which at the cell surface had moderate env, but no detectable gag
expression, an aberrant RNA of 2 .5 kb was found, which hybridized only to the
U3LTRprobe but not to (eco- and MCFspecific) p15(E), gp70, andgag probes (Fig .
4; gag hybridization shown in Fig. 6) . In this tumor a rearrangement of the N-myc
gene, due to proviral integration, had been found (Fig . 3 B) . Reasoning that this
proviral integration might influence N-myc transcription, we hybridized 2729 RNA
with the N-myc probe (Fig . 4 B) . Indeed, the U3LTR-reactive 2.5-kb RNA in tumor
2729 hybridized also to the N-myc probe. In tumor2769, on the cell surface ofwhich
no gag and only weak gp70e env antigens were detected, an aberrant RNA (4 kb)
was found as well ; this RNAhybridized to both the U3LTR and p15(E) probes, but
not to gp70 env and gag probes (Fig . 4; gag hybridization shown in Fig. 6) . Thus,
both quantitative and qualitative differences in viral RNAs were observed when we
compared nonresponder and responder lymphomas. The absence ofcell surface viral
antigen expression correlated with low amounts of normal viral RNA species.

Involvement of T Cell Reactivity.

	

The findings thus far strongly suggested that the
absence of particular env and/or gag proteins on the tumor cell surface is only re-
quired in the face of a class II-regulated T cell response in H-2 I-A responder type
mice. Therefore, it seemed ofinterest to determine whether the "virus-negative" variant
T cell tumors would re-express env and/or gag proteins iftransplanted in T cell-deficient
nu/nu mice. We transplanted two responder T cell tumors, tumor 2729 and 2769,
in C57BL/6 nu/nu mice, and studied virus expression in the transplants at the pro-
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FIGURE 4.

	

(A)Expression of viral RNAs in nonresponder and responder
type T cell lymphomas induced by MCF 1233 . RNAs were isolated from
the first in vivo syngeneic passages offour nonresponder (lanes 1-4) and
two responder (lanes 5-7) lymphomas. Northern blot analysis of 20 jug
total cellular RNA on formaldehyde-treated 0.8% agarose gels was per-
formed as described (21). The nitrocellulose filter was successively incubated
with U3LTR (A), .y actin (E), MCp15E (B), eco gp70 (C), andMCFgp70
(D) specific hybridization probes . Rehybridizations were preceded by
washing the filter in TIOEI (10 mM Tris, 1 mM EDTA) at 80°C for 1 h.
RNAs were obtained from first syngeneic transplants of: lane 1, tumor
2873 (B10.A) ; lane 2, tumor 2543 (B10.A(2R)) ; lane 3, tumor 2639
(B10.A(2R)); lane 4, tumor 2554 (B10 .A(4R)); lanes 5 and 6, tumor 2729
(1310), two individual transplants (lane 5, mouse Ia, lane 6, mouse Ib) ;
lane 7, tumor 2769 (bm 14), mouse Ia . RNA ofthe other first transplant
of tumor 2769 (mouse Ib) gave the same picture upon hybridization to
the various MuLV-specific probes as shown in lane 7for RNAofthe trans-
plant in mouse Ia (data not shown) . The characteristics of viral and MHC
antigen cell surface expression on the first syngeneictransplants were iden-
tical to those ofthe primary lymphomas, which are given in Table I (non-
responders, lanes 1-4) and Table II (responders, lanes 5-7) . (B) N-myc
containing viral RNA in tumor 2729 . On a separate gel another 20 jug
total cellular RNA, isolated from the two individual syngeneic tranplants
oftumor 2729 (lanes 5 and 6, in A) were loaded. After blotting, the filter
was hybridized to the N-myc probe; lane 5, 2729, mouse Ia; lane 6, 2729 ;
mouse Ib .

tein and the RNAlevel (Figs . 5 and 6) . Tumor 2729 retained its virus-negative variant
profile upon transplantation in nu/nu mice . The two individual transplants in nu/nu
mice of tumor 2769 clearly expressed env antigens, whereas a minority of the lym-
phoma cells also expressed gag antigens at the cell surface, in contrast to the primary
tumor (Fig . 5) . At the RNA level (Fig . 6) these cell surface phenomena correlated
with the appearance of higher amounts of normal 8.2- and 3.2-kb viral RNAs and
the relative reduction in the amount of aberrant 4.0-kb RNA, compared with the
parental tumor 2769 .

Importantly, all individual transplants of 2729 and 2769 showed the same clonal
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Viral and MHC antigen cell surface expression on responder T lymphoma 2769 .
Experimental procedures as outlined in legend to Fig. 2. Horizonatal axis, fluorescence intensity
(log scale, arbitrary units) ; vertical axis, cell number. The dotted lines represent the fluorescence
profile ofthe negative control, the solid lines represent tumor cells incubated with a specific an-
tivirus or anti H-2 antibody, as indicated at the left. (A) Primary responder T lymphoma 2769
(bm14) ; (B) syngeneic passage of 2769; 2769 (Ia); (C) passage of2769 (Ia) in C57BL/6 nu/nu mouse.
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FIGURE 6.

	

Expression of viral RNAs by MCF
1233-induced T cell lymphomas upon passage in
immunodeficient C57BL/6 nu/nu mice. Northern
blot analysis of 20,ug total cellular RNAon form-
aldehyde-treated 0.870 agarose gels was performed
asdescribed (21) . Thenitrocellulose filter was suc-
cessively incubated with U3LTR (A) g actin (C),
and MoVI-gag (B) specific hybridization probes.
Rehybridizations were preceded by washing the
filter in TI0EI (10 mM Tris, 1 mM EL7TA) at
80'C for 1 h. RNAs were isolated from lanes 1
and 2(negative controls): normal spleen (lane 1),
normal thymus (lane 2) ; lanes 3 and 4 (positive
controls) : first syngeneic transplant oftumor 2554
(B10.A[4R]) (lane 3), first syngeneic transplant
oftumor 2639 (B10.A[2R]) (lane 4); lane 5, first
syngeneic transplant oftumor 2 729 (1310), mouse
Ib ; lane 6, passage of tumor 2729 Ib into an
C57BL/6 nu/nu mouse; lane 7, first syngeneic
transplant oftumor 2769 (bm14), mouse Ia ; lanes
8 and 9, two individual transplants oftumor 2769
la into C57BL/6 nu/nu mice. Characteristics of
viral andMHC antigen cell surface expression on
the primary tumors 2554 and 2639 are given in
Table I, on the primary tumor 2729 in Table II .
The antigenic profiles ofthe in vivo passaged tu-
mors used for RNAanalysis were identical to that
of the primary tumors. Analyses of viral andMHC
antigen cell surface expression on primarytumor
2769 and subsequent passages into syngeneic and
C57BL/6 nu/nu mice are shown in Fig . 5 .

TCR/3 chain gene rearrangement as the parental tumor cells . Moreover, the proviral
integration patterns of the primary tumors were identical to those of the transplants
for lymphomas 2729 and 2769, passaged in either immunocompetent or nu/nu mice
(data not shown) .

Discussion
In this study we have documented amajormechanismby which primary immuno-

genicMuLVinduced Tcell tumors can be envisaged to evade Tcell immunosurveil-
lance, namely by failure to express particular viral antigens at the tumor cell sur-
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face . More rarely, the absence of class I MHC antigens was observed . Absent viral
or MHC class I antigen expression on tumor cells appears only necessary for tumor
survival in the face of a strongly Th-dependent antiviral immune response. This
conclusion follows from a detailed comparison of viral ena/gag and MHC class I an-
tigen cell surface expression in MCF 1233 MuLVinduced Tcell lymphomas in H-2
I-A responder and H-2 I-A nonresponder mice .
The absence of p30-reactive cells in 6 of 11 lymphomas of the responder group

probably reflects the complete absence of any gag proteins in these lymphoma cells,
since the anti-p30 polyclonal serum used reacts with both p30 and its precursor poly-
proteins (own unpublished results) . In view of the well-known heterogeneity of viral
gp70 antigens (47, 48) andthe reactivity of polyclonal anti-gp70 sera with gp70-like
determinants or normal lymphoid cells (49), the use of mAb anti-gp70f (reactive
with a highly conserved gp70 epitope) is most appropriate for the comparative sero-
logical analyses of gp70-env expression on responderand nonresponder lymphomas.

It should be stressed that in the protection against early T cell lymphomas, H-2
I-A-restricted Th mayexert both direct effects, such as the production oflymphokines
(e.g ., IFN-'Y), and indirect effects, such as the production of anti-MuLV antibodies
by B cells and/or the augmentation ofMuLVspecific Tc activity. We have documented
previously that responder mice, in contrast to nonresponder mice, develop high titers
of anti-MuLVantibodies (25) . The antibody response to MuLV is known to be directed
primarily at the envelope proteins gp70 and p15(E) (50) . Thus, antibody-dependent
cellular effector mechanisms in responder mice will probably fail in the absence of
these viral antigens . In addition, data of Nowinski et al . (37), who reported that
the anti-gp70f mAb was the only one among the panel anti-gpa-f mAbs that neu-
tralized MuLV, may indicate that selectively the gp70f determinant is an impor-
tant envelope epitope in the humoral anti-MCF 1233 immune response .

Although we have no direct evidence for a protective role of MCF1233-specific
Tc activity, in view of many other reports (3, summarized in reference 4), it seems
very likely that augmentation ofTc responses by the H-2 I-A-restricted anti-MCF1233
Th response will contribute to the eradication ofMCF1233-infected cells. Obviously,
no reliable quantification of the amount of viral antigen relevant for T cell immu-
nity can be based on serological membrane fluorescence studies. However, it can
be envisaged that, ifviral proteins are not detectable serologically, no viral ena and/or
gag proteins will be available for processing into viral peptides that can be recog-
nized by Tcells . Importantly, as discussed below, differences in viral antigen expres-
sion detected by serological methods correlated with viral RNA levels in responder
and nonresponder lymphomas.
We did not perform immunoprecipitation studies for the quantification of viral

proteins for several reasons. First, primary lymphomas would have to be kept in
culture, thus, theoretically creating the opportunity for the occurrence of in vitro
phenomena such as reexpression of transcriptionally silent proviral genes, which
is a real danger in view of data of several groups (6, 20). Furthermore, membrane
fluorescence studies may reveal changes in viral antigen expression that are of im-
portance to antiviral immunity, which cannot be detected by methods in which the
natural configuration of viral antigens in the cell membrane is first destroyed by the
use of detergents .
As stated already, both ena-negative andgag-negative variants are detected among
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responder T cell lymphomas, but there seems to be no preferential loss ofa particular
antigen in relation to H-2K or -D allelic specificities . This is in line with data ofPlata
et al . (9), who demonstrated the presence ofbothgag and ena AKR Gross MuLVspe-
cific Tc in C57BL/6 (H-2b) mice. Moreover, the frequency of gag and ena-specific
Tc varied within a given immunized mouse strain (F. Plata, personal communica-
tion). Pala et al . (51) reported that the frequency of influenza nucleoprotein-specific
Tc varied between individuals of an inbred mouse strain . The immune response
against MCF 1233 in H-2 I-Ab mice will be polyclonal but probably is biased to
particulargag or ena antigens, dependent on the immunodominance of these antigens
in the original presentation to class II-restricted Th. Thus, loss ofena or gag expres-
sion can contribute to a relative, but not an absolute, growth advantage for a pre-
leukemic cell .
Other reports of MuLVinduced tumors, which lack viral antigen expression, in-

dicate various immunorelevant target molecules (20, 52-54) . It should be stressed
that our observations concerning viral antigen andMHC expression on lymphomas
were made on fresh or cryopreserved viable cell suspensions from primarylymphomas
that arose in vivo in nonmanipulated animals . The few previous observations ofab-
sent viral antigen expression on retrovirus-induced lymphomas were made with in
vitro tumor lines (52-54), or after artificial immunoselective pressure (20) . Green
and Manjunath and colleagues (52, 53) described two variant subclones of atumor
cell line, derived from an AKR virus-induced lymphoma in AKR (H-2k) mice, that
were resistant to lysis by virus-specific Tc. These variants showed strongly reduced
gp70 ena viral antigen expression as detected by the gp70-specific mAb panel, also
used here. In line with our data, Green (52) observed selective loss of particular gp70
epitopes . Schafer and Schmidt (54) documented qualitative and quantitative differ-
ences in antigenic gag determinants at the cell surface of various AKR thymoma
cell lines . Van der Hoorn et al . (20) characterized Tc-resistant antigen loss tumor
cell variants that had lost the gP85gag MoMuLV surface antigen but retained tran-
scriptionally silent MoMuLV proviruses . These variants arose from a parental
MoMuLVinduced tumor cell line upon transplantation in the presence ofexogenously
added immunoselective pressure, namely the intravenous inoculation of cloned
MoMuLVspecific Tc .
Another study to be discussed in relationship to our data is that of Wolfe et al .

(55), in which the infectious virus production in vitro of Friend MuLV-induced tumor
cell lines depended on their H-2 types. Remarkably, for unstated reasons, the viral
replication grade decreased in vitro in the absence of immune effector function . Al-
though we can not exclude that such a phenomenon also occurs in vivo in MCF
1233-infected H-2 I-Ab responder type cells, this is unlikely in view of previous
results . We have described earlier that MCF 1233 MuLV initially infects thymocytes
in both responder and nonresponder mice, as tested by the cell surface expression
of Hy-13-reactive ena viral proteins . However, in responder mice virus-infected cells
disappear from the thymus, coinciding with the appearance of anti-MuLV antibodies,
the production of which requires an adequate class II-regulated Th response . This
observation has prompted us to hypothesize that T cell immune reactivity in H-21-
Ab mice directly or indirectly clears the viral infection of thymocytes (25) .
The significance of low or absent H-2K and -D expression in two nonresponder

T cell lymphomas is not clear. It cannot be excluded that helper-independent Tc
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may play a minor protective role in H-2I-A nonresponder type mice (25, 56) . We
describe here one MCF 1233-induced T cell lymphoma (2558) in the responder
series that shows selective loss of Kb expression with only weak Dd expression . Re-
markably, this tumor was the only exception in the responder series with respect
to the expression of viral ena and gag proteins, which were easily detectable in this
tumor. Another lymphoma, 3933, lacked Kb expression and showed normal ena but
absent gag expression . We previously showed that the immune response against MCF
1233 is primarily I-A-regulated Th dependent (25) . The relative contribution of class
I-restricted Tc responses in the eradication of virus-infected cells has not yet been
clarified . Interestingly, the exceptional switch offof class I H-2K expression wasob-
served in both cases for B10 .A(5R) lymphomas (H-2Kb , -I-Ab , -Dd) . At this mo-
ment it remains speculative whether this observation indicates an important role
for Kb as sole restriction element if no Db is available . Plata et al . (9) demonstrated
that B6 mice recognize both gag and ena gene products of Gross (AKR type) MuLV
efficiently in association with Kb or Db.

It seemed of interest to determine at which level the absence of particular viral
proteins at the cell membrane of responder T lymphoma cells was established . To
this end, we studied two responder T cell lymphomas (2729 and 2769) in more de-
tail . The direct serological measurement of the intracellular presence of viral pro-
teins after fixation in BFA of the T lymphoma cells did not show discrepancies be-
tween membrane and intracytoplasmic expression .

In T cell lymphoma DNAs ofboth nonresponder mice and responder mice (Fig .
3), multiple newly acquired proviruses could be detected with an U3LTR probe.
However, it should be noted that this does not take into account whether or not these
integrations represent full-length, partially deleted, or defective proviruses . Inser-
tional mutagenesis, a well-documented oncogenic mechanism in MuLVinduced T
cell lymphomas (57-59), only requires the activity of proviral LTR sequences (60) .
More extensive analyses of the nature of the viral reintegrations in nonresponder
and responder lymphomas is hampered by the presence of multiple MCF and
xenotropic-like endogenous viral sequences (6, 61).
The amount of viral RNAs (8.2 and 3.2 kb) in two responder T cell lymphomas

(2729 and 2769) was only minimal when compared with that in four nonresponder
T cell lymphomas . The expression of proviruses is known to be influenced by anumber
of factors . A causal relationship between hypermethylation and gene inactivity has
been established for retroviral genomes (20, 62). Moreover the host integration site
and specific sequences within the long terminal repeat (LTR) may regulate the viral
expression (6). One possibility to be considered in our study is that in H-2I-A re-
sponder type mice, only tumor cells that harbor proviruses that do not yield im-
munorelevant viral proteins but have retained transformational capacities due to
insertional mutagenic effects of integrated LTRs will grow out. In this respect, it
is of note that the mean latency of T cell tumors in the responder strains (57 wk)
is significantly longer than in the nonresponder mice (37 wk) (25) . This may reflect
the time needed to require the extra and rare conditions required to grow out in
the presence ofan antiviral immune response . In both responder tumors (2729 and
2769) abnormally sized viral RNAs are found. In tumor 2729 the single proviral
integration near N-myc apparently results in the expression of a 2.5-kb RNA, con-
taining U3LTR and N-myc sequences . It is possible that LTRenhanced transcrip-
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tion ofN-myc interferes with transcription ofproviral DNA, thus explaining decreased
virus expression in tumor2729 . The origin ofthe aberrant viralRNA found in tumor
2769 remains to be determined.
The stable virus-negative phenotype of tumor 2729 upon in vivo passage in T

cell-deficient nu/nu mice is compatible with interference of N-mycand provirus tran-
scription within this tumor, as stated above. However, tumor2769 re-expressed both
viral ena and gag proteins upon transplantation in nu/nu mice . Importantly, at the
DNA level no obvious changes could be detected with respect to viral integration
pattern in the various transplants . This argues against the outgrowth ofa pre-existing
minor subpopulation of virus-positive cells. Obviously, no general conclusions can
be drawn from the limited transplantation data of tumor 2769 ; more experiments
are now in progress to determine how generally the seesaw phenomenon occurs in
the absence or presence of T cell immunity. At this moment it is merely speculative
which mechanism(s) underlie the re-expression ofviral antigens in lymphoma 2769 .
Noteworthy, no significant differences in macroscopic aspect and/or latency (4 wk)
of the transplants were observed, whether they grew out in immunocompetent or
deficient mice . One possibility is that in immunocompetent mice, MuLVspecific
Th produce IFN-y, which is known to downregulate the expression of proviral genes
(63) .

It should be mentioned that we found no strict direct quantitative relationship
between the amounts of viral RNA and the presence of particular viral antigens
at the tumor cell surface, detected serologically. Tumor 2429 does express gp70 epi-
topes, whereas only a minimal amount of ena probe-reactive RNAs is present. The
data discussed thus far indicate that both quantitative and more subtle qualitative
changes in viral antigen expression are found in distinct responder T cell tumors .
Our observations on MuLVinduced lymphomagenesis may have important im-

plications for the understanding of the pathogenesis of human virus-induced dis-
ease . A study of Massuci et al . (64) shows that certain Burkitt lymphoma cell lines
that are resistant to EBVspecific Tc have selectively lost expression ofEBVencoded
latent membrane protein, in addition to loss ofHLA-All expression, suggesting that
this mechanism of low viral antigen and/or MHC expression may also operate in
man. It is tempting to draw a parallel between our results and those of two recent
studies (65, 66), which show that progression of disease in individuals infected with
HIV-1 is correlated with the emergence of HIV-1 variants that are more cytopathic
and replicate to a higher titer in a wide variety of different human cells . It has been
suggested that the infectivity ofdifferent HIV virus isolates is established at the tran-
scriptional level. In our view, and as is illustrated by our results, it could well be
that these HIVvariants emerge as a consequence ofthe dynamic molecular genetic
features ofretroviral infection and its close interaction with the host-determined im-
mune response .

Summary
T lymphoma induction by the mink cell focus-inducing murine leukemia virus

MCF 1233 in C57BL/10 and C57BL/6 mice is influenced by a strongly Th-dependent,
H-2I-A-restricted antiviral immune response (25) . We compared the MHC class I
as well as viral ena and gag antigenic cell surface profiles of frequent T lymphomas
ofH-2I-A nonresponder-type mice to that ofrare Tlymphomas of H-2I-A responder-
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type mice. Membrane immunofluorescence studies, with a panel of anti-ena mAbs
(reactive with the highly conserved gp70f epitope, the p15E` epitope, and the gp70-
p15E complex), a polyclonal anti-p30 serum, and anti-H-2 class I mAbs, showed
that all 17 nonresponder tumors tested expressed high levels of both ena and gag viral
proteins, and 15 of these 17 nonresponder tumors expressed high levels of H-2 class
I K and D antigens . In contrast, 10 of 11 responder lymphomas lacked ena and/or
gag determinants . The only responder lymphoma with both strong ena and gag ex-
pression failed to express H-2K and -D antigens . Preferential loss of ena or gag ex-
pression did not correlate with H-2 class I allelic specificities .
Both responder and nonresponder T lymphoma DNA contained multiple, pre-

dominantly MCRlike, newly acquired proviral integrations . Differences in viral an-
tigen cell surface expression were confirmed at cytoplasmic and RNA levels . The
amounts of 8.2- and 3.2-kb viral RNA were greatly reduced in two responder lym-
phomas when compared with four nonresponder lymphomas . In both responder
lymphomas, aberrantly sized viral RNA species were found. Upon in vivo passage
ofthese responder lymphomas in either immunocompetent or T cell-deficient nu/nu

mice, it was found that various molecular mechanisms may underlie the lack ofviral
antigen expression at the cell surface ofthese lymphomas . One lymphoma re-expressed
viral antigens when transplanted with nu/nu mice, whereas the other remained stably
gag negative . The combined findings indicate that an H-2I-A-regulated antiviral im-
mune response not only strongly reduces T lymphoma incidence, but also forces
T lymphomas that still arise to poorly express viral antigens, thus explaining their
escape from immunosurveillance.
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