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Abstract
Recent outbreak of 2019 novel Corona virus poses serious challenge for the global health system. In lieu of paucity of experi-
mental data, tools and the very basic understanding of host immune responses against SARS-CoV-2, well thought effective 
measures are needed to control COVID-19 pandemic. We have identified specific overlapping antigenic peptide epitopes 
(OAPE) within the 4 structural proteins of SARS-CoV-2 predictive of triggering robust CD4 and CD8 T cell responses in 
host using bio-informatics tools (NetMHC4.0, IEDB, and Vaxijen2.0). We speculate an early release of pro-inflammatory 
cytokines for protection and later release of anti-inflammatory cytokines for prevention of immunopathology in designing a 
vaccine for Covid-19. Therefore, the selected immunogenic OAPE were subjected to in silico tools (IL-6-Pred, IFNepitope 
and PIP-EL) for analyzing their pro-inflammatory response. The OAPEs found to be pro-inflammatory in nature were fur-
ther subjected to prediction servers (IL-4-Pred, IL-10-Pred, Pre-AIP) to characterize them as inducers of anti-inflammatory 
response as well. We finally filtered out 12 OAPE which had affinity for both CD4 and CD8 T cells as well as were induc-
ers of pro-inflammatory and anti-inflammatory cytokines. On confirmation of OAPE binding affinity for respective T cell 
specific MHC allele using docking studies (pepATT RAC T, Hex8.0 and Discovery studio) they were found to be have more 
immunogenic potential than the 3 negative control peptides (NCPs) included in the study. Additionally, we constructed 
CTxB-adjuvanated multi-epitopic vaccine inclusive of the 12 OAPEs which was non-toxic, non-allergenic and capable of 
inducing both pro-inflammatory and anti-inflammatory cytokines. A successful in silico cloning and docking of modeled 
subunit vaccine construct with toll like receptor-2 (TLR-2) confirmed the high efficacy of our multi-epitopic vaccine which 
can through a balanced interplay of cytokines help in creating a steady-state immune equilibrium. In silico immune simula-
tion studies with the vaccine using C-ImmSim server also showed higher percentage of T cells along with production of 
pro-inflammatory as well as some anti-inflammatory cytokines. Experimental validation of this prediction based study on 
Peripheral Blood Mononuclear Cells (PBMCs) of un-infected individuals, patients and recovered individuals will facilitate 
production of high priority effective SARS -CoV-2 vaccine candidate.
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Introduction

Pandemic or the worldwide spread of a new disease has 
been a crucial part in shaping the history of mankind since 
ages. The consequences of previous pandemics includ-
ing the very recent 2009 H1N1 Swine flu has been very 
destructive but the havoc created by ongoing Corona virus 
disease 2019 (COVID-19) is certainly unprecedented. The 
causative agent of COVID-19 is severe acute respiratory 
syndrome corona virus 2 (SARS-CoV-2). The lipid enve-
lope of these viruses are embedded with fringed projec-
tions which appears as crown and hence the name. CoVs 
possess a 5’capped single-strand positive-sense RNA with 
unusually large RNAgenome∼30  kb (Belouzard et  al. 
2012). CoVs encodes replicase proteins within 6 to 10 
open reading frames (ORFs) and 4 main structural proteins 
namely spike protein, membrane protein, envelope protein, 
and nucleocapsid protein.The membrane and envelope pro-
teins are involved in virus assembly and the spike protein 
is involved in the viral entry. The nucleocapsid is a dis-
tinct protein of CoVs, which favors the survival of virus 
by modulating various host mediated antiviral processes.

SARS-CoV-2 enters the host respiratory epithelial cells 
by adhering to angiotensin-converting enzyme 2 (ACE2) 
receptors on host cell (Zhou et al. 2020).The serine pro-
tease, trans-membrane protease serine 2 (TMPRSS2) 
present in the host cleaves viral spike protein into two 
subunits S1 and S2. The S2 subunit assist in fusion of viral 
and host cell membranes (Hoffmann et al. 2020). Follow-
ing receptor binding, the virus enters the cell cytoplasm 
via endocytosis where it blocks various antiviral pathways 
which ultimately leads to defective type 1 interferon gene 
induction (Ou et al. 2019). This results in downstream 
enhanced NF-κB activation, pro-inflammatory cytokine 
production, and necroptosis (Siu et al. 2009). These altera-
tions in signaling cascade leads to increased cell death, 
hyper-inflammation, and cytokine storm.

Once the virus is inside the host, viral antigens are 
processed into smaller peptide fragments and mounted 
on Major Histocompatibility Complex (MHC) molecules. 
MHC class II loaded with peptide epitope prime the CD4 
helper T cells while MHC class I loaded peptide epitope 
prime the CD8 T cells. Studies have reported a higher fre-
quency of SARS-CoV-2 specific CD4 T cells in patients 
with severe infection while a higher proportion of CD8 
T cells in mild disease and patients who had recovered 
from COVID-19 (Grifoni et al. 2020; Sekine et al. 2020). 
Furthermore, CD8 T cell dominated over CD4 T cell in 

terms of frequency and magnitude of the responses. This 
observation suggests that while CD8 T cells imparts pro-
tective immunity during mild SARS-CoV-2 infection, 
excessive CD4 T cells stimulation causes immunopathol-
ogy of COVID-19 during severe infection (Dong et al. 
2020). Therefore, in case of SARS-CoV-2, inclusion of 
CD8 T cell epitope based vaccine becomes crucial in 
the absence of CD4 T cell mediated immunopathology. 
Moreover, CD8 T cell epitope based vaccine not only 
helps in identification and killing of viral infected host 
cells but also naturally supplements humoral immunity 
(Cosma and Eisenlohr 2018). Nevertheless, the role of 
CD4 T cell epitope based viral vaccine cannot be over-
looked given their ability to enhance activation of CD8 
T cell, inducing protective CD8 T cell memory and pro-
longing their antiviral function (Phares et al. 2012). Addi-
tionally, CD4 T cells also trigger antigen-specific B cells 
immunoglobulin class switching and affinity maturation 
(Campbell et al. 2020).Yet, an exaggerated and distinctive 
pro-inflammatory response is also reported with reference 
to severity of COVID-19 disease (Johnson and Laloraya 
2020). Nonetheless, balance in the pro-inflammatory and 
anti-inflammatory immune responses determines the out-
come of any bacterial or viral infection. We contemplate 
designing of CD4 and CD8 T cell specific peptide based 
SARS-CoV-2 vaccine candidates which are pro-inflamma-
tory as well as anti-inflammatory in nature so as to counter 
the immunopathology of COVID-19 and elicit a protective 
immune response. The concept implicates creating a bal-
ance of pro-inflammatory and anti-inflammatory cytokine 
response for a favorable outcome along with killing of 
infected cells.

We found a huge repertoire of MHC restricted antigenic T 
cell epitopes within the 4 structural proteins of SARS-CoV-2. 
Shortlisting of OAPE having affinity for both classes I and 
class II MHC alleles makes our approach more stringent and 
inclusive. Almost all the selected OAPEs were characterized 
to be both pro-inflammatory as well as anti-inflammatory 
cytokine inducers. In comparison, the three negative control 
peptides included in the study were non-antigenic, have low 
binding affinity for MHC alleles and mostly pro-inflammatory 
in nature. Docking studies confirmed the strong interaction 
between the selected OAPEs and common MHC alleles in 
population. The in silicocloned and modelled vaccine con-
struct was observed to bind in the major groove within the 
active sites of TLR-2, an important immune receptor. Fur-
thermore in silico simulation studies with our multi-epitope 
vaccine resulted in Th1 type immune response along with 
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production of certain anti-inflammatory cytokines. These 
results substantiate the efficacy of our vaccine candidate which 
can elicit strong protective immunity and preventing disease 
immunopathology.

Materials and methods

Sequence retrieval and identification of T cell 
epitopes within the SARS‑CoV‑2 proteins

The amino acid sequence for 4 putative proteins of SARS-
CoV-2 was retrieved from NCBI database with following 
accession numbers: (envelope protein [E]—YP_009724392.1; 
spike protein [S] —YP_009724390.1; nucleocapsid phospho-
protein [N]—YP_009724397.2 and membrane glycoprotein 
[M]—YP_009724393.1).

For identifying MHC Class I restricted CD8 + T cell bind-
ing epitopes, 9mer peptides were selected from NetMHC4.0 
software (Nielsen et al. 2003; Lundegaard et al. 2008). Net-
MHC4.0 is based on artificial neural networks and has 34 
HLA-A, 33 HLA-B, and 10 HLA-C alleles. A default thresh-
old value of 0.5% for strong binders and 2% for weak binders is 
recommended in NetMHC4.0. We found many epitopes with 
strong binding affinity exclusively for HLA-C and weak or no 
affinity for HLA-A and HLA-B. Because of higher popula-
tion coverage, binding predictability with only HLA-A and 
HLA-B were included in this study. Extensively used immu-
nological database IEDB was used for recognition of 15mer 
peptide epitopes having affinity for MHC Class II restricted 
CD4 + T cells (Fleri et al. 2017). SMM-align stabilization 
matrix algorithm was adopted in IEDB which predicts affini-
ties for peptide: MHC complex (Nielsen et al. 2007). A total 
of 15 HLA DR alleles are covered under IEDB. Only strong 
binders with half maximal inhibitory concentration (IC) ≤ 250 
were selected. Any cut off within the IC ≤ 500 is recommended 
as this range includes about 90% of immunogenic epitopes 
(Fleri et al. 2017).

Shortlisting of promiscuous and antigenic T cell 
epitopes

Promiscuity is defined as affinity of a given MHC molecule to 
bind various peptides and a promiscuous peptide epitope can 
be recognized by several different MHC molecules (Brusic 
et al. 1998). Peptides which bound to five or more alleles in 
both NetMHC4.0 and IEDB were considered promiscuous.
Vaxijen2.0 server was employed for predicting the antigenic 
score for all the promiscuous peptide epitopes (Doytchinova 
and Flower 2007). The server recommends a default score 
of ≥ 0.4 for probable antigenic peptides. Top 5 promiscuous 
and antigenic peptides were shortlisted from both NetMHC4.0 
and IEDB.

Shortlisting of OAPE (overlapping antigenic peptide 
T cell epitopes)

Each SARS CoV-2 protein was also scanned for the pres-
ence of any OAPE having affinity for both class I and class 
II MHC alleles. We have adopted the following criteria for 
selecting OAPE:

1. Promiscuous peptides in both NetMHC and IEDB.
2. Promiscuous in NetMHC and can bind 3 to 4 alleles in 

IEDB.
3. Promiscuous in IEDB and can bind 3 to 4 alleles in Net-

MHC.
4. Peptide epitopes which bind to 3 to 4 alleles in both 

NetMHC and IEDB.

All the selected OAPE were predicted antigens having 
vaxijen score of ≥ 0.4.

We included three peptides as negative control (NCPs) 
in our study to compare the immunogenicity of our short-
listed OAPEs:

NCP1-‘ARSVASQSI’ from Spike protein.
NCP2-‘KEELDKYFK’ from Spike protein.
NCP3-‘VSEETGTLI’ from Envelope protein.

All the selected NCPs were predicted non-antigens hav-
ing vaxijen score of ≤ 0.4.

Prediction of OAPEs to be inducers 
of pro‑inflammatory cytokines

We also subjected our shortlisted OAPE to other online 
servers like IL-6-Pred (Dhall et al. 2020), IFNepitope 
(Dhanda et  al. 2013b) and PIP-EL (Manavalan et  al. 
2018). IL-6-Pred is designed on a wide range of machine 
learning techniques out of which Random Forest-based 
model achieves a maximum accuracy on dataset to see 
if they are predicted to be secreting IL-6. The default 
value of  > 0.11 is recommended to consider a peptide 
being IL-6 inducer. IFNepitope uses SVM algorithm like 
IL-4-Pred server and a default value of more than 0.0 
qualifies a peptide as IFN-γ inducer. PIP-EL server is 
designed as a cumulative datasets including ten inde-
pendent models for amino acid sequence, di-peptide 
composition, distribution-transition and physiochemi-
cal properties. In PIP-EL, a peptide was considered as 
pro-inflammatory if it can induce pro-inflammatory 
cytokines like IL-8, IL-12, IL-18, IFN-γ and TNF-α. 
The output score is a probability where any value of 
more than 0.45 considers a peptide to be inducer of pro-
inflammatory cytokine.
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Prediction of OAEPs as anti‑inflammatory T cell 
epitopes

The shortlisted overlapping antigenic peptides of four 
SARS CoV-2 proteins were evaluated in-silico for being 
anti-inflammatory in nature. These peptides were subjected 
to IL-4-Pred (Dhanda et al. 2013a) and IL-10-Pred (Nag-
pal et al. 2017) server which predicts the ability of these 
peptides to induce Interleukin-4 (IL-4) and Interleukin -10 
(IL-10) respectively. These servers consist of experimentally 
validated epitopes from IEDB database. IL-4-Pred is based 
on SVM (Support Vector Machine based methods) and motif 
algorithm which incorporates the amino acid composition 
and propensity, di-peptide composition and physico-chemi-
cal properties in a peptide for prediction. IL-10-Pred is also 
based on composition based model using machine learning 
techniques like Random forest method which has maximum 
accuracy. In IL-4-Pred a default threshold value of > 0.2 is 
recommended while in IL-10-Pred a default threshold value 
of > 0.3 is recommended. Further, using Pre-AIP (Predic-
tion of Anti-Inflammatory Peptides) server (Khatun et al. 
2019), these peptides were characterized for being anti-
inflammatory in nature. Pre-AIP systematically investi-
gates different types of characters which includes primary 
sequence, evolutionary and structural information through 
a random forest classifier (Khatun et al. 2019). In Pre-AIP a 
peptide was considered as anti-inflammatory if it can induce 
anti-inflammatory cytokines like IL-10, IL-4, IL-13, IL-22 
and TGF-β. In Pre-AIP; a score of ≥ 0.468 was labelled as 
high confidence AIP, 0.468 > score > 0.388 was labelled as 
medium confidence AIP and 0.388 > score > 0.342is labelled 
as low confidence AIP.

Peptide MHC docking by pepATT RAC T and Hex

Docking studies were performed to define the binding of 
top scoring overlapping antigenic promiscuous peptides to 
their respective class I and class II alleles. MHC Class I 
allele-A2 supertype (PDB-1S9Y) and MHC Class II allele, 
HLA-DRB1*0101 (PDB ID-4MCZ) were included for dock-
ing studies because of their wide population coverage. Ini-
tially, the docking was carried out in pepATT RAC T server 
(Schindler et al. 2015; De Vries et al. 2017) and the linear 
peptide and MHC molecule were separated from the docked 
structure. The linear peptide and MHC molecule were then 
docked again using Hex server (Macindoe et al. 2010) to 
obtain an energy score. The control peptide was a cytotoxic 
T lymphocyte (CTL) epitope (SLLMWITQS) belonging to 
NYESO-1 testicular cancer antigen for A2 supertype allele. 
For MHC class II, the control peptide was a rheumatoid 
arthritis epitope “GVYATRSSAVRLR”. A thorough anal-
ysis of binding energy (Kcal/mol) of the test and control 
peptide with the HLA allele was performed. The docked 

structures obtained from both the software were visualized 
using Discovery Studio Visualizer 4.1 (Accelyrs Inc., USA). 
The binding sites were also analyzed for the hydrogen bonds 
and hydrophobic interactions between the amino acid resi-
dues of peptide and the HLA molecule.

Designing of the T cell specific multi‑epitopic 
adjuvanated vaccine against Covid‑19

The proposed vaccine construct was designed by linking an 
adjuvant to the ten selected OAPEs inter-linked by specific 
linkers for proper demarcation of epitopes. The adjuvant 
used in this vaccine is Cholera Toxin Subunit B or CTxB. 
It is the B subunit of the cholera toxin and helps in trans-
location of Cholera Toxin Subunit A or CTxA. The use 
of CTxB as adjuvant provides proper stability to vaccine 
construct, increases the efficiency of its cellular uptake and 
antigen presentation (Walker et al. 2016). A stretch of ‘KPK-
PKP’ linker was used to join the adjuvant and OAPEs. Intra 
OAPEs were joined by AAY stretch.

Codon adaptation and in‑silico cloning of vaccine 
construct

Java Codon Adaptation Tool (JCAT) (Grote et al. 2005) was 
employed for codon optimization and checking the expres-
sion of vaccine construct in E. coli strain K12. NEBcutter 
(Vincze et al. 2003) allowed us to choose the desired restric-
tion enzyme cleavage sites in case of cloning performed in 
expression vector pET28a( +). In silico clone of the recom-
binant vaccine construct was generated using the SnapGene 
1.1.3 restriction cloning tool.

Predicting physicochemical properties of designed 
vaccine construct

ProtParam tool of the ExPASy database server (Gasteiger 
et al. 2005) was used to evaluate the physiochemical char-
acteristics of the vaccine construct.

Predicting toxicity and allergenicity of the vaccine 
construct

AllerTOP v2.0 (Dimitrov et al. 2014a) and AllergenFPv.1.0 
(Dimitrov et al. 2014b) was used to evaluate whether the 
designed vaccine construct was allergenic. The toxicity of 
the vaccine construct was also analyzed using the ToxinPred 
server (Gupta et al. 2013). SVM based method with a default 
threshold value of 0.0 was chosen for predicting the toxicity 
and values greater than 0.0 was considered toxic.
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Predicting pro‑inflammatory and anti‑inflammatory 
nature of the vaccine construct

The entire vaccine construct was subjected to Pre-AIP and 
PIP-EL servers to evaluating their anti-inflammatory and 
pro-inflammatory nature.

In silico structural modeling, validation, 
and docking of vaccine construct with host immune 
receptor

Secondary structure prediction and modeling of vaccine 
construct was done in I-TASSER (Roy et al. 2010). All the 
five models were subjected for structural validation using 
PROCHEK (Laskowski et al. 1996), ERRAT (Colovos and 
Yeates 1993) and Verify3D (Bowie et al. 1991) web servers 
available at UCLA Saves. The C score depicts the accuracy 
of model and is based on alignment and structure assembly 
simulations. Considering a value between −5 to 2; a higher 
C score signifies a higher confidence of model. Procheck 
evaluates the stereo-chemical quality of the structure via 
Ramachandran plot and Errat evaluates summative qual-
ity factor of the structure. Verify3D evaluates the protein 
structure based on comparisons with best models. Molecular 
docking studies were performed to confirm the binding affin-
ity between the target vaccine construct and immune recep-
tor Toll-like Receptor-2 (TLR-2) (PDB ID: 2Z80) using Hex 
8.0.0. and Studio Visualizer 4.1 (Accelyrs Inc., USA).

In silico immune simulation studies in response 
to our vaccine

C-ImmSim server was used to predict the mammalian 
immune response on administration of our vaccine construct 
(Rapin et al. 2010). The time steps denote the number of 
times of simulation and each time step is approximately of 
8 h. Time step value was selected to be 1000. Two injec-
tions of the target vaccine were administered at intervals of 
4 weeks. Therefore, first dose was administered at time step 
1 and the booster dose was administered at time step 84. 
The simulation volume and the steps were set at 50 µl with 
a random seed of 12,345 respectively. LPS was excluded 
from the injection.

Results

Identification and shortlisting of promiscuous, 
antigenic T cell epitopes

Among the four proteins of SARS Cov2, Surface glycopro-
tein (S) or Spike protein was the largest in size generating 
a total of 1265 nonamers with a step size of one amino acid 

residue. Envelope protein (E) was the smallest with a total 
of 67 overlapping nonamers. Number of binding epitopes 
was also highest in Spike (S) protein and lowest in Enve-
lope protein (E). NetMHC4.0 predicts epitopes for total 
70 MHC class I alleles including 36 alleles of HLA-A and 
34 alleles of HLA-B using artificial neural network. Spike 
protein bound to all the alleles in NetMHC4.0 followed by 
Nucleocapsid phosphoprotein (N) which bound to 64 alleles. 
A total of 15 HLA-DRB alleles are documented in IEDB 
and the prediction is based on SMM align algorithm. Pep-
tides of Spike protein (S), Membrane glycoprotein (M), and 
Nucleocapsid phosphoprotein (N) showed binding affinity 
for all 15 HLA-DRB alleles while peptides of Envelope 
protein (E) bound to 14 HLA-DRB alleles. The binding 
profile for all the selected proteins along with their evalu-
ation parameters have been enlisted in Table 1. A detailed 
description of all the promiscuous peptides generated in 
both NetMHC and IEDB are enlisted in Table S2 and S3 
respectively. Spike protein (S) generated maximum of 119 
promiscuous epitopes (90 in NetMHC4.0 and 29 in IEDB) 
out of which 64 promiscuous epitopes were also antigenic. 
Despite the smallest size of Envelope protein (E); it gener-
ated 20 promiscuous antigenic epitopes (17 in NetMHC4.0 
and 3 in IEDB) which was higher than 17 and 10 promiscu-
ous epitopes generated by Membrane glycoprotein (M), and 
Nucleocapsid phosphoprotein (N) respectively (Table 1).

For MHC class I and II, we have shortlisted top scoring 
promiscuous and antigenic peptides from both NetMHC4.0 
and IEDB respectively. At least four top scoring promis-
cuous antigenic peptides were selected from all the four 
proteins in NetMHC4.0. Except for Nucleocapsid phospho-
protein (N) which included only 1 promiscuous antigenic 
epitope, remaining three proteins generated at least four top 
scoring promiscuous antigenic peptide epitopes in IEDB 
(Table 1).

Additionally, all the four proteins were scanned for the 
presence of any OAPE having affinity for both class I and 
class II MHC alleles (Fig. 1 and Table S1). Two top scor-
ing antigenic peptides in NetMHC4.0 and IEDB namely 
‘FLAFVVFLL’ ‘VLLFLAFVV’ and peptide ‘FLLVTLAIL’ 
of Envelope protein (E) were promiscuous for both class 
I and II alleles and hence included as overlapping peptide 
epitopes. Two top scoring peptides in NetMHC4.0 and IEDB 
namely ‘FVLAAVYRI’ ‘FLFLTWICL’ of Membrane glyco-
protein (M) were promiscuous for both class I and II alleles 
and were included as overlapping peptide epitopes. Except 
Nucleocapsid phosphoprotein (N), at least four overlapping 
peptide epitopes were shortlisted from all the SARS Cov2 
proteins depending on the set criteria. For Nucleocapsid 
phosphoprotein (N), we considered peptide ‘LTYTGAIKL’ 
as overlapping epitope and it showed binding affinity for 
three class I and class II alleles each. A total of 14 OAPE 
were selected for further analysis. Out of the three selected 
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NCPs, NCP2 (KEELDKYFK) of Spike protein had no bind-
ing affinity for class I and class II MHC alleles with a nega-
tive vaxijen score. NCP1 and NCP3 bound to 1 to 2 MHC 
class I and class II alleles and the vaxijen score was also not 
more than 0.4 (Fig. 1).

Evaluation of OAPEs for being pro‑inflammatory 
epitopes

All our shortlisted 14 OAPEs were IL6-inducer (a biomarker 
cytokine for COVID-19) when subjected to IL-6-Pred 
(Table 2). Among them, ten OAPEs were also predicted 
to be inducers of pro-inflammatory cytokines in PIP-EL 
server. OAPEs ‘WTA GAA AYY’ and ‘WTFGAGAAL’ were 
not predicted to be pro-inflammatory cytokine inducers. In 
IFNepitope prediction, we found ten OAPEs were positive 
for being IFN-γ inducer. OAPEs ‘YVYSRVKNL’ ‘VVFLH-
VTYV’ ‘FTISVTTEI’ and ‘LTYTGAIKL’ were IFN-γ non-
inducers (Table 2). The three NCPs included in the study 
were characterized to be pro-inflammatory in nature and 
non-inducers of IFN-γ as well as IL-6 (Table 2).

Characterization of shortlisted overlapping 
epitopes as anti‑inflammatory

The selected OAPEs were further subjected to three different 
bio-informatics tools for predicting their anti-inflammatory 

nature. All the five overlapping epitopes from Envelope (E) 
protein were IL-10 inducers and anti-inflammatory in nature. 
All the four overlapping epitopes of Membrane (M) protein 
were also inducers of IL-4, IL-10 and anti-inflammatory in 
medium to high confidence range. Among 4 overlapping 
epitopes from Spike (S) protein, two epitopes were anti-
inflammatory in medium confidence range and capable of 
inducing either IL-4 or IL-10. Peptide ‘FTISVTTEI’ was 
predicted to induce IL-4 and IL-10 however, was low con-
fidence anti-inflammatory epitope. Peptide ‘WTA GAA 
AYY’ was predicted to be non-inducers of IL-4, IL-10 and 
also was low confidence anti-inflammatory epitope. Peptide 
‘LTYTGAIKL’ from Nucleocapsid (N) phosphoprotein was 
non-inducers of IL-4 and IL-10 but was high confidence 
anti-inflammatory epitope (Table 3). Therefore, out of total 
14 OAPEs, we finally shortlisted 12 OAPEs characterized to 
produce a balance of pro-inflammatory and anti-inflamma-
tory cytokines for further confirmatory studies. The NCPs 
were all non-inducers of IL-10 with a low confidence AIP 
scores for being anti-inflammatory in nature. However, all 
the three selected NCPs were IL-4 inducers.

Docking of OAPE onto MHC alleles by pepATT RAC T 
and Hex

All the 12 shortlisted overlapping peptide epitopes were 
docked in pepATT RAC T with HLA-A*02 (PDB ID-1S9Y) 

Table 1  Prediction of  CD4+ and CD8 + T cell binding epitopes of the selected SARS Cov2 proteins

Spike protein (S) generated maximum number of overlapping nonamers and binding epitopes among all the four proteins. Because of its smallest 
size, Envelope (E) protein generated least overlapping nonamers and binding epitopes. Using NetMHC4.0: Spike protein (S) and Nucleocapsid 
(N) phosphoprotein bound to maximum number and Membrane (M) glycoprotein to least number of alleles. A total of 89 promiscuous antigenic 
epitopes were found in all the 4 proteins. Using IEDB: Surface glycoprotein or (S) Spike protein, Nucleocapsid (N) phosphoprotein and Mem-
brane (M) glycoprotein bound to 15 class II alleles. A total of 22 promiscuous antigenic epitopes were found in all the 4 proteins. Vaxijen score 
of > 0.4 in all the 4 proteins shows their probable antigenic nature

Software Parameter Envelope 
(E) protein

Membrane 
(M)protein

Spike (S) protein Nucle-
ocapsid 
(N) 
protein

NETMHC4.0 [Prediction of MHC Class 
I binders]

Overlapping nonamers 67 214 1265 411
Total number of binding epitopes 33 103 411 101
Number of alleles bound 62 61 70 64
Number of promiscuous epitopes 23 26 90 20
Number of promiscuous antigenic 

epitopes
17 13 50 9

IEDB [Prediction of MHC Class II bind-
ers]

Overlapping nonamers 67 214 1265 411
Total number of binding epitopes 37 75 349 68
Number of alleles bound 14 15 15 15
Number of promiscuous epitopes 3 7 29 3
Number of promiscuous antigenic 

epitopes
3 4 14 1

Vaxijen 2.0 [Prediction of whole protein 
antigenicity]

Antigenic score 0.6025 0.5102 0.4646 0.5059
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and HLA-DRB1*01:01 (PDB ID- 4MCZ) and their energy 
scores were generated using Hex 8.0.0. The maximum 
energy score of −573.26 was observed for peptide ‘VLL-
FLAFVV’ of Envelope (E) protein docked to HLA-A*02 

(Table 4). The maximum energy score of −564.92 was 
observed for peptide ‘FVLAAVYRI’ of Membrane (M) pro-
tein docked to HLA- DRB1*01:01 (Table 4). The energy 
score of control peptide was −560.06 for HLA-A*02 and 

Fig. 1  The shortlisted 14 OAPEs and the NCPs based on parameters 
of their vaxijen scores and binding affinity for class I and II MHC 
alleles. Depiction of all the 14 OAPEs selected from 4 different pro-
teins of SARS CoV2 and the NCPs included in the study. Maximum 
of five epitopes belong to Envelope protein followed by four epitopes 

each from Spike protein and Membrane glycoprotein. Only one 
OAPE was selected from Nucleocapsid phosphoprotein. All the three 
NCPs are non-antigenic and their predicted affinity for class I and II 
alleles are almost negligible. The X axis in bar graph represents the 
number and the Y axis represents the OAPEs or NCPs
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−696.0 for HLA-DRB1*01:01. Docking of representative 
peptide from each protein with both HLA-A*02 and HLA-
DRB1 has been shown in (Figs. 2, 3, 4, 5). These peptide 
epitopes had hydrophobic amino acid at second and ninth 
position for HLA-A*02 binding and at fourth and sixth posi-
tion for HLA-DRB1 binding. The presence of hydrogen 
bond made these peptides tightly bound to the MHC groove.

Designing of the T cell specific multi‑epitopic 
adjuvanated vaccine

Codon adaptation followed by in silico cloning of the 
designed vaccine construct with immunogenic CTxB as an 
adjuvant and the 10 selected OAPEs joined by specific link-
ers was performed (Fig. 6).

Physiochemical characterization of designed 
vaccine construct

The designed vaccine construct is composed of 271 amino 
acids with a molecular weight of approximately 30.46 kDa. 
The theoretical pI was 9.55, implicating the significant 
alkaline nature of vaccine. The half-life of the vaccine 
was estimated to be 30 h in mammalian reticulocytes (in 

vitro),  > 20 h in yeast (in vivo), and > 10 h in E. coli (in 
vivo), suggesting that the construct is stable in vivo. The 
instability index was predicted to be 22.36, which clears 
the vaccine to be a stable protein. The estimated aliphatic 
index and Grand Average of Hydropathicity (GRAVY) 
score were found to be 113.54 and 0.710 respectively, 
implicating that the vaccine is thermo-stable and hydro-
philic in nature.

Evaluating toxicity and allergenicity of the vaccine 
construct

The designed vaccine construct was predicted to be a non-
allergen in both servers AllerTop v2.0 and AllergenFPv.1.0 
and non-toxic in server ToxinPred.

Predicting pro‑inflammatory and anti‑inflammatory 
nature of the vaccine construct

The entire vaccine construct was predicted to be pro-inflam-
matory with a probability score of 0.724 in PIP-EL server 

Table 2  In-silico characterization of OAPEs of SARS- Cov-2 proteins as pro-inflammatory

All the shortlisted 14 OAPEs and the 3 NCPs were subjected to three different bio-informatics tools for characterizing them to be pro-inflamma-
tory. Prediction of peptide for being Interleukin 6 (IL-6) inducer or non- inducer using IL-6-pred; Prediction of peptide being IFN-γ inducer or 
non- inducer using IFNepitope; Prediction of pro-inflammatory peptides (PIP) using PIP-EL server. We found all selected OAPEs were also pre-
dicted of inducing IL-6 in IL-6-Pred; IL-6 is a key biomarker for COVID-19 disease. Out of 14 OAPEs, 12 were predicted to be inducers of pro-
inflammatory cytokines in PIP-EL server while 10 OAPEs were positive for inducing IFN-γ in IFNepitope server. All the 3 NCPs were predicted 
IL-6 non-inducer, IFN-γ non-inducer and pro-inflammatory cytokine inducer

Peptide epitope Random forest method score 
(Threshold 0.11) of peptide being 
IL-6 inducer/non-inducer4

SVM method score (Threshold 
0.0) of peptide being IFN-γ 
inducer/non-inducer5

Probability of 
peptide being PIP/
Non-PIP6

(Threshold 0.45)

YVYSRVKNL (Envelope protein) IL-6 inducer 0.86 IFN-γ non-inducer − 0.39 0.632 PIP
FVVFLLVTL (Envelope protein) IL-6 inducer 0.8 IFN-γ inducer 0.29 0.523 PIP
FLAFVVFLL (Envelope protein) IL-6 inducer 0.89 IFN-γ inducer 1.24 0.512 PIP
VLLFLAFVV (Envelope protein) IL-6 inducer 0.89 IFN-γ inducer 0.88 0.480 PIP
FLLVTLAIL (Envelope protein) IL-6 inducer 0.76 IFN-γ inducer 0.24 0.522 PIP
FAYANRNRF (Membrane Protein) IL-6 inducer 0.69 IFN-γ inducer 0.06 0.5828 PIP
FLFLTWICL (Membrane Protein) IL-6 inducer 0.66 IFN-γ inducer 0.16 0.543 PIP
FLWLLWPVT (Membrane Protein) IL-6 inducer 0.76 IFN-γ inducer 0.05 0.586 PIP
FVLAAVYRI (Membrane Protein) IL-6 inducer 0.81 IFN-γ inducer 0.30 0.632 PIP
WTA GAA AYY (Spike protein) IL-6 inducer 0.78 IFN-γ inducer 0.08 0.425 Non-PIP
VVFLHVTYV (Spike protein) IL-6 inducer 0.85 IFN-γ non-inducer − 0.30 0.540 PIP
FTISVTTEI (Spike protein) IL-6 inducer 0.82 IFN-γ non-inducer − 0.29 0.5788 PIP
WTFGAGAAL (Spike protein) IL-6 inducer 0.71 IFN-γ inducer 0.04 0.424 Non-PIP
LTYTGAIKL Nucleocapsid phosphoprotein IL-6 inducer 0.88 IFN-γ non-inducer − 0.190 0.550 PIP
NCP1 (ARSVASQSI) (Spike protein) IL-6 non-inducer  < 0.11 IFN-γ non-inducer − 0.089 0.624 PIP
NCP2 (KEELDKYFK) (Spike protein) IL-6 non-inducer  < 0.11 IFN-γ non-inducer − 0.200 0.542 PIP
NCP3 (VSEETGTLI) (Envelope protein) IL-6 non-inducer  < 0.11 IFN-γ non-inducer − 0.732 0.561 PIP
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Table 3  In-silico characterization of antigenic promiscuous peptide epitopes of SARS- Cov-2 proteins as anti-inflammatory

All the shortlisted 14 OAPAs and the 3 NCPs were subjected to three different bio-informatics tools for characterizing them to be anti-inflamma-
tory
a Prediction of peptide for being Interleukin 4 (IL-4) inducer or non- inducer using IL4-pred
b Prediction of peptide being Interleukin 10 (IL-10) inducer or non- inducer using IL-10pred
c Prediction of Anti-inflammatory peptides (Pre-AIP) using Pre-AIP software. Among the 14 selected OAPEs, 8 OAPEs were predicted of induc-
ing IL-4 in IL-4-Pred while 11 OAPEs were also predicted of inducing IL-10 in IL-10-Pred. 12 OAPEs were predicted to be anti-inflammatory 
in nature with a medium to high confidence score in Pre-AIP. All the 3 NCPs were predicted IL-4 inducer but non-inducers of IL-10. The NCPs 
also had low confidence AIP score which characterize them to be non anti-inflammatory in nature

Peptide epitope SVM + Motif based score 
(Threshold 0.2) of peptide 
being IL-4 inducer/non-
inducera

Random forest method score 
(Threshold 0.3) of peptide 
being IL-10 inducer/non-
inducerb

Combined RF score of peptide 
being Pre-AIP/Non- Pre-AIPc

YVYSRVKNL (Envelope protein) IL-4 inducer 0.38 IL-10 inducer 0.49 0.524 High confidence AIP
FVVFLLVTL (Envelope protein) IL-4 inducer 0.26 IL-10 inducer 0.63 0.465 Medium confidence AIP
FLAFVVFLL (Envelope protein) IL-4 inducer 0.28 IL-10 inducer 0.558 0.396 Medium confidence AIP
VLLFLAFVV (Envelope protein) IL-4 Non-inducer – 0.72 IL-10 inducer 0.48 0.445 Medium confidence AIP
FLLVTLAIL (Envelope protein) IL-4 Non-inducer – 0.94 IL-10 inducer 0.705 0.519 High confidence AIP
FAYANRNRF (Membrane Protein) IL-4-inducer 0.33 IL-10 inducer 0.445 0.491 High confidence AIP
FLFLTWICL (Membrane Protein) IL-4-inducer 0.28 IL-10 inducer 0.427 0.460 Medium confidence AIP
FLWLLWPVT (Membrane Protein) IL-4-inducer 0.28 IL-10 inducer 0.778 0.586 High confidence AIP
FVLAAVYRI (Membrane Protein) IL-4-inducer 0.28 IL-10 inducer 0.445 0.412 Medium confidence AIP
WTA GAA AYY (Spike protein) IL-4 Non-inducer 0.16 IL-10 non inducer 0.095 0.384 Low confidence AIP
VVFLHVTYV (Spike protein) IL-4 Non-inducer 0.14 IL-10 inducer 0.557 0.396 Medium confidence AIP
FTISVTTEI (Spike protein) IL-4-inducer 0.42 IL-10 inducer 0.557 0.354 Low confidence AIP
WTFGAGAAL (Spike protein) IL-4-inducer 0.25 IL-10 non inducer 0.128 0.448 Medium confidence AIP
LTYTGAIKL Nucleocapsid phosphoprotein IL-4 Non-inducer 0.02 IL-10 non inducer − 0.097 0.482 High confidence AIP
NCP1 (ARSVASQSI) (Spike protein) IL-4-inducer 0.45 IL-10 non inducer − 0.64 0.364 Low confidence AIP
NCP2 (KEELDKYFK) (Spike protein) IL-4-inducer 0.29 IL-10 non inducer − 0.529 0.372 Low confidence AIP
NCP3 (VSEETGTLI) (Envelope protein) IL4-inducer 0.45 IL-10 non inducer − 0.196 0.386 Low confidence AIP

Table 4  Docking of OAPEs 
with a balanced cytokine 
response to HLA-A*02 and 
HLA-DRB1 MHC alleles

The straightened peptide and the MHC obtained from pepATT RAC T server were docked on to Hex. 
These overlapping peptides were docked against HLA-A*02 allele (PDB ID-1S9Y) and HLA DR 
B1 allele (PDB ID- 4mcz). The energy score of control peptide was −560.06 for HLA-A*02 and 
−696.0 for HLA-DRB1*01:01. The maximum energy score of −573.26 and −564.92 was observed for 
peptide‘VLLFLAFVV’ of Envelope (E) protein docked to HLA-A*02 and peptide‘FVLAAVYRI’ of 
Membrane (M) protein docked to HLA-DRB1*01:01 respectively

Peptide epitopes Hex energy score for HLA-
A*02 binding (Kcal/mol)

Hex energy score for 
HLA-DRB1 binding 
(Kcal/mol)

YVYSRVKNL (Envelope protein) − 462.20 − 509.94
FVVFLLVTL (Envelope protein) − 508.04 − 526.18
FLAFVVFLL (Envelope protein) − 535.93 − 547.52
VLLFLAFVV (Envelope protein) − 573.26 − 527.08
FLLVTLAIL (Envelope protein) − 538.32 − 497.75
FAYANRNRF (Membrane Protein) − 478.24 − 485.4
FLFLTWICL (Membrane Protein) − 505.28 − 508.96
FVLAAVYRI (Membrane Protein) − 525.38 − 564.92
FLWLLWPVT (Membrane Protein) − 485.5 − 507.69
VVFLHVTYV (Spike protein) − 477.96 − 499.42
WTFGAGAAL (Spike protein) − 464.22 − 477.17
LTYTGAIKL Nucleocapsid (N) phosphoprotein − 512.19 − 499.52
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Fig. 2  Docking of OAPE ‘FLAFVVFLL’ of Envelope protein with 
MHC class I HLA-A*02 and MHC class II HLA-DRB1. Ball and 
stick model of OAPE ‘FLAFVVFLL’ of Envelope protein docked 
onto the (i) HLA-A*02 allele (PDB ID-1S9Y) and (ii) HLA DR B1 

allele (PDB ID- 4mcz). The inset shows the detailed interactions of 
epitope with MHC residue. Potential bonds formed between the two 
are shown as dotted lines

Fig. 3  Docking of OAPE ‘FVLAAVYRI’ of Membrane protein with 
MHC class I HLA-A*02 and MHC class II HLA-DRB1. Ball and 
stick model of OAPE ‘FVLAAVYRI’ of Membrane protein docked 
onto the (i) HLA-A*02 allele (PDB ID-1S9Y) and (ii) HLA DR B1 

allele (PDB ID- 4mcz). The inset shows the detailed interactions of 
epitope with MHC residue. Potential bonds formed between the two 
are shown as dotted lines
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Fig. 4  Docking of OAPE ‘WTFGAGAAL’ Spike protein with MHC 
class I HLA-A*02 and MHC class II HLA-DRB1. Ball and stick 
model of OAPE ‘WTFGAGAAL’ Spike protein docked onto the (i) 
HLA-A*02 allele (PDB ID-1S9Y) and (ii) HLA DR B1 allele (PDB 

ID- 4mcz). The inset shows the detailed interactions of epitope with 
MHC residue. Potential bonds formed between the two are shown as 
dotted lines

Fig. 5  Docking of OAPE ‘LTYTGAIKL’ of Nucleocapsid protein 
with MHC class I HLA-A*02 and MHC class II HLA-DRB1. Ball 
and stick model of OAPE ‘LTYTGAIKL’ of Nucleocapsid protein 
docked onto the HLA-A*02 allele (PDB ID-1S9Y) and HLA DR B1 

allele (PDB ID- 4mcz). The inset shows the detailed interactions of 
epitope with MHC residue. Potential bonds formed between the two 
are shown as dotted lines
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and anti-inflammatory in nature with a high confidence score 
of 0.571 in Pre-AIP server.

Structure prediction and validation of designed 
vaccine construct

I-TASSER was employed for secondary structure predic-
tion of the vaccine construct. The 5 models generated were 
evaluated using different structure validation servers. Model 
4 having a C score of -3.94 in I-TASSER was selected based 
on all the analyzed parameters (Figure S1). Ramachandran 
plot of model 4 showed 84.6% residues were present in the 
favored region, 10.6% residues in the generously allowed 
region, and 4.7% residues in disallowed regions (Figure S1). 
Overall quality factor of 47.9 was generated in ERRAT for 
Model 4 and Verify3D score of the model was 92.25.

Molecular docking of vaccine construct with host 
immune receptor

TLR2 is an important receptor for binding of pathogen an 
inducing a proinflammatory immune response required for 
clearance of pathogen. The structurally validated vaccine 

construct was then evaluated for immune receptor interac-
tion through molecular docking. The positive control ligand 
protein LprG and the vaccine construct both were observed 
to bind within the active site groove of the TLR2 structure 
(Fig. 7). The vaccine construct forms 24 hydrogen bonds 
with Hex energy score of −860.60. LprG protein forms 27 
hydrogen bonds with Hex energy score of −832.93. The 
negative control protein SSL3 did not bind to the groove 
of TLR2 molecule and generated a low Hex energy score 
of −556.01.

In silico immune simulation studies in response 
to our vaccine

Our vaccine construct led to a significant simulation of 
mammalian immune response predicted through C-ImmSim 
server (Fig. 8). A booster administration of vaccine led to 
a gradual increase in immune responses. The generation of 
T- cells was quite significant with memory cells lasting for 
several months. One interesting observation was the profile 
of cytokines being produced after the injections. A sharp 
peak of pro-inflammatory IFN-γ, IL-12 and IL-2 was seen 
following repeated exposure to the vaccine. Additionally, 

Fig. 6  Design and in silico cloning of the vaccine construct. a The 
amino acid sequence of the vaccine construct. The CTxB adjuvant is 
highlighted in black, whereas linker KPKPKP joining adjuvant and 

rest of the construct is in yellow. The ten OAPEs are highlighted in 
red and the inter epitopic linker AAY is in blue respectively. b The 
methodology for in silico cloned construct in SnapGene 3.1.4
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we found peaks for some anti-inflammatory cytokines like 
TGF-β and IL-10 which increased with the booster dose. 
The results also indicated that our T cell specific multi-
epitopic vaccine was able to generate good levels of B cells 
secreting antibodies; the more prominent ones being the IgM 
and IgG subclass.

Discussion

Testing traditional vaccines made of entire pathogen or path-
ogen proteins in animal models can be costly, allergenic, 
and time-consuming (Li et al. 2014; Lo et al. 2013). Only 
specific amino acid fragments within the pathogen acts as 
potent immunogens and are sufficient to mount a protective 
immune response within host (Li et al. 2014; Singh et al. 
2019). This rationale leads to designing of ‘peptide based 
COVID-19 vaccine’ incorporating only specific immu-
nogenic peptide epitopes. Prediction and identification of 
all the potential immunogenic epitopes within the viral 
genome is possible with immuno-informatics and reverse 
vaccinology approach (Singh et al. 2019; Rappuoli 2001). 
Most of the vaccines against SARS-CoV-2 are in develop-
ment, under trials or in emergency usage are targeting the 
humoral immune response for making neutralizing antibod-
ies (Amanat and Krammer 2020; Le et al. 2020). However, 
the concept of acquired, specific T cell immunity becomes 
crucial in context of vaccination to clear viral infections 
and enhance neutralizing antibody responses (Campbell 

et al. 2020). Many studies have reported a higher frequency 
of Spike protein specific CD4 T cell responses and height-
ened CD8 T cell responses specific to other internal pro-
teins of SARS-CoV-2 in convalescent individuals (Grifoni 
et al. 2020; Sekine et al. 2020; Dong et al. 2020). Although 
the CD4 T cell response was maximal in acute and severe 
COVID-19 cases, the proportion of CD8 T cell response 
was higher in mild COVID-19 individuals. Thus, we have 
adopted an immuno-informatic approach focused on all the 
four structural proteins of SARS-CoV-2 for recognition of 
potential CD4 and CD8 T cell peptide epitopes which can 
trigger host immune response to the maximum. In silico 
analysis through software NetMHC4.0 and IEDB predicted 
an enormous reservoir of epitopes that could be identified 
in just four structural proteins of SARS-CoV-2. These four 
proteins were predicted to be highly immunogenic. Spike 
protein generated maximum promiscuous antigenic epitopes 
both in NetMHC4.0 and IEDB which could be attributed to 
the large size of this protein. The antigenicity and the bind-
ing affinity of the 14 shortlisted OAPEs to MHC alleles were 
much higher than the 3 included negative control peptides 
or NCPs in the study.

In case of viral infections, innate immune cells recognize 
pathogen-associated molecular pattern (PAMP) possessed 
by the virus which raises inflammatory alarm. Triggering of 
signaling cascade leads to secretion of several pro-inflam-
matory cytokines including IL-12, IFN-γ, TNF-a, IL-6 etc. 
In early phase of infection these cytokines act as signals 
to regulate the innate immune system via stimulation of 

Fig. 7  Molecular docking of the 
designed and validated vaccine 
construct with TLR2 immune 
receptor. a TLR2 agonist LprG 
protein (red color) and c mod-
eled vaccine construct (green 
color) binds to the active site 
groove of TLR2 receptor (blue 
color). b The negative control 
SSL3 protein (yellow color) 
binds randomly to TLR2 recep-
tor (blue color). d The hydrogen 
bonds formed between the 
active site residues of TLR2 
molecule labeled in red with 
the vaccine construct residues 
labeled in white



 In Silico Pharmacology            (2021) 9:40 

1 3

   40  Page 14 of 17

CD4 T cell mediated protective immunity thus mounting an 
anti-viral immune response along with production of IgG-
class antibodies. (Costela-Ruiz et al. 2020). SARS- CoV-2 
disturbs the delicate balance of favorable inflammatory 
response making it detrimental systemic inflammation or 
cytokine storm by unrestrained secretion of pro-inflamma-
tory markers, in particular cytokines TNF-α, IL-1β, IL-8, 
and IL-6 (Soy et al. 2020; Opal and DePalo 2000). Evi-
dences support the role of anti-inflammatory cytokines such 
as IL-4, IL-10, and transforming growth factor β (TGF-β) 
in impeding the hyper-inflammatory cytokine storm (Asa-
dullah et al. 2003). Therefore, our study encompasses the 
necessity of a balanced pro-inflammatory immune response 
to ensure killing of virus along with a counteracting anti-
inflammatory response to avoid the hyperactive cytokine 
storm observed in severe COVID19 disease pathology. We 
shortlisted 12 OAPEs which were characterized as inducers 

of pro-inflammatory and anti-inflammatory cytokines. Given 
the exaggerated inflammatory cytokine storm in severe 
Covid19 cases; it was no surprise that all the 12 OAPEs 
were predicted to be IL6-inducers when subjected to IL-
6-Pred server. However, at least 8 OAPEs were IL-4 inducer, 
11 OAPEs were IL-10 inducer and 9 OAPEs were IFNγ 
inducer. In comparison, the NCPs included in our study were 
all pro-inflammatory in nature and non-inducers of IL-10, 
IL-6 and IFN-γ.

The affinity of these selected antigenic and anti-inflam-
matory peptide epitopes to their cognate MHC class I and 
II allele was confirmed by docking studies using pepATT 
RAC T, HEX, Pymol, and Discovery Studio. A vaccine 
construct was designed inclusive of all the 12 OAPEs and 
Cholera Toxin subunit B (CTxB) as an adjuvant. The con-
struct was non-toxix, non-allergenic and capable of induc-
ing both anti-inflammatory and pro-inflammatory immune 

Fig. 8  Prediction of immune simulation response to the vaccine 
construct using C-ImmSim. In silico immune simulation study by 
C-ImmSim software in response to a double dose administration of 
the vaccine construct at intervals of 4 weeks. The population of acti-
vated a CD4 + T helper cells and b CD8 + cytotoxic T cells in terms 
of memory response generated after the injections. Plot c shows 

cytokines levels observed after the injections while d shows the levels 
of antibody titers generated after the injections. In plot c; the inset 
shows blue colored peak D which is defined as emergence of diver-
sity of epitope specific T cell clones. Lower D value depicts lower 
diversity
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response. The vaccine construct was successfully cloned 
in silico followed by structural modelling to evaluate its 
interaction with immune receptor like Toll like Receptor 
2 (TLR2). A step forward in this study was to perform the 
docking studies with the shortlisted 12 overlapping anti-
genic and anti-inflammatory peptides with globally present 
MHC class I and II alleles i.e. HLA-A*02 allele (PDB ID-
1S9Y) and HLA-DR*B1 allele (PDB ID- 4mcz). The Hex 
energy scores for peptide:MHC alleles were comparable to 
the control peptide. The 6 pockets in MHC class I alleles 
are crucial in peptide MHC interactions (Webb et al. 2004). 
The second and 9th hydrophobic residues of the docked 
peptide epitopes engages in peptide’s interaction with 2nd 
and 6th pocket of HLA*A02. The docked peptide epitopes 
also have hydrophobic amino acid at 4th and 6th position 
which help in binding the peptide into the HLA-DR*B1 
allele groove as reported (Werner and Freund 2017). The 
presence of hydrogen bonds makes these peptides tightly 
bound to the MHC groove. Hydrogen-bonding ensures the 
peptide’s N terminus and C-terminus independent of peptide 
sequence and also bridges the peptide and buried hydrophilic 
MHC residues (Killer et al. 1999). We further designed our 
vaccine construct followed by in silico cloning. CTxB was 
added as an adjuvant to heighten the immunogenicity of the 
subunit vaccine construct. CTxB has been used variedly as 
an adjuvant and also is reported for its efficiency in Influenza 
virus vaccine (Jafari et al. 2020). The construct was non-
allergenic and non-toxic implicating its candidature for a 
good vaccine. Toll Like Receptors (TLRs) activate the innate 
immune system which subsequently direct production of 
effective adaptive immunity. To ensure that the vaccine will 
be effective in generation of immune response, we evaluated 
its in silico interaction with TLR-2 receptor and comparing 
the results with positive control TLR-2 agonist-LprG and a 
negative control-SSL3. The binding affinity of the vaccine 
construct in terms of energy score was more than LprG pro-
tein. Additionally, it was observed that the construct protein 
forms hydrogen bonds with TLR-2 receptor which involves 
interacting amino acids throughout the length of vaccine 
construct and not just the CTxB region. Immune simulation 
studies by C-ImmSim software in response to dual dose of 
vaccine exposure further substantiate efficacy of our subu-
nit vaccine. A heightened Th1 type immune response was 
observed including an increased population of T cells with 
memory cells lasting for months. The observation that the 
vaccine resulted in generation of both pro-inflammatory 
(IFN-γ, IL-12 and IL-2) and anti-inflammatory cytokines 
(TGF-β and IL-10) in response to our vaccine construct fur-
ther supported the hypothesis of this study. Although the 
proposed vaccine construct is specific for T cells; the server 
also predicted high levels of antibody secreting B cells with 
a prolonged memory response.

Conclusion

Immunogenicity, protectiveness and memory are the three 
crucial parameters to evaluate antigenic epitopes as peptide-
based subunit vaccine candidates. Our study predicts SARS- 
CoV-2 peptide based vaccine candidate encompassing all the 
3 parameters. Critically, both CD4 T and CD8 T cells along 
with immunological memory are essential to impart pro-
tective immunity against SARS-CoV-2 infection (Guo et al. 
2020; Grifoni et al. 2020). However, uncontrolled inflam-
matory innate responses and deregulated T cell responses 
leads to immunopathology (Vabret et al. 2020; Cao 2019). 
Incorporation of CD4 and CD8 T cell specific OAPEs which 
could elicit both pro-inflammatory and anti-inflammatory 
immune response seems a possible solution to tackle the 
major concern of hyper-inflammatory cytokine storm in 
COVID-19 along with killing of virus infected host cells. 
The inclusiveness of peptide antigens from all the 4 struc-
tural proteins of SARS-CoV-2 in this study pinpoints the 
highly immunogenic targets within the virus. Nevertheless, 
the proposed peptide vaccine candidate needs to be vali-
dated experimentally ensuring its safety and immunogenic 
profile to help stop this global outbreak. We plan to evaluate 
these 12 immunogenic OAPE SARS-CoV-2 peptide epitopes 
based vaccine construct in PBMC from healthy individuals, 
active COVID-19 patients and recovered individuals. We 
also wish to study the poly-functionality of T cells in terms 
of cytokine production in these individuals. Given the cur-
rent state of medical urgency and the lack of experimental 
data, this study is quite relevant and provides a novel basis 
for COVID-19 vaccine strategies.
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