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Abstract: Carbonic anhydrases (CA) inhibitory action could be linked to the treatment of a number
of ailments, including cancer, osteoporosis, glaucoma, and several neurological problems. For
the development of effective CA inhibitors, a variety of heterocyclic rings have been investigated.
Furthermore, at high altitudes, oxygen pressure drops, resulting in the formation of reactive oxygen
and nitrogen species, and CA inhibitors having role in combating this oxidative stress. Acetazolamide
contains thiadiazole ring, which has aroused researchers’ interest because of its CA inhibitory action.
In the present study, we used a number of drug design tools, such as pharmacophore modeling, 3D
QSAR, docking, and virtual screening on twenty-seven 1,3,4-thiadiazole derivatives that have been
described as potential CA inhibitors in the literature. An atom-based 3D-QSAR analysis was carried
out to determine the contribution of individual atoms to model generation, while a pharmacophore
mapping investigation was carried out to find the common unique pharmacophoric properties
required for biological activity. The coefficient of determination for both the training and test sets
were statistically significant in the generated model. The best QSAR model was chosen based on the
values of R2 (0.8757) and Q2 (0.7888). A molecular docking study was also conducted against the most
potent analogue 4m, which has the highest SP docking score (−5.217) (PDB ID: 6g3v). The virtual
screening revealed a number of promising compounds. The screened compound ZINC77699643
interacted with the amino acid residues, Pro201 and Thr199, in the virtual screening study (PDB
ID: 6g3v). These interactions demonstrated the significance of the CA inhibitory activity of the
compound. Furthermore, ADME study revealed useful information regarding compound’s drug-like
properties. Therefore, the findings of the present investigation could aid in the development of more
potent CA inhibitors, which could benefit the treatment of oxidative stress at high altitudes.

Keywords: 1,3,4-thiadiazole; oxidative stress; molecular modeling; carbonic anhydrase (CA) inhibitor;
high altitude

1. Introduction

At high altitudes, oxygen pressure drops, resulting in the formation of reactive oxygen
and nitrogen species (RONS), which have been linked to a variety of oxidative stress
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related diseases [1,2]. The formation of reactive oxygen and nitrogen species (RONS) causes
oxidative damage to biomolecules such as protein and DNA, which has been linked to a
number of diseases [3–6]. At high altitude, the body’s antioxidant enzymes system becomes
unresponsive. In addition, at this height, the RONS-producing sources, which include
various mitochondrial transport systems, nitric oxide synthase, and xanthine oxidase,
become activated [7–10]. Physical activity can sometimes cause an increase in oxidative
stress, fatigue, headaches, nausea, anorexia, and poor sleep. A number of medications are
available to treat oxidative stress, including carbonic anhydrase (CA) inhibitors [11] and, in
particular, acetazolamide [12]. The literature survey revealed that acetazolamide (a specific
inhibitor of CA) is used to treat high-altitude pulmonary oedema (HAPE) [13].

Carbonic anhydrase enzyme of various types is found in prokaryotes and eukaryotes.
Carbonic anhydrases (CAs, EC 4.2.1.1) encode bacteria found in three different genetic
families, the α-, β-, and γ-classes. These metalloenzymes interfere with pH regulation
and other important physiological processes in these organisms by equilibrating CO2 and
bicarbonate. These enzymes differ in terms of tissue expression, kinetic properties, and
localization in different parts of the body. CAs I, II, III, VII, and XIII are cytosolic carbonic
enzymes, whereas CAs IV, IX, XII, and XIV are cell membrane associated enzymes [14].
CAs VA and VB are found near the mitochondrial region, while VI is found in saliva and
milk. Catalytic activity is absent in CAs VIII, X, and XI. CAs play various roles in our
bodies, including electrolyte balance in various organs, biosynthetic reactions, calcification,
bone resorption, pH and CO2 homeostasis, and tumorigenicity.

CAs’ inhibitory activity has been linked to the treatment of a number of diseases,
including cancer, osteoporosis, glaucoma, and some neurological disorders [15]. The use
of heterocyclic rings in the development of powerful CA inhibitors has been studied. The
thiadiazole (Acetazolamide) ring has piqued scientists’ interest due to its ability to inhibit a
variety of diseases [16,17].

In the current study, we used 3D QSAR to identify the structural requirements of
1,3,4-thiadiazole derivatives for potential human CA-I inhibitions. The presence of vari-
ous pharmacophoric features such as aromatic groups, electron donating groups, electron
withdrawing groups, and hydrophobic long chains was used to generate pharmacophore
models, which are important for their inhibitory activities against CA. Furthermore, the
association of CA inhibitors with the binding pocket of receptor was validated by a com-
parative molecular docking investigation, confirming their inhibitory efficacy. The pharma-
cophore predicted by the 3D QSAR analysis could be a viable scaffold for the identification
of new CA inhibitors as anticancer agents. The virtual screening investigation was carried
out using the ZINC database’s pharmacophore [18]. Earlier findings suggested that ac-
etazolamide drug can be taken as reference to produce different hypothetical compounds
followed by their docking studies against CA enzyme target. After that, the best com-
pounds were chosen by combining it with ZINC-screened compounds [19]. The hypothetic
compounds can also be used for synthesis, as well as in vivo and in vitro research. An
enzymatic assay can be used to determine the inhibitors’ target specificity. Molecular
docking studies could assist in identifying the inhibitors’ orientation and binding inter-
actions with the enzyme’s active site. To evaluate drug likeness properties, the ADME
property and oral toxicity were predicted. As a result, we expect this effort to provide some
interesting molecules for the treatment of oxidative stress linked to a variety of pathological
complications [20].

2. Materials and Methods
2.1. Collection of Data Set

Dataset of 27 ligands were taken in the present study [21]. All of the ligands’ structures
were drawn in ChemDraw Ultra 12.0 software [22] and saved in ‘.mol’ format. The biologi-
cal activity was reported in literature in terms of IC50 values (in µM), which were converted
to pIC50 for QSAR studies, as shown in Table 1. pIC50 is represented as the negative
logarithmic value of IC50, so first the IC50 value was converted into molar concentration,
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then into pIC50 value. To generate the predicted pIC50 values for 3D-QSAR analysis, the
complete dataset was divided in 7:3 training and test sets. The complete process of the
present study is depicted in Figure 1.

Table 1. Compounds taken in QSAR study with CA inhibitory activity (IC50 and pIC50 value) [21].

S. No. Compounds Structures IC50 Value (µM) pIC50 Value
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Table 1. Cont.

S. No. Compounds Structures IC50 Value (µM) pIC50 Value
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Table 1. Cont.

S. No. Compounds Structures IC50 Value (µM) pIC50 Value
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S. No. Compounds Structures IC50 Value (µM) pIC50 Value
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Figure 1. The schematic workflow of 3D QSAR, pharmacophore model, docking, and virtual screen-
ing performed in the present study.

2.2. Preparation of Ligands

The LigPrep [23] module was used to prepare the ligand via Maestro, which was
specifically configured to provide input structures for the Glide and PHASE modules.
Clean up wizard can process one ligand per second at a time, effectively converting large
datasets from 2D to 3D structures, as well as essential steps in pharmacophore development
and docking studies, utilising unique algorithms. To discover the optimal alignment and
common features for 3D QSAR model generation, the molecules were aligned based on
their most common core structure, as shown in Figure 2.
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2.3. Pharmacophore Mapping

Pharmacophore mapping is the process of defining and placing unique pharma-
cophoric features as well as using alignment algorithms to overlay 3D conformations [24].
The PHASE module of the Schrodinger Maestro software was used to carry out the pharma-
cophore mapping study. There are various features present in developed pharmacophore
hypothesis, such as hydrogen bond acceptors (A), hydrogen bond donor (D), aromatic
ring (R), and a hydrophobic (H) group. The top ranked hypothesis consists of two unique
pharmacophoric features based on structural requirements for biological activity: hydro-
gen bond donor (D) and ring aromaticity (R). As shown in Figure 3, each feature in this
pharmacophoric map signifies a common particular portion associated with the selected
compounds.
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2.4. Pharmacophore Hypothesis Generation

Using the PHASE module’s “Developing a pharmacophore model” [25,26], 20 hy-
potheses were created to explain how active molecules bind to receptors with a box size of 1
Å and a minimum inter site distance of 2 Å. A pharmacophore site is a characteristic feature
of a conformation that has been mapped to a specific location. Common pharmacophoric
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features were identified from a set of variants—feature types that identify a putative phar-
macophore. Using a scoring function as a survival score, the common pharmacophore
hypotheses were investigated. The site, vector, volume, selectivity scores, and number of
matches were calculated for each of the generated hypotheses. The PHASE module has
six in-built pharmacophore features, including hydrogen bond acceptor (A), hydrogen
bond donor (D), hydrophobic group (H), ring aromaticity (R), positively ionizable (P), and
negatively ionizable (N) groups (Supplementary File; Table S1).

2.5. An Atom Based 3D-QSAR

Schrodinger Maestro software was used to build an atom-based 3D-QSAR model using
a collection of aligned ligands in order to predict activities for additional compounds [27].
The training set consisted of 70% of the dataset’s compounds, while the test set consisted
of 30%. The compounds were clustered using a PLS factor of 4. The Atom type fraction
segment demonstrated the fraction owing to each atom type in the QSAR model for each
number of PLS factors included in the model. Furthermore, actual activity versus predicted
activity for compounds in the training as well as the test sets were plotted to form a
scatter plot.

2.6. Virtual Screening

The virtual screening study was carried out using the ZINC data base, and the AAHRR
1 hypothesis was employed to screen ZINC compounds using the Lipinski rule of 5 (Sup-
plementary File; Table S2) [28]. Using different filters, a total of 3568 molecules were
screened. The GLIDE module of Schrodinger was used to screen these compounds using
different docking methodologies. The Swiss Target Prediction tool was used to predict
the target of these selected compounds. This tool predicts all the available targets of the
molecule. Different targets were identified in the current investigation, with CA being the
most important one for the particular molecule.

2.7. Molecular Docking

The docking studies were carried out using the Schrodinger Maestro software’s Glide
module [29]. The score function in the software was used to rank and group distinct possible
adduct structures generated by molecular docking [30] (Supplementary File; Table S3).
Based on the binding properties of the ligand and target, it predicts the three-dimensional
structure of any complex. The method of predicting ligand conformation and orientation
(or posing) within a specific binding site is referred to as docking. In Maestro wizard, the
protein structure was pre-processed using the “protein preparation wizard”. Hydrogen
atoms and certain essential bonds were introduced to the missing site of the protein
molecule by automatically generating states and refinement steps phases of the module.
After the optimization process, receptor grid generation was processed and docking scores
were analysed with different docked ligand conformations [31,32].

2.8. ADME Properties Prediction

The drug-like activity of the ligand molecule was predicted using the Schrodinger
software’s QikProp module [33]. It predicts both physicochemical descriptors and phar-
macokinetic properties with the objective of increasing the success rate of compounds
for further development. The ADME study suggests that drug-like properties of ligand
molecules were validated using Lipinski’s rule of five [34,35]. The rule states that the
molecular weight <500, Log Po/w <5, hydrogen bond donor ≤5, and hydrogen bond ac-
ceptor ≤10. The compounds that meet these criteria are classified as drug-like compounds
(Supplementary File; Tables S4 and S5).
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3. Results and Discussion
3.1. Pharmacophore Mapping: Selection of the Best Pharmacophore Hypothesis

All the selected compounds from the database were used to generate pharmacophoric
hypothesis or the minimum features of the compound required to bind with receptor.
Among 20 pharmacophore hypotheses, we screened best pharmacophoric hypotheses on
the basis of various scores described in Table 2. Three hydrogen bond donors (D) and two
ring aromaticity (R) were identified as common pharmacophore features. DDDRR 1 and
DDDRR 2 were found to be the best among the 20 hypotheses generated (Supplementary
File; Table S1) by the PHASE module, based on a scoring function of each parameter value
listed in Table 2 [36]. The “survival” scoring (S) function was responsible for determination
of features from described models and to rank all hypotheses. The scoring algorithm
involves selectivity, number of ligands matched, relative conformational energy, and activity.
However, the models should also differentiate between inactive and active molecules. If an
inactive molecule scores well, the hypothesis could be invalid as it does not discriminate
between active and inactive molecules. For this reason, adjusted survival score S_I was
calculated by subtracting the inactive score from the survival score.

Table 2. Pharmacophore hypothesis with ranking on the basis of survival scores.

HypoID Survival Site Vector Volume Select Matches Inactive Adjusted BEDROC

DDDRR_1 5.4403 1 1 0.9301 1.9083 4 2.7979 2.6424 1
DDDRR_2 5.4403 1 1 0.9301 1.9083 4 2.7979 2.6424 1
DDDRR_3 5.4344 0.9999 1 0.9303 1.9021 4 2.8723 2.562 1
DDDRR_4 5.4336 1 1 0.9306 1.901 4 2.5881 2.8455 1
DDDRR_5 5.4233 1 1 0.9307 1.8906 4 2.5503 2.873 1
ADDRR_1 5.2355 1 1 0.93 1.7036 4 2.8242 2.4114 1
ADDRR_2 5.2177 1 1 0.9301 1.6857 4 2.898 2.3197 1
ADDRR_3 5.2028 1 1 0.8972 1.7036 4 2.7787 2.4241 1
ADDRR_4 5.1937 1 1 0.8979 1.6937 4 2.427 2.7667 1
ADDRR_5 5.1834 0.9999 1 0.9301 1.6513 4 2.8282 2.3553 1
DDRR_1 4.9585 1 1 0.9301 1.4264 4 2.8214 2.137 1
DDRR_2 4.9585 1 1 0.9301 1.4264 4 2.8214 2.137 1
DDRR_3 4.9527 1 1 0.9303 1.4204 4 2.9038 2.0489 1
DDRR_4 4.9489 1 1 0.9301 1.4168 4 2.7901 2.1588 1
DDRR_5 4.9488 1 1 0.9306 1.4162 4 2.6459 2.3029 1
DDRR_6 4.9475 1 1 0.9303 1.4153 4 2.8664 2.0812 1
DDRR_7 4.9451 0.9999 1 0.9303 1.4129 4 2.8672 2.0779 1
DDRR_8 4.9444 1 1 0.9307 1.4117 4 2.6223 2.3221 1
DDRR_9 4.9418 1 1 0.9306 1.4092 4 2.5853 2.3564 1

DDRR_10 4.9388 1 1 0.9307 1.4061 4 2.5917 2.3471 1

3.2. Selection of Atom Based QSAR Model

The QSAR findings for the hypothesis are shown in the statistical table obtained for the
training and test set molecules. Several statistical parameters were employed to examine
the robustness of the QSAR model, including SD, R2, F, P, RMSE, Q2, and Pearson-R [37].
High R2 (higher than 0.6), Q2 (greater than 0.5), Pearson-R (greater than 0.5), and F values
characterize a good QSAR model. All the four models generated by the module are shown
in Table 3. Based on the above information, the fourth model was chosen as the best QSAR
model due to higher Q2 and R2 values as 0.7888 and 0.8757, respectively.

To demonstrate the uniform distribution of training set molecules over the straight
line passing through the origin (0, 0), a scattered plot was drawn between experimental
activity and predicted activity of training and test set compounds (Figure 4).
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Table 3. Atom-based QSAR statistics with important values like Rˆ2, Qˆ2 and Rˆ2 CV.

# Factors SD Rˆ2 Rˆ2 CV Rˆ2
Scramble F P RMSE Qˆ2 Pearson-r

1 0.4137 0.474 0.043 0.3174 17.1 0.00056 0.6 0.2794 0.8494
2 0.3767 0.5867 0.0764 0.4491 12.8 0.000352 0.51 0.4802 0.8547
3 0.3599 0.8438 0.8096 0.549 10.2 0.000438 0.47 0.7448 0.8023
4 0.3539 0.8757 0.8277 0.5943 58.3 0.000784 0.5 0.7888 0.7495
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Figure 4. Scattered plot of experimental vs. predicted activity of training set (A) and test set
(B) molecules, where the filled circles represent the training and test set compounds, respectively.
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3.3. Evaluation of Contour Map

The effects of different substituents on biological activity were determined by the
study of contour maps, which are shown in Figure 5A–E. It also examines the variation
of substituents and their biological activity. The contour map is represented by color
coding, including different substituents on the core moiety. This color coding has a specific
indication of the substituent and is useful in the expansion of novel compounds as CA
inhibitors. The blue color showed enhanced activity, whereas the red color indicated
decrease in activity. The electron-withdrawing group substitution on the phenyl ring
showed a decrease in activity. Hydrogen bond donor group substitution on phenyl ring
with para substitution showed an increase in activity. Hydrophobic substitution at the ortho
position displayed good activity. Negative ionic group showed good activity at the para
position and deceased activity in the meta position. The positive ionic group substitution
in the phenyl ring showed decrease in activity.
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3.4. Molecular Docking Analysis

The Glide module was utilized to conduct molecular docking between the potent
derivatives and the target protein [38,39]. The potent analogues 4m, 4o, 4s, 4p, and 5b
demonstrated the highest SP docking scores of −5.217, −4.866, −4.729, −4.641, and −4.635
respectively, when interacting with amino acids of the target protein. The docking scores of
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compounds in the dataset are shown in Table 4. The purple arrows indicate hydrogen bond
interactions, whereas the green arrows indicate π-π-stacking interactions, as seen in Figure 6
for compound 4m, Figure 7A for compound 4o, and Figure 7B for compound 4s [40,41].

Table 4. Docking scores and MMGBSA-based rescores of compounds taken for QSAR and ZINC
database.

S. No. Compound Docking Score MMGBSA dG Bind (XPcomplex)
kcal/mol

1 4m −5.217 −72.8
2 4o −4.866 −80.17
3 4s −4.729 −74.67
4 4p −4.641 −83.2
5 5b −4.635 −76.8
6 ZINC77699643 −6.178 −69.8
7 ZINC89275054 −5.743 −84.17
8 ZINC77671412 −5.561 −67.67
9 ZINC70762033 −5.535 −82.2
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at the binding site of receptor 6g3v.

3.5. Virtual Screening

The molecular docking methodologies such as HTVS, SP, and XP were applied to
screen the compounds from the ZINC database. Each step screened 20% of the highest-
scoring compounds with high docking scores. The top compounds, ZINC77699643,
ZINC89275054, ZINC77671412, and ZINC70762033, were selected with xp docking scores
of −6.178, −5.743, −5.561, and −5.535, respectively, out of 333 compounds screened using
the SP docking approach. These compounds were chosen as the final ZINC compounds for
further investigation and assessed using MMGBSA to calculate binding interaction energy.
The compound ZINC77699643 interacted with Pro201 and Thr199 amino acid residues,
as shown in Figure 8A. These interactions demonstrated the significance of CA activity.
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The compound ZINC89275054 showed binding interactions with amino acid residues
His94, Gln92, and Thr199 in the same cavity, as shown by a crystal ligand (Figure 8B). The
compound ZINC77671412 demonstrated binding interactions with several amino acids at
the receptor’s binding region, including His200 and Gln92, which are critical for activity
(Figure 9A). The compound ZINC70762033 showed binding interaction with different
amino acids such as His200, His94, Gln92, and Thr199 at the binding site of receptor
(Figure 9B).
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Figure 8. (A) 3D interactions of compound ZINC77699643 with different amino acids—Pro201 and
Thr199—at the binding site of receptor 6g3v. (B) 3D interactions of compound ZINC89275054 with
different amino acids—His94, Gln92, and Thr199—at the binding site of receptor 6g3v.
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3.6. ADME Properties Prediction

The ADME properties of all the compounds from the dataset were predicted through
the QikProp module of Schrodinger; the results are given in Table 5. The software predicted
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the compounds’ physicochemical properties, lipophilicity, drug-like behaviour, water
solubility, permeability through BBB, pharmacokinetics, and synthetic accessibility [42,43].
All compounds have a molecular weight ranging from 259.34 to 399.24, number of hydrogen
bond acceptors ranging from 4.5 to 7.0, and number of hydrogen bond donors ranging
from 3 to 4. All the predicted ADME properties satisfied the Lipinski’s rule of five for all
the compounds.

Table 5. Result of ADME properties of compounds taken for QSAR analysis.

Compound CNS MW (<500) Dipole HBD (<5) HBA (<10) QPlogPo/w
(≤5)

Rule of
Five (≤1)

Rule of
Three

4a −1 279.334 8.68 3 5 1.331 0 0
4b −2 295.333 7.564 4 5.75 0.601 0 0
4c −2 309.36 7.389 3 5.75 1.447 0 0
4d −2 309.36 9.912 3 5.75 1.446 0 0
4e −2 325.36 8.614 4 6.5 0.754 0 0
4f −1 313.779 7.85 3 5 1.744 0 0
4g −1 313.779 7.342 3 5 1.805 0 0
4h −1 358.23 9.087 3 5 1.878 0 0
4i −1 358.23 7.462 3 5 1.878 0 0
4j −1 297.325 7.295 3 5 1.558 0 0
4k −2 324.332 7.092 3 6 0.713 0 0
4l −2 324.332 6.573 3 6 0.662 0 0

4m −2 322.402 8.929 3 6 1.811 0 0
4n −1 293.361 9.244 3 4.5 1.753 0 0
4o −1 307.388 9.628 3 4.5 2.037 0 0
4p −2 309.36 10.476 4 5.25 1.009 0 0
4q −1 323.387 10.496 3 5.25 1.907 0 0
4r −1 327.806 7.953 3 4.5 2.231 0 0
4s −1 372.257 8.067 3 4.5 2.305 0 0
4t −2 338.358 7.204 3 5.5 1.079 0 0
4u −1 355.432 9.928 3 4.5 2.994 0 0
4v −2 280.322 6.159 3 6.5 0.678 0 0
4w −1 269.296 8.4 3 5.5 0.734 0 0
4x −2 259.344 9.12 3 5 0.822 0 0
5a −2 320.343 10.649 3 6 0.683 0 0
5b −2 399.239 10.195 3 6 1.227 0 0
5c −2 365.341 10.978 3 7 0.016 0 0

3.7. MMGBSA-Based Rescoring

The MMGBSA-based rescoring method was used for calculation of binding free energy
for ligands and ZINC hit compounds ZINC77699643, ZINC89275054, ZINC77671412, and
ZINC70762033 (complex with PDB ID: 6g3v), which provided very high binding free energy,
as dG bind −69.8, −84.17, −67.67, −82.2 kcal/mol, respectively (Table 4).

4. Optimization of Novel Ligands

Optimization of ligands revealed that the substitution of the hydrogen bond donor
group on the phenyl ring at the para position, hydrophobic group at the ortho position, and
negative ionic group at the para position showed increase in activity. However, substitution
of the negative ionic group at the meta position of the phenyl ring, and positive ionic group
substitution on the phenyl ring displayed a decrease in activity (Figure 10).
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