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Abstract
Background: Sarcopenia has been confirmed as a poor prognostic indicator of lung
cancer. However, the lack of abdominal computed tomography (CT) hindered the
application to assess the status of sarcopenia. The purpose of this study was to assess
the ability of chest CT radiomics combined with machine learning classifiers to iden-
tify sarcopenia in advanced non-small cell lung cancer (NSCLC) patients.
Methods: This study retrospectively analyzed CT images of 99 patients with
NSCLC. Skeletal muscle radiomics were extracted from a single axial slice of the
chest CT scan at the 12th thoracic vertebrae level. In total, 854 radiomic and
clinical features were obtained from each patient. Feature selection was con-
ducted with FeatureSelector module, optimal key features were fed into the
lightGBM classifier for model construction, and Bayesian optimization was
adopted to tune hyperparameters. The model’s performance was evaluated by
specificity, sensitivity, accuracy, precision, F1-score, Matthew’s correlation coeffi-
cient (MCC), Cohen’s kappa coefficient (Kappa), and AUC.
Results: A total of 40 patients were found to have sarcopenia. Five optimal fea-
tures were selected. In the base lightGBM model, the specificity, sensitivity, accu-
racy, precision, F1-score, AUC, MCC, Kappa of validation set were 0.889, 0.750,
0.833, 0.818, 0.783, 0.819, 0.649, 0.648, respectively. After Bayesian hyper-
parameter tuning, the optimized lightGBM model achieved better prediction per-
formance, and the corresponding values were 0.944, 0.833, 0.900, 0.909, 0.870,
0.889, 0.791, 0.789, respectively.
Conclusions: Chest CT-based radiomics has the potential to identify sarcopenia
in NSCLC patients with the lightGBM classifier, and the optimal lightGBM
model via Bayesian hyperparameter tuning demonstrated better performance.
Key points
Significant findings of the study: Our study demonstrates that chest CT-based
radiomics combined with lightGBM classifier has the ability to identify sar-
copenia in NSCLC patients.
What this study adds: Skeletal muscle radiomics would be a potential biomarker
for sarcopenia identity in NSCLC patients.

Introduction

Globally, lung cancer is a significant factor for the fatalities
caused by cancer, and non-small cell lung cancer (NSCLC)
constitutes roughly 75% to 80% of primary lung cancer.1

The TNM staging system can be applied to determine the
postoperative prognosis for NSCLC patients. Nevertheless,

the determinants of prognosis include more than tumor-
specific factors, and physical factors, such as body mass
index and performance status, are also influential.2

Defined as the physical component of syndromes char-
acterized by the significant loss of skeletal muscle mass and
function, sarcopenia can result in physical disability,
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declining quality of life, and death.3 At present, it has been
confirmed as a poor prognostic indicator of various can-
cers.1 In lung cancer, sarcopenia is associated with shorter
survival, decreased tolerance to chemotherapy, and dimin-
ished functional ability. Thus, identifying NSCLC patients
under threat of sarcopenia is very important.
Although various techniques such as D3-Creatine dilution,

dual-energy x-ray absorptiometry (DXA), computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and bio-
impedance analysis (BIA) can be applied to identify sarcopenia
by estimating the skeletal muscle mass (SMM), the CT or MR-
based identification and quantification of the skeletal muscle
area is recommended, due to its precise differentiation between
muscle, fat and other tissues and easily accessed in the clinical
activity. Also, the single cross-sectional area of muscle on
abdominal CT or MRI at the third lumbar vertebra (L3) are
considered gold standards for estimating body composition, as
it is linearly correlated to whole body skeletal muscle mass,
and currently used to define sarcopenia in trials.1,2,4

Chest CT is considered as the standard method employed
to diagnose and follow-up lung cancer; however, it has rarely
extended to the L3 level.2,5 In recent research with the major-
ity of patients suffering lung cancer, only 65% received useful
scans to assess SMM at the L3 level, hindering its application
to assess the status of sarcopenia in those patients.6

Radiomics, defined as an algorithm-based large scale
quantitative analysis of imaging features, can reveal disease
features and reflect underlying pathophysiology.7 Together
with machine-learning (ML) models which are data-driven
analysis methods for mining implicit clinical values of
these image features, radiomics have yielded promising
results, such as survival, tumor progression, genetic muta-
tions or expression profiles.8 Recently, de Jong et al.9

applied skeletal muscle CT radiomics to predict the
response to chemotherapy in stage IV NSCLC, showing
the prospects of skeletal muscle CT radiomics in the diag-
nosis of muscle loss in NSCLC patients. However, no
research as yet to date has identified sarcopenia in cancer
patients based on radiomics and ML operations.
In this study, we extracted skeletal muscle radiomic fea-

tures from chest CT scans at the 12th thoracic vertebrae
(T12) level and employed a powerful gradient boosting
decision machine (Light Gradient Boosting Machine
[LightGBM]) to determine the value of chest skeletal mus-
cle CT radiomics in different sarcopenia and non-
sarcopenia advanced NSCLC patients.

Methods

Patient characteristics

The study was approved by the Ethics Committee of our
institution, and the requirement for informed consent was

relinquished. A total of 107 patients with suspected lung can-
cer who had undergone 18F-FDG PET/CT at our hospital
between July 2017 and March 2019 were recruited into this
study. The inclusion criteria included: (i) whole-body
PET/CT images available before treatment; (ii) histologically
diagnosed NSCLC and clinically confirmed primary advanced
NSCLC (stage IIIB, IV); (iii) ≥18 years of age; (iv) complete
clinical information such as height, weight, pathology, and
TMT staging; and (v) without the comorbidity history of
other malignant tumors.
The exclusion criteria included: (i) metastases in the

chest or abdominal wall in the ROI (N = 2); (ii) poor qual-
ity chest and abdominal CT image (N = 1); (iii) only con-
trast-enhanced CT imaging (N = 5). The TNM staging
complies with the eighth edition of the IASLC (The Inter-
national Association for the Study of Lung Cancer) NSCLC
(non-small cell lung cancer) TNM staging standards.
Finally, the total number of patients satisfying the

criteria were randomly classified to the training and valida-
tion datasets at a ratio of 7:3, and their CT images were
retrospectively analyzed.

Image acquisition

Noncontrast-enhanced CT data were obtained from
pretherapeutic whole-body (from the skull to femurs)
PET/CT studies with the Biograph mCT PET/CT system
(S64, Siemens Co., Erlangen, Germany). CT was performed
with normal shallow respiration under a low-dose setting
(120 kV, 80 mAs), an axial field of view of 21.6 cm, as well
as a three-dimensional model. This experimental process
was operated in the B30f convolution kernel with a slice
thickness of 3.0 mm and a matrix size of 512 × 512.

Body composition analysis

The skeletal muscle index (SMI, cm2/m2) was utilized to
evaluate body composition. For SMI calculation, the total
cross-sectional area (CSA, cm2) of skeletal muscle was
divided by the square of patient height (m2), at the third
lumbar (L3) vertebrae level.
To measurement the CSA, the center-most CT slice

within the L3 vertebral level was chosen and exported into
the open-source image processing program NIH ImageJ
software (version 1.52n) for further semi-automated image
analysis, and the Hounsfield unit ranges constructed for
skeletal muscle (−29 to 150) were selected. First, the outer
area for SMM was obtained, then the inner area for SMM,
and the area within the vertebral body, respectively, as
shown in Fig 1. The skeletal muscle CSA was calculated as
the formula: (outer area−inner area−vertebral body
area)/100. The measurements are detailed in the
literature.10,11
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Sarcopenia is defined in men as L3 lumbar SMI <43 cm2/
m2 if BMI < 25 kg/m2 and SMI index <53 cm2/m2 if
BMI ≥ 25 kg/m2, and in women as SMI < 41 cm2/m2.12,13

Region-of-interest segmentation and
radiomic feature extraction

We performed semi-automated segmentation utilizing 3D-
Slicer Software (version 4.11.0, www.slicer.org). The region
of interest (ROI) of skeletal muscles was performed on a
single axial slice of the CT scan at the center of the 12th
thoracic (T12) vertebra level. Skeletal muscle was delin-
eated with the same thresholds of Hounsfield units as pre-
viously described in body composition analysis, and falsely
demarcated structures such as the vertebrae, ribs, fat, and
organs, were manually corrected, as shown in Fig 2.
Radiomic feature extraction was carried out using the

“radiomics” extension within 3D-Slicer which is a conve-
nient front-end interface of PyRadiomics (version 2.2.0). As
a flexible open-source platform, PyRadiomics is not only
effective in the extraction of a large-size panel of engineered
features from medical images, but is also capable of making
feature definitions and image processing standardized.14,15

Before the extraction of radiomic features, the CT images
were processed. Preprocessing consisted of the process to
discretize the image with a fixed bin width of 25 Hounsfield
units and resample it to a voxel size of 1 × 1 × 1 mm3. A
built-in filter (wavelet) was used for every single ROI, and
based on which 851 radiomic features were obtained,
including 14 shape features, 18 first-order intensity statistics
features, 75 texture features, and 744 wavelet features. Please
refer to the Supporting Information Table S1 for the specific
list of extracted features. The definition of the mentioned
radiomic features is available at http://pyradiomics.
readthedocs.io/en/latest/features.html.
In total, 854 features were obtained for every patient:

851 radiomic features from the ROI and three clinical

features including the subject’s age, gender, BMI, as illus-
trated in Fig. 3.

Robustness analysis

Both the body composition analysis and the radiomic fea-
tures were generated by one musculoskeletal radiologist
who had eight years of experience, and who chose 30 ran-
dom images. The same procedure was repeated one week
later for intraobserver reproducibility assessment. To assess
interobserver reproducibility, the 30 random images were
evaluated by another radiologist independently.
Intra- and interclass correlation coefficients (ICCs) were

adopted to assess inter- and intraobserver reproducibility
of the body composition analysis and ROI delineation.
ICCs over 0.75 were considered high agreement. After the
stable radiomic features were selected, z-score normaliza-
tion ([value – mean value]/standard deviation) was per-
formed for further analysis.

Figure 1 The skeletal muscle CSA measurement at the L3 level with NIH ImageJ software. (a) The outer area for skeletal muscle mass; (b) inner area
for skeletal muscle mass; and (c) area within the vertebral body. The skeletal muscle CSA was calculated as the formula: (outer area − inner area
− vertebral body area)/100. CSA, cross-sectional area. L3, third lumbar.

Figure 2 Skeletal muscle semi-automated segmentation utilizing 3D-
Slicer Software at 12th thoracic vertebra level.
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Machine learning methods

Feature selection
In the machine learning pipeline, feature selection plays a vital
role in identifying the most significant features in a dataset.
Due to unnecessary features, training speed is reduced, model
interpretability deteriorates, and, most crucially, the perfor-
mance in generalization on the test set is compromised.
We used the FeatureSelector module (https://github.

com/WillKoehrsen/feature-selector) for selecting features
to remove from the training dataset. This module takes five
different approaches to filter the features:

1 Identify_missing values. Features with a missing fraction
greater than 0.60 were removed.

2 Identify_ single_unique values. The features exhibiting
only a single unique value were removed.

3 Identify_ collinear values. Pairs of collinear features based
on the Pearson correlation coefficient were found and one
feature randomly excluded with a correlation value higher
than a given threshold, which was set as 0.80 in this
study.

4 Identify_ zero_importance values. This method identifies
the features with zero importance to the given set of

Figure 3 Heatmaps of the radiomic and clinical features for 99 patients.
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features with the Gradient Boosting Machine (GBM)
learning model.

5 Identify _low_importance values. The features with no
contribution were removed to define cumulative feature
importance from the GBM. The features that are the
least important and redundant for reaching 90% of the
overall feature importance can then be identified.
Because the number of features from zero_importance and

low_importance may vary due to training a model multiple
times, we had re-run several iterations for optimization.

Machine learning methods and hyperparameter
tuning
After the redundant features were removed, the remaining
features were fed into the LightGBM classifier to train the
classification scheme to identify the sarcopenia subjects.
LightGBM refers to a novel Gradient Boosting Decision
Tree extension proposed by Microsoft.16

To improve the predictive performance of the base
models and avoid potential overfitting, a Bayesian optimi-
zation library termed as Optuna was adopted in this study
to efficiently tune hyperparameters and experimentally
benchmark its performance. Optuna (https://github.com/
pfnet/optuna) is a next-generation framework designed for
the automation and acceleration of the hyperparameters
optimization studies,17 which searches the hyperparameter
space for optimal combinations of the hyperparameters.
In all the optimizations, the number of Bayesian optimi-

zation trials was 100, Matthew’s correlation coefficient
(MCC) was chosen as the metric to be maximized, and
11 lightGBM hyperparameters were optimized (Table S2).
A detailed description of these hyperparameters can be
found elsewhere (https://lightgbm.readthedocs.io/en/latest).

Performance evaluation

Seven measures were used to assess the performance of the
method suggested in this paper. There were specificity (SP),
sensitivity (SN), accuracy (ACC), precision (PRE), F1-score,
Matthew’s correlation coefficient (MCC) and Cohen’s kappa
coefficient (Kappa), and are defined as follows:

SP =
TN

TN + FP
ð1Þ

SN=
TP

TP + FN
ð2Þ

ACC=
TP +TN

TP +TN + FT + FN
ð3Þ

PRE=
TP

TP + FP
ð4Þ

F1 score = 2×
TP

2TP + FP + FN
ð5Þ

MCC=
TP×TNð Þ− FP× FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ð6Þ

Kappa=
P0−Pe

1−Pe
ð7Þ

Where TP, FP, TN, and FN refer to true positive, false
positive, true negative, and false negative, respectively. P0
denotes the relative observed agreement among raters, and
Pe indicates the hypothesized likelihood of chance
agreement.
As the graph of true positive rate (TPR) against false

positive rate (FPR), receiver operating characteristic (ROC)
curve reflects the diagnostic ability of a model. Area under
curve (AUC) refers to the area under the ROC curve, pre-
senting the sum measured classification performance
across all possible thresholds.

Statistical analysis

The Mann-Whitney U test, Chi-square test, and Fisher’s
exact test were employed to assess the differences in clini-
cal characteristics between the training and the validation
set. The statistical significance level was set to P < 0.05 for
all statistical tests. R software (version 3.5.3) and SPSS 19
software (SPSS Inc., Chicago, IL) were applied to carry out
the statistical analysis and figure plots. Machine learning
techniques were performed with Python 3 (Python 3.6.5)
based on the following package: Scikit-learn v 0.19.1,
LightGBM v2.1.0, and Optuna v0.4,23.

Results

Demographic features of patients

Overall, the number of patients who had advanced NSCLC
met the inclusion and exclusion was 99 (average age,
52.7 ± 12.3 years), and of which sarcopenia was found in
40 patients. The participants were split into two different
groups: the training cohort with 69 patients (28 with sar-
copenia, 41 without sarcopenia); and the validation cohort
with 30 patients (12 with sarcopenia, 18 without
sarcopenia).Table 1 shows the demographic and clinical
features of all patients involved in the training and valida-
tion cohorts. No significant differences were found between
the training and validation sets in terms of BMI, histologi-
cal subtype, TNM staging, and sarcopenia. However, there
were significant differences in age and gender between the
two groups.
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Table 1 Clinical characteristics of patients with NSCLC and sarcopenia

Training cohort Test cohort
(n = 69) (n = 30) P-value

Age (years)
Median (range) 60.0 (40.0–86.0) 64.5 (39.0–83.0) <0.001†

BMI (kg/m2)
Median (range) 22.55 (16.33–29.76) 22.54 (18.23–31.45) 0.756†

Gender (n/%)
Female 30 (43.5%) 6 (20.0%) 0.026‡

Male 39 (56.5%) 24 (80.0%)
Sarcopenia (n/%)
Sarcopenia 28 (40.6%) 12 (40.0%) 0.957‡

Nonsarcopenia 41 (59.4%) 18 (60.0%)
Histological subtype (n/%)
Adenocarcinoma 56 (81.2%) 23 (76.7%)
Squamous cell carcinoma 10 (14.5%) 6 (20.0%) 0.276§

Mixed 3 (4.3%) Two-sided Pr ≤ p 0.276
Sarcomatoid carcinoma 1 (3.3%)

TNM (n/%)
IIIb 10 (14.5%) 4 (13.3%)
IIIc 5 (7.2%) 2 (6.7%) 0.983§

IVa 16 (23.2%) 8 (26.7%) Two-sided Pr ≤ p 0.983
IVb 38 (55.1%) 16 (53.3%)

†Mann-Whitney U test.
‡Chi-square test.
§Fisher’s exact test.

Figure 4 Boxplot of intra- and interobserver intraclass correlation coefficients (ICCs) of four radiomic feature categories.
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Robustness analysis

Body composition analysis by single cross-sectional on L3
CT imaging showed satisfactory reproducibility with good
interobserver (ICC = 0.991) and intraobserver reproducibil-
ity (ICC = 0.992). The robustness of radiomic features with
ICC analysis is presented in Fig 4. Among the 851 radiomic
features, 783 (92.2%) which showed good inter- and
intraobserver reproducibility (ICC ≥ 0.75) were selected, and
combined with three clinic features for further ML analysis.

Feature selection

After the feature selection procedure, five key features were
selected: one First Order features, two Texture features,
and two Wavelets features. The selected key features and
their importance score are shown in Fig 5.
With regard to the 781 eliminated features, two features

had Null value over 60%, and no feature had a single unique
value. A total of 681 features were removed for having a

correlation magnitude higher than 0.80. Moreover, 755 fea-
tures were labeled as zero importance, and 19 features were
required for the cumulative importance of 0.90.

Model performance

According to Table 2 and Fig 6, the lightGBM model
showed good performance in identifying sarcopenia in the
NSCLC patients.
In the base lightGBM model with default setting, the

specificity, sensitivity, accuracy, precision, f1-score, AUC,
MCC, Cohen’s kappa training set and validation set were
0.927, 0.929, 0.928, 0.897, 0.912, 0.928, 0.851, 0.851; 0.889,
0.750, 0.833, 0.818, 0.783, 0.819, 0.649, 0.648, respectively.
After the Bayesian hyperparameter tuning, the optimized
lightGBM model achieved better prediction performance in
both the training and the validation set. The corresponding
values for the training and the validation set were 0.951,
0.929, 0.942, 0.929, 0.929, 0.940, 0.880, 0.880; 0.944, 0.833,
0.900, 0.909, 0.870, 0.889, 0.791, 0.789, respectively.

Figure 5 The selected key features
and their importance score after fea-
ture selection.

Table 2 The performance of lightGBM classifier in identifying sarcopenia

Base model Optimized model

Training set Validation set Training set Validation set

Specificity 0.927 0.889 0.951 0.944
Sensitivity 0.929 0.750 0.929 0.833
Accuracy 0.928 0.833 0.942 0.900
Precision 0.897 0.818 0.929 0.909
F1-score 0.912 0.783 0.929 0.870
AUC 0.928 0.819 0.940 0.889
MCC 0.851 0.649 0.880 0.791
Cohen’s kappa 0.851 0.648 0.880 0.789

MCC, Matthew’s correlation coefficient.
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Discussion

Sarcopenia was initially defined as age-related skeletal mus-
cle mass wasting and was reported to be caused by cancer
or other underlying diseases.2,3 There is evidence that sar-
copenia is linked to a worse overall prognosis in various
cancers, and the pervasiveness of sarcopenia in lung cancer

is more significant compared to many other types of can-
cer.18 In previous studies, it has been shown that in NSCLC
patients, the prevalence of sarcopenia varied from 43% to
46.8%.2,19,20 The pervasiveness of sarcopenia in our study
was 40.4%, which is consistent with the literature.
The early diagnosis of sarcopenia can be significantly

improved by the precise measurement of muscle loss associated

Figure 6 The performance of
lightGBM in identifying sarcopenia.
Radar plot illustrations the perfor-
mance of base and optimal lightGBM
model in (a) training and (b) valida-
tion set set; (c) ROC curves of the
base and optimal lightGBM classifier
in validation set; Confusion matrix
with in validation set with (d) base;
and (e) optimal lightGBM classifier.
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with it. However, the lack of abdominal CT scans for lung cancer
patients remains an obstacle in the diagnosis of sarcopenia.2

Therefore, various studies have attempted to solve this dilemma
by conducting CT scans at different vertebra levels (T4, L1)
for SMM estimates in NSCLC patients.5,6,21,22 Although good
results have been achieved, the applications were not so exten-
sive. Herein, an accurate and reproducible classifier was con-
structed through the integration of a large panel of skeletal
muscle CT radiomic features and high efficiency lightGBM
model, to differentiate NSCLC patients with sarcopenia from
those without sarcopenia, achieving high accuracy and AUC
were recorded as 0.900 and 0.889 in optimal lightGBMmode.
Possessed two novel techniques: Gradient-based One-

Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB), LightGBM could facilitate the training process of
conventional GBDT model by over 20 times and achieve
almost the identical performance in multiple experi-
ments.16,23 Both classification and regression tasks have
been commonly performed using LightGBM.23–27 Never-
theless, the sensitivity to overfitting presents the toughest
challenge to the LightGBM algorithm, particularly with
regard to the small dataset.28 Thus, it is necessary to care-
fully tune the parameters of the LightGBM model.
Relative to the conventional ML algorithms that only

require adjustment to two or fewer parameters, tuning
lightGBM is far more complicated and makes it necessary
to tune a larger number of parameters to ensure the accu-
racy and robustness of the model.
To optimize the 11 lightGBM parameters, the simplest

method is to use the grid-search strategy. However, a sub-
stantial amount of cost is incurred when tuning all the
11 parameters simultaneously via grid-searching, particu-
larly in the case of a relatively large search space. In order
to address this issue, it is advisable to adopt Bayesian opti-
mization strategies to perform hyperparameter tuning, as it
has better performance on the test set and requires fewer
iterations compared to grid and random searches.29,30 Our
results demonstrated that the baseline lightGBM model
could be improved via Bayesian optimization by over 8.0%
in ACC value, 11.1% in F-value, 21.9% in MCC value, and
8.5% in AUC value, on the validation set, respectively,
thereby verifying the effectiveness of Bayesian
optimization.
Our research is not the first which has attempted to

identify skeletal muscle changes with radiomics. de Jong
et al.9 recently investigated the potential of skeletal muscle
radiomic features to predict future muscle loss in stage IV
NSCLC patients. However, the results only achieved an
average AUC of 0.49 in predicting future muscle loss, and
an average AUC of 0.68 in discriminatory patients who lost
muscle and those who maintained muscle mass. There was
a better performance in our study which used skeletal mus-
cle radiomics to identify sarcopenia in patients with

advanced NSCLC. The better result would attribute to a
single institute experiment, pretreatment CT scan, and the
powerful lightGBM model in our research.
This study had several limitations. First, we retrospec-

tively assessed sarcopenia by muscle mass depletion analysis
based on calculated L3-SMI, which is a routinely and widely
used method,13,20 and the absence of impaired muscle func-
tion could hinder the correct identification of sar-
copenia;31,32 however, additional prospective research will
assist in solving this problem. Second, all the datasets herein
were acquired from the same clinical center with the same
PET/CT scanner. In the future, it will be necessary to con-
duct a multicenter study with a greater sample size.
In conclusion, CT based radiomics has the potential to

identify sarcopenia in NSCLC patients with lightGBM clas-
sifier. The optimal lightGBM model via Bayesian hyper-
parameter tuning demonstrated better performance.
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