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Abstract

Recent studies have demonstrated that mesenchymal stem cells (MSCs) combined with
CD34" hematopoietic/stem progenitor cells (HSPCs) can function as surrogate urinary bladder
cells to synergistically promote multi-faceted bladder tissue regeneration. However, the molec-
ular pathways governing these events are unknown. The pleiotropic effects of Wnt5a and
Cyr61 are known to affect aspects of hematopoiesis, angiogenesis, and muscle and nerve
regeneration. Within this study, the effects of Cyr61 and Wnt5a on bladder tissue regeneration
were evaluated by grafting scaffolds containing modified human bone marrow derived MSCs.
These cell lines were engineered to independently over-express Wnt5a or Cyré1, or to exhibit
reduced expression of Cyr61 within the context of a nude rat bladder augmentation model. At
4 weeks post-surgery, data demonstrated increased vessel number (~250 vs ~109 vessels/
mm?) and bladder smooth muscle content (~42% vs ~36%) in Cyr610X (over-expressing) vs
Cyr61KD (knock-down) groups. Muscle content decreased to ~25% at 10 weeks in Cyr61KD
groups. Wnt5aOX resulted in high numbers of vessels and muscle content (~206 vessels/
mm? and ~51%, respectively) at 4 weeks. Over-expressing cell constructs resulted in periph-
eral nerve regeneration while Cyr61KD animals were devoid of peripheral nerve regeneration
at 4 weeks. At 10 weeks post-grafting, peripheral nerve regeneration was at a minimal level for
both Cyr610X and Wnt5aOX cell lines. Blood vessel and bladder functionality were evident at
both time-points in all animals. Results from this study indicate that MSC-based Cyr610X and
Wnt5aOX cell lines play pivotal roles with regards to increasing the levels of functional vascu-
lature, influencing muscle regeneration, and the regeneration of peripheral nerves in a model
of bladder augmentation. Wnt5aOX constructs closely approximated the outcomes previously
observed with the co-transplantation of MSCs with CD34" HSPCs and may be specifically tar-
geted as an alternate means to achieve functional bladder regeneration.
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Introduction

Neurogenic urinary bladder, radiation or interstitial cystitis, severe incontinence, and urinary
bladder cancer provide the impetus for urinary bladder regeneration strategies.[1-2] For those
patients that are refractory to conservative therapy, the current standard of care is for bladder
replacement or augmentation, depending upon the underlying pathology. These invasive surgi-
cal procedures utilize a portion of bowel to either replace or augment the existing bladder.
Unfortunately, the use of bowel is fraught with numerous short and long-term complications,
including metabolic derangements, infection, stone formation, small bowel obstruction, perfo-
ration, and an increased incidence of aggressive tumor development.[3,4] These obstacles have
provided the motivation to investigate alternative approaches including cutting-edge tissue
engineering strategies to create functional bladder tissue.

A clinical trial utilizing autologous sources of bladder cells obtained from spina bifida
patients were expanded ex vivo and then combined with synthetic scaffolds to provide the first
clinical foray into this field.[5] Although novel in approach, the outcomes of the study were
inconclusive. A second iteration of this study was recently conducted in a phase II multi-center
trial. Autologous bladder cells from spina bifida patients were again seeded onto synthetic scaf-
folds and implanted in spina bifida patients.[6] Unfortunately there were no statistically signifi-
cant improvements in physiological bladder parameters including compliance and capacity at
12 or 36 months post-grafting. Of great clinical importance, adverse events occurred in all
patients, including bowel obstruction in 40% of these children. These poor outcomes have led
to the re-evaluation of the choice of cell types to utilize in this setting as well as the type of scaf-
fold that would provide the greatest clinical benefit. This has also provided an interest in the
mechanisms behind optimal tissue regeneration in the bladder.[7-10]

The plastic nature of mesenchymal stem cells (MSCs) has demonstrated promising results
across a variety of clinical areas including bladder augmentation, heart failure or attack, ische-
mic stroke, urinary incontinence and even mediating kidney transplant rejection.[11-15]
While initially thought to impact tissue regeneration by cellular engraftment and differentia-
tion, it now appears that the regenerative and therapeutic effects of MSCs may primarily be
due to paracrine-based mechanisms.[7, 16-20] The MSC secretome and its effect on angiogen-
esis, peripheral nerve regeneration, collagen deposition, and immunomodulation have not
been completely characterized. We have previously shown that co-transplantation of MSCs
with bone marrow derived CD34" hematopoietic stem/progenitor cells (HSPCs) enhances tis-
sue vascularization, urothelium regeneration, bladder smooth muscle regeneration, and
peripheral nerve regeneration in a bladder augmentation model at the gross level.[7] However,
the signaling pathways involved in these parameters of tissue regeneration have not been delin-
eated including those that directly affect angiogenesis and overall tissue development. Hence,
we focused efforts to evaluate whether the pro-angiogenic effects of Cysteine-rich angiogenic
inducer 61 (Cyr61) and the pleiotropic functions of Wnt5a are potentially important factors
involved in tissue regeneration following bladder augmentation.

Cyr61, also known as CCN1, is a secreted extracellular matrix protein regulating numerous
elements important for wound healing and tissue regeneration. Depending on its interaction
with cell and environment specific integrins and heparin sulfate proteoglycans, Cyr61 has been
shown to promote cell adhesion, survival, proliferation, senescence, angiogenesis, and apopto-
sis.[21-24] Cyr61 decreases fibrosis during cutaneous wound healing via induction of fibro-
blast senescence through binding to integrin of;.[25] Cyr61 is most well-known for its role in
angiogenesis.[20, 25-27] Dissection of the murine bone marrow derived MSC secretome has
lead to the identification of Cry61 as a main component of the angiogenic response.[20] In ton-
sil derived MSCs, Cyr61 was shown to induce endothelial cell migration and tube formation
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for angiogenesis via integrin o, B3 and AMPK.[22] Interestingly, Cyr61 expression is increased
after mechanical stretching of bladder smooth muscle cells, leading to increases in vascular
endothelial growth factor (VEGF; a potent angiogenic growth factor), integrin o, and a-
smooth muscle actin.[23] Furthermore, Cyr61 recruits CD34" HSPCs, which may be an addi-
tional method by which it enhances angiogenesis.[28] Cyr61 is likely an important modulator
in bladder regeneration due to its actions within angiogenic blood vessels and neighboring
MSCs following augmentation cystoplasty.[29]

The Wnt family of proteins encodes highly hydrophobic, lipid modified, secreted glycopro-
teins that are capable of diverse developmental and maintenance processes throughout the life-
span of metazoan organisms. [30-33] Dysfunctional expression of Wnt genes is the basis of
some cancers including mammary tumors, improper neural development, diabetes, and other
degenerative disorders.[34-37] These pleiotropic effects of Wnt genes have been examined at
the molecular level in a variety of systems. The putative binding partners for Wnt ligands are
the frizzled (Fzd) family of receptors. The ligand-receptor interactions have been partially
delineated for Wnt and Fzd proteins within a variety of cell and tissue systems. This includes
stem cells within the hematopoietic stem cell niche as well as more differentiated cell types
associated with angiogenesis.[38-42] We have previously demonstrated the cloning of human
Wnt5a from the stromal cells that line the bone marrow cavity.[38] The constitutive expression
of Wnt5a caused an approximate 30 fold increase in mixed lineage hematopoietic progenitors
than were initially derived from primitive bone marrow CD34" HSPCs within an in vitro co-
culture system. We went onto to further demonstrate that the primitive CD34" HSPCs them-
selves also express Wnt5a and may engage in paracrine signaling within the local bone marrow
environment. More recently, it has been demonstrated that Wnt5a plays a role in angiogenesis.
In the study by Masckauchan et al, data demonstrate that Wnt5a is expressed by human pri-
mary endothelial cells and in murine vasculature.[40] The expression of exogenous Wnt5a in
human endothelial cells caused the cells to undergo angiogenesis via the non-canonical Wnt
signaling pathway. The expression of Wnt5a enhanced capillary network formation while a
reduction in Wnt5a decreased capillary network formation and reduced endothelial cell migra-
tion. Wnt5a has also been shown to up-regulate the expression of pro-angiogenic modulators
including the Tie-2 receptor, matrix metalloproteinase-1 and interstitial collagenase. A second
study demonstrated that Wnt5a promotes the proliferation and survival of endothelial cells.
Ishikawa et al describe the lack of viability in mice that did not express Fzd5, one of the recep-
tors for Wnt5a, due to defects in yolk sac angiogenesis.[42] Wnt5a can also act through the
Fzd4 receptor as well, as this becomes relevant to our studies in bladder.[43]

Hence, we wish to independently examine the mechanistic roles of Cyr61 and Wnt5a in
genetically modified MSCs within the context of a nude rat bladder augmentation model. We
will specifically examine the impact of modified Cyr61 and Wnt5a expression with regards to
bladder physiology, bladder smooth muscle content, peripheral nerve, urothelial regeneration,
and tissue angiogenesis in regenerating bladder tissue. Finally, we would like to ascertain
whether MSCs over-expressing Wnt5a can mimic the effects previously demonstrated utilizing
MSC/CD34" HSPCs seeded scaffolds within the aforementioned augmentation model.

Materials and Methods
Ethics Statement

All animal procedures were performed as per protocols approved by the Ann & Robert H.
Lurie Children’s Hospital Research Center Institutional Animal Care and Use Committee
(IACUC # 13-046.0).
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Cyr61 and Wnt5a Over-expression Cell Lines

The cDNA encoding homo sapiens Cyr61 (Genbank Accession # BC001271.1) was isolated by
PCR amplification from Human Placenta QUICK-Clone cDNA (Clontech Laboratories, CA,
USA). The PCR amplification profile consisted of the following: [94°C-45 sec]-1 cycle; [94°C-
45 sec; 60°C-45 sec; 72°C-2 min]-30 cycles; 72°C-10 min; 4°C-hold utilizing the PfuUltra High
Fidelity DNA Polymerase (Agilent Technologies, CA, USA). Primers used for amplification
were: Cyr61forl 5-CTCCAGAATTCATGAGCTCCCGCATCGCCA-3’ Cyr6lrevl 5°-GC
TCCAGGATCCTTAGTCCCTAAATTTGTGAATGTCAT-3. Isolated amplicons were gel
purified (Qiaquick Gel Purification Kit; Qiagen Inc., CA, USA) and enzymatically digested
with BamH]1 and EcoR1 (New England Biolabs Inc., MA, USA) for ligation into the pre-di-
gested pCDH-EF1-MCS-IRES-GFP cDNA Cloning and Expression HIV lentiviral vector [Sys-
tem Biosciences Incorporated (SBI), CA, USA].

Homo sapiens Wnt5a (Genbank Accession # BC064694.1) was isolated by Swal and Notl
(New England Biolabs Inc.) digestion of the GC-B0116 plasmid (GeneCopoeia, MD, USA).
The Wnt5a digestion product was gel purified and ligated into the previously described, pre-
digested lentiviral vector using Swal and Notl restriction enzymes. Cyr61 and Wnt5a gene
sequences were verified through DNA sequencing performed at the Northwestern University
Genomics Core Facility. Over-expression plasmids for Cyr61 and Wnt5a are termed as pOX-
Cyr61, and pOX-Wnt5a, respectively.

Cyr61 Knockdown Cell Line

Three knockdown plasmids were created for Cyr61, and are referred to as pKD-Cyr61a,-b and-
c. The cDNA sequence for Cyr61 was scanned for amino acid dinucleotides and 21 down-
stream base pairs (bp) were used to create a sense oligonucleotide. A 12 bp spacer
(CTTCCTGTCAGA) was used for the loop and the antisense sequence for 21 bp was added
after the space and a tail of five thymines was added to the 3’ end for a termination signal.
Overhangs were designed to facilitate ligation of annealed oligos into BamHI and EcoRI clon-
ing sites on pGreenPuro shRNA HIV Lentivector (SBI). The authenticity of DNA sequences
was verified through the Northwestern University Genomics Core Facility.

Viral Supernatant Production

For viral supernatant production, 293TN producer cells (SBI) were seeded on 100 mm plates
in Opti-MEM (Invitrogen) media and allowed to reach ~80-90% confluence within 24 hours.
After achieving 80-90% confluence, the plates were transfected utilizing Lipofectamine (Life-
Technologies, Inc.) according to manufacturer’s instructions. Transfection utilized a mixture
of lentiviral packaging vectors and target vector(s) (pOX-Cyr61, pOX-Wnt5a, or equal mix-
ture of pKD-Cyr61a,-b, and-c). Plasmid molar ratio (target vector(s)/MDG/CMYV) 1.5/0.5/2.0
was utilized. Cells were incubated and GFP expression was noted to be >80% for all transfec-
tants utilizing fluorescent microscopy after 24 hours. Viral supernatant was collected at 24 and
48 hours post-transfection and filtered through a 0.45um Acrodisc syringe filter (Sigma-
Aldrich, MO, USA).

Viral Transduction of MSCs

12 well plates were coated with 10 pg/cm” retronectin (Clontech Laboratories). Viral superna-
tant was then bound to the retronectin plate via spinoculation at 1500g x 2 hours at 32°C with
1ml per well. The supernatant was removed and the plate washed with phosphate buffered
saline (PBS) and 2% BSA. BM-MSCs (<p8; Lonza, MD, USA) were seeded at a density of
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1x10* cells/cm’. Plates were incubated and monitored with fluorescence microscopy for 48
hours for GFP expression. Following expansion with MSC Growth Media (Lonza) cells were
sorted for GFP using FACS through the Robert H. Lurie Comprehensive Cancer Flow Cytome-
try Facility (Northwestern University). Unmanipulated MSCs were cultured in the aforemen-
tioned MSC Growth Media.

Assessment of Gene Transfer

Cell lysates containing the aforementioned lentiviral cell lines were prepared for Western blot
analysis by resuspending 2x10” scraped MSCs in ice cold Radio-Immunoprecipitation Assay
(RIPA) buffer (1ml) as per manufacturers protocol (Santa Cruz Biotechnology (SCBT), CA,
USA). Protein content was then analyzed per manufacturer’s protocol with a BCA Protein
Assay Kit (LifeTechnologies, Inc.).

A reduced Western blot was performed utilizing the NuPAGE SDS-PAGE System (Invitro-
gen). Samples (30ug of total protein) were then loaded into a pre-cast 10% NuPAGE Bis-Tris
Gel with MOPS running buffer and NuPage antioxidant (Invitrogen). Gel transfer was per-
formed utilizing the iBlot system (Invitrogen). A PVDF membrane (Invitrogen) was used at
20V with a run time of 7 minutes. The blots were then blocked with 5% nonfat milk in Tris-
Buffered Saline (TBS) with 0.2% Tween (TBST) at 4°C for 1 hour. After rinsing with TBST the
blots were incubated with primary antibody overnight at 4°C. Cyr61 primary antibody (SCBT)
was diluted 1:400 in 5% milk in TBS. Wnt5a primary antibody (Abcam, MA, USA) was diluted
1:400 in 1% milk in TBS. After blot washes with TBST, the secondary antibody was incubated
with the blots for 1 hour at room temperature. Secondary antibody (Abcam) was diluted
1:2000 in 1% milk in TBS for the Wnt5a blot, and diluted 1:3000 in 5% milk in TBS for the
Cyr61 blot. Detection was then performed per manufacturer protocol using ECL western blot-
ting detection reagents and analysis systems (GE Healthcare Life Sciences, PA, USA). CL-XPo-
sure films (LifeTechnologies) were exposed for 15 and 30 seconds and 1, 3, and 5 minutes.

The levels of the housekeeping protein B-tubulin were determined by stripping the blots
with Restore Western Blot Stripping Buffer (LifeTechnologies) for 5-7 minutes. The blots were
then blocked for 2 hours at 4°C with 5% nonfat milk and TBST. The primary antibody B-tubu-
lin (Abcam) was incubated overnight at a dilution of 1:500 at 4°C on an orbital shaker. The
blots were then rinsed and incubated with the IgG-HRP secondary antibody (Abcam) at a dilu-
tion of 1:2000 in 1% milk in TBS for 1 hour at room temperature. After washing, detection was
performed as previously described.

POC Scaffold Synthesis and MSC Seeding

Poly (1,8-octanediol-cocitrate) (POC) was synthesized as previously reported in detail.[7].
Polymerized POC was cut into 0.50cm x 0.50cm x 0.2cm (length x width x thickness) scaffolds
and unreacted monomers were leached by incubation with DMEM media (Lonza) which was
changed every 6 hours over a 24 hour period. The scaffolds were seeded with 1.5x10* MSCs/
cm? and allowed to grow in MSC media for 7-8 days prior to augmentation cystoplasty. If scaf-
folds had poor cell growth as seen by light microscopy, re-seeding was performed as needed to
achieve confluence prior to bladder grafting.

Nude Rat Bladder Augmentation Model

8-10 week old athymic female rats (n = 5 per group, Charles River Laboratories International,
MI, USA) underwent bladder augmentation as previously described.[7] Briefly, following

box induction with inhaled isoflurane anesthesia (2-3%) animals were placed on a heating pad
and maintained with nose-cone isoflurane anesthesia (1-3%). A 1.5-cm lower midline
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abdominal incision was made. Pre-augmentation urodynamic testing and capillaroscopy was
performed. The anterior incision of a 50-60% supratrigonal cystectomy was made and capil-
laroscopy was performed at the dome. Following this procedure, the remaining dome of the
bladder was excised. The bladder was then augmented with the previously described MSC
seeded POC scaffold using 7-0 polydioxanone (PDS II; Ethicon, NJ, USA) suture in a running
watertight fashion. Perivesicle fat was used to cover the graft and adjacent bladder. The abdom-
inal wall and skin were closed with interrupted 4-0 chromic suture (Ethicon). Buprenorphine
(Img/kg) was administered subcutaneously to all animals. After 4 or 10 weeks, animals under-
went repeat anesthesia, urodynamic testing, and capillaroscopy followed by euthanasia via cer-
vical dislocation. The bladder was harvested for further analyses. The different numbers of
animals for analysis were solely due to animal mortalities. Animals were sacrificed by CO,
overdose followed by surgical dislocation to ensure humane termination. An n = 5 animals for
all groups were used for statistical analysis.

Functional Evaluation of Bladders with Urodynamics

Urodynamic testing was performed as previously described.[44] After exposure of the bladder,
a 27 gauge needle was placed intravesically through the dome. The needle was then connected
to an Elite Syringe Pump (Harvard Apparatus, MA, USA), a physiological pressure transducer
(SP844, MEMSCAP, NC, USA), and a bridge amplifier (Model FE221; AD Instruments, Dune-
din, New Zealand). Continuous readings of the intravesical pressure were obtained with Lab-
Chart 7.3 Software (AD Instruments). The fill rate for each study ranged from 150-200 pL/
min.

Capillariscopy

Qualitative evaluation of the bladder microvasculature was obtained with a CapiScope HVCS
handheld video capillaroscopy system (KK Technology, United Kingdom). The CapiScope was
used to obtain videos of the native bladder microvasculature of the dome. Prior to sacrifice,
regenerated bladders were also evaluated. A vertical incision was made through the anterior
bladder wall exposing native and regenerated bladder tissue. The regenerated tissue, as identi-
fied by remaining graft, was then imaged with the CapiScope.

Histological Analysis of Augmented Bladders

All harvested organs were immediately fixed in 10% buffered formalin phosphate (Fisher Sci-
entific, MA, USA). The samples were then dehydrated through graded ethanol exchanges fol-
lowed by paraffin embedding as previously described.[45] Tissues were then sectioned (10um)
using a RM2125 RT microtome (Leica Biosystems, IL, USA). The samples were then treated
with xylenes, graded ethanol washes and deionized water. Sections were stained with Masson’s
trichrome (Sigma-Aldrich) or via immunofluorescence staining with anti-neuronal antibody
BIII tubulin (Covance Inc., NJ, USA) as previously described.[7]

For Masson’s trichrome, the samples were placed in Bouin’s solution for 15 min, rinsed
under running water, placed in hematoxylin for 5 min, rinsed with water, stained with Scarlet-
Acid Fuchsin for 5 min, rinsed with deionized water then placed in a mixture of phosphotungs-
tic acid/phosphomolybdic acid, followed by Analine Blue staining. The samples were then
finally washed with 1% acetic acid, rinsed with 95-100% ethanol and rinsed in xylene. A cover-
slip was then applied and secured with 2-3 drops of Permaslip (Alban Scientific Inc., MO,
USA).

For immunofluorescence staining, sections were blocked for 15 min with bovine serum
albumin (5 mg/mL) followed by a 40 min incubation at room temperature with BIII tubulin
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(Covance Inc.), the primary antibody, at a dilution of 1:2000. After washing with Dulbecco's
Phosphate-Buffered Saline (DPBS), slides were incubated for 30 minutes with goat anti-rabbit
Alexa Fluor 488 (Invitrogen), the secondary antibody, at a dilution of 1:400. Following this the
slides were rinsed with DPBS, air-dried and mounted with Vectashield (Vector Laboratories,
CA, USA).

Quantitative Evaluation of Augmented Bladders

Full thickness bladder tissue specimens were evaluated as previously described.[7] Images were
obtained by scanning through both the native and regenerated tissue with a Nikon Eclipse 50i
microscope (Nikon Instruments, NY, USA) and Spot Advanced Imaging software (Diagnostic
Instruments, MI, USA). Brightfield microscopic images were 1,600 x 1,200 pixels, a bit depth
of 24, and were quantified with Adobe Photoshop CC (Adobe Systems Inc., CA, USA). Immu-
nofluorescent microscopic images were 1,600 x 2,000 pixels, a bit depth of 24, and were quanti-
fied with Spot Advanced Imaging software (Diagnostic Instruments).

Vascular quantification was achieved by analyzing the Masson’s trichrome images. Vessel
numbers were outlined using the pen tool (Adobe Photoshop) in ten random images each of
the native and regenerated bladder tissue. Individual vessels were selected and quantified with
the image histogram tool to acquire pixel count per vessel. Data are represented as mean num-
ber of vessels per square millimeter and mean percent vasculature (means + SEM).

Bladder smooth muscle/collagen quantification was achieved by analyzing the Masson’s tri-
chrome images. In Adobe Photoshop, the contrast of red to blue pixels was enhanced by a two
fold elevation of magenta levels followed by two fold depression of cyan levels in the red/
magenta spectra and the reverse in the blue/cyan spectra. Prior to evaluation of the muscle/col-
lagen ratio, the images were edited to remove urothelial cells, red blood cells, debris and vascu-
lature. The color-range selection tool (fuzziness level 115%) was then used to select the red or
blue pixels of the entire image. These pixels were quantified using the image histogram tool
and the percent muscle and density values were calculated from these data. Data are expressed
as means +SEM for percent muscle (red pixel count/red+blue pixel count) and a density score.
The density score describes the density of the tissue (i.e. how tightly the muscle and collagen
are packed) and normalizes this against control bladder tissue (mean, n = 3 control samples).
Density score is defined as [(sample red + blue pixel count)/(mean normal red+blue pixel
count)] such that control tissue has a density score of 1.

Neural quantification was achieved using the immunofluorescent BIII tubulin stained
images. The border between native and regenerated bladder tissue was identified and the entire
regenerated tissue was scanned for peripheral nerve tissue that were at least 3 cells long and
images were obtained when they were present. Peripheral nerves were counted and measured
using Spot Advanced Imaging software. Maximum peripheral nerve regeneration distance was
quantified by measuring the shortest distance between the native-regenerated tissue border
and the farthest instance of BIII tubulin® staining for each animal. Data are expressed as means
+SEM for instances of BIII tubulin® staining for nerve length, and maximum nerve regenera-
tion distance.

Urothelium quantification was achieved using the Masson’s trichrome images. Three 10x
images were obtained spanning the length of the regenerated bladder tissue. Ten measurements
per image were obtained by randomly spanning the length of regenerated bladder tissue. The
distance from the urothelial lumen to the superficial aspect of the lamina propria was measured
for each image using Spot Advanced Imaging software. Data are expressed as means =SEM.

Functional quantification was achieved by analyzing urodynamics tracings in LabChart 7.3.
Bladder capacity was measured by calculating the volume infused prior to first urine leak as
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described previously.[46] Peak voiding pressures were measured as the highest pressure at time
of void. A measure of compliance was calculated as the percentage of bladder volume that was
infused at pressures < 20 cmH,0.[47-49] Due to the highly invasive nature of this functional
bladder testing, urodynamics were obtained pre-operatively and immediately prior to euthana-
sia while the animals were under isoflurane anesthesia.

Statistical Analysis

Differences between groups were determined using Student’s ¢ test or ANOVA with the
Tukey-Kramer post-hoc test. P values less than 0.05 were considered statistically significant.
Analyses were performed with SAS 9.4 software (SAS Institute).

Results
Western Blot Analyses

Western blot data demonstrated the over-expression and knockdown the of Cyr61 protein
expression in the Cyr610X/MSC and Cyr61KD/MSC cell lines (Fig 1A). An approximate
40kDa protein band confirming the expression of Cyr61 was visible upon exposure. The
Wnt5a0X/MSC cell line demonstrated robust over-expression compared to unmanipulated
MSCs with strong expression at the expected 45kDa molecular weight level (Fig 1B). B-tubulin
loading controls further demonstrated that equivalent amounts of protein were loaded
amongst all samples, visible at the 50kDa molecular weight level. Detection of Wnt5a in unma-
nipulated MSCs was noticeable upon longer exposure of films. There were several attempts to
create a Wnt5aKD/MSC cell line however Wnt5aKD transduced MSCs failed to thrive in cul-
ture several days following transduction. Hence, this cell line was not included within this
study.

Blood Vessel Characterization

Both increasing and decreasing Cyr61 expression resulted in greater levels of graft vasculature
than previously observed with unmanipulated MSCs [7] in which increasing Cyr61 expression

A Cyr61 primary ab B-tubulin loading control
MM Cyr61 Cyr61 MSC MM  Cyr61 Cyr61 MSC
-OX -KD -OX -KD
40§ » 60
S8 $, ‘% 50
B Wntba primary ab B-tubulin loading control
MM  Wntba MSC fHs MM  Wntsa MSC fHs
-OX -OX
50

Fig 1. MSC construct validation. (A) Western blot analysis of the Cyr610X MSC construct demonstrates
significant over-expression of Cyr61 as compared to unmanipulated MSCs (expected molecular weight of
~40kDa). The Cyr61KD MSC construct demonstrates significantly reduced expression of Cyr61. B-tubulin
loading control confirmed equivalent protein loading amongst samples. Unmanipulated MSCs were cultured
in MSC Growth Media (Lonza). (B) Western blot analysis of the Wnt5aOX MSC construct demonstrates
significant over-expression as compared to unmanipulated MSCs (expected molecular weight of 45kDa). The
minimal expression of Wnt5a in unmanipulated MSCs is readily apparent upon longer exposure times.
Protein lysate from the fibroblast cell line fHs 173We was used as a negative control compared to Wnt5a
constructs. B-tubulin loading control confirmed equivalent protein loading amongst samples.

doi:10.1371/journal.pone.0138643.g001
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produced a much stronger effect. At 4 weeks, Cyr61KD vessel number and percent vasculature
were 1.3x and 1.5x higher than MSC (108.8+5.5 vs 83.4+15.8 vessels/mm? and 2.25+0.27% vs
1.46+0.16%) while Cyr610X vessel number and percent vasculature were 3x and 4x higher
than MSC (249.9422.3 vs 83.4+15.8 vessels/mm” and 5.78+0.29% vs 1.46+0.16%) (Fig 2A). For
unmanipulated MSCs and Cyr61KD, there was no observed effect of graft duration (4 vs 10
weeks) on the level of vascularization. At 10 weeks, the number of vessels/mm? remained stable
for Cyr610X but percentage vasculature increased (8.49+0.62% vs 5.78+0.24%, p<0.05),
reflecting a shift towards larger vessels. Cyr610X vessel number and percent vasculature were
significantly greater than Cyr61KD at both time-points (p<0.001; p<0.001).

Wnt5aOX resulted in persistently high levels of vasculature in regenerated tissue which was
comparatively greater than MSCs. At 4 weeks, vessel number and percent vasculature were
2.5x and 3.3x higher than MSC (206.4+9.7 vs 83.4+15.8 vessels/mm” and 4.79+0.51% vs 1.46
+0.16%) (Fig 2A). No significant increase was detected from 4 to 10 weeks.

Cyr61KD, Cyr610X and Wnt5aOX all produced levels of vascularization greater than those
previously reported for unmanipulated MSCs. In earlier findings, unseeded POC resulted in
fewer vessels/mm? than MSC-seeded POC (63.8+5.4 vs 83.4+15.8 vessels/mm?) and the addi-
tion of CD34" HSPCs to MSC grafts increased graft vascularization [7] (S Fig). At 4 weeks,
MSC/CD34" HSPCs vessels/mm? and percent vasculature were 2.8x and 5.5x greater than
MSCs (230.9+11.4 vs 83.4+15.8 vessels/mm? and 8.00+0.57% vs 1.46+0.16%). Cyr610X and
Wnt5a0X grafts showed numbers of vessels/mm? similar to MSC/CD34" HSPC grafts at this
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Fig 2. Effects of Cyr61 and Wnt5a on regenerating vasculature and musculature. (A) Cyr610X and
Wnt5a0OX showed early and persistent increased vasculature, comparably greater than unmanipulated
MSCs, with numbers of vessels/mm? similar to MSC/CD34* HSPC grafts at 4 weeks. (§ Unseeded, MSC and
MSC/CD34* HSPC data, shown as solid and dotted lines, previously reported [7]). At both 4 and 10 weeks,
Cyr61KD demonstrated significantly decreased vasculature as compared to Cyr610X. Data shown as
means + SEM; ***P<0.001 for Cyr61KD vs Cyr610X. (B) Wnt5aOX demonstrated mean muscle content
most comparable to MSC/CD34* HSPC grafts [percent red (muscle): (red (muscle) pixels / red (muscle)

+ blue (collagen) pixels)]. (§ Unseeded, MSC and MSC/CD34* HSPC data, shown as solid and dotted lines,
previously reported [7]). Cyr61KD demonstrated a significant decrease in muscle percentage from 4 to 10
weeks (p<0.05), with levels significantly lower than Cyr610X at both time points. Data shown as

means + SEM; *P<0.05 and **P<0.01 for Cyr61KD vs Cyr610X. (C) Sample photomicrographs of Masson’s
trichrome staining demonstrate differences in muscle/collagen content and level of vasculature (marked with
black arrows) between Cyr61KD and the Cyr610X and Wnt5aOX groups. Density score was greatest for
Wnt5a0X at 4 weeks. Scale bar, 50 ym. (Unseeded, MSC and MSC/CD34* HSPC images shown in S1 Fig).

doi:10.1371/journal.pone.0138643.9002
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time-point, but with lower percent vasculature (5.78+0.29% and 4.79+0.51% vs 8.00£0.57%).
This highlights the difference in time course observed for vascularization levels in MSC/CD34"
HSPC grafts versus the current vascularization-promoting cell lines. MSC/CD34" HSPC grafts
showed peak levels at the early time-point, with reduced vessels/mm? and percent vasculature
by 10 weeks (230.9+11.4 vs 178.3+10.7vessels/mm? and 8.00+0.57% vs 5.31+0.44%). The cur-
rent cell lines showed no reduction from 4 to 10 weeks; number of vessels/mm? remained stable
and percent vasculature either remained stable or, in the case of Cyr610X, increased
significantly.

Native tissue adjacent to the grafts showed similar vasculature characteristics across all
groups at both the 4 and 10 week time-points. Capillaroscopy demonstrated functional vascu-
lature in all groups at both 4 and 10 weeks. A sample video demonstrating capillaroscopy usage
is presented in the Supporting Information (S1 File).

Bladder Smooth Muscle Characterization

Modulating Cyr61 expression produced grafts with muscle content similar to unmanipulated
MSC levels at 4 weeks, but comparatively lower by 10 weeks, either failing to reach >45%
mean muscle content (Cyr610X) or declining significantly to a mean value of only 25%
(Cyr61KD). Previously, mean muscle content for MSC graft tissue increased from 4 to 10
weeks (38.4+1.0% at 4W vs. 47.2+0.6% at 10W) [7]; this trend was not observed with the
Cyré61 constructs. Cyr610X maintained muscle content (42.3+1.3% at 4W vs. 40.2+2.4% at
10W); consequently by 10 weeks mean muscle content remained <45%. In contrast, limiting
the expression of Cyr61 resulted in a significant decrease from 4 to 10 weeks (36.1£1.6% vs.
25.0+2.7%, p<0.05) (Fig 2B and 2C). Following the decrease, 10 week Cyr61KD mean muscle
content was only 0.5x MSC (25.0+£2.7% vs. 47.2+0.6%). Cyr61KD graft muscle content was sig-
nificantly lower than Cyr610X at both 4 weeks (36.1+1.6% vs. 42.3+1.3%, p<0.05) and 10
weeks (25.0%2.7% vs. 40.2+2.4%, p<0.01). The density of the muscle and collagen fibers was
slightly greater than control native tissue with density scores of 1.10+0.07 and 1.15+0.03 at 4
and 10 weeks for Cyr61KD and 1.11+0.02 and 1.1620.03 for Cyr610X (control native

tissue = 1).

Wnt5a0OX resulted in ~50% muscle content earlier than MSC (51.5+£1.7% vs. 38.4+1.0% at 4
weeks, 1.3x MSC levels). A 4 to 10 week decrease led to mean muscle content of 45.7+1.7% at
10 weeks, comparable to MSC (47.2+0.6%). The Wnt5aOX pattern of early increased muscle
content, followed by a decrease but maintenance of >45% mean muscle content, is similar to
that seen previously with the MSC/CD34" HSPC construct (55.310.9% at 4W; 50.1+1.9% at
10W) [7]. For Wnt5aOX, a density score of 1.27+0.07 at 4 weeks and 1.19+0.06 at 10 weeks
confirmed the observation that, although the muscle percentage was similar to control native
tissue (52.2+1.0%), muscle and collagen were more densely packed than control native tissue
(control density score = 1).

Peripheral Nerve Characterization

Previously, no evidence of peripheral nerve regeneration was detected in regenerated MSC
graft tissue at 4 or 10 weeks [7]. However, combining MSCs with CD34" HSPCs resulted in
graft tissue with substantial peripheral nerve regeneration at 4 weeks [7]. To further character-
ize peripheral nerve regeneration in both current cell lines and a subset of previous cell lines,
instances of BIII tubulin™ staining in regenerated tissue were counted and measured (length),
and maximum nerve regeneration distance was determined. In this assessment, minimal stain-
ing was observed for a single animal from the 10 week MSC group (n = 3); no positive staining
was detected in the remaining two 10 week animals or in any of the three 4 week animals
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Fig 3. Effects of Cyr61 and Wnt5a on peripheral nerve regeneration. (A) Cyr61KD and MSC demonstrate
no nerve regeneration at 4 weeks and poor nerve regeneration at 10 weeks. Wnt5aOX and MSC/CD34"
HSPC demonstrate increased early and robust nerve regeneration. Cyr610X demonstrates nerve
regeneration that continues to improve from 4 to 10 weeks. Data shown as means + SEM (range). MSC and
MSC/CD34* HSPC data represent new quantitative assessment for a subset of samples from a previous
study.[7] (B) Sample photomicrographs demonstrate Bl tubulin® (green) neuronal staining (rows 2 and 4,
blue: DAPI, green arrows: regenerated nerves, white arrows: transition between native and regenerated
tissue, R: regenerated tissue, N: native tissue). Masson’s trichrome-stained images are of a serial section of
tissue for each sample (rows 1 and 3; black arrows: transition between native and regenerated tissue). Scale
bar, 200 ym. (Unseeded, MSC and MSC/CD34* HSPC images shown in S2 Fig).

doi:10.1371/journal.pone.0138643.g003

(Fig 3, S2 Fig). Consistent with previous findings, instances of BIII tubulin™ staining represent-
ing peripheral nerves were found in all animals (n = 3 at each time-point) from the MSC/
CD34" HSPC group (15.7+0.9 at 4W; 16.0£1.0 at 10W).

Cyr61KD resulted in a very slight increase over MSCs, with no BIII tubulin® staining at 4
weeks and two of four animals demonstrating minimal staining at the later time- point (Fig 3).
Cyr610X resulted in comparatively robust peripheral nerve regeneration (determined to be
derived from native tissue), with instances of BIII tubulin™ staining in all animals at both time-
points (11.7+0.7 at 4W; 14.7£0.3 at 10W). Regeneration was substantial but less rapid than
MSC/CD34" HSPCs, with lower mean nerve length and maximum nerve regeneration distance
at 4 weeks (39.3+3.4pm vs 55.2+3.7um; 537.0+49.4um vs 1826.0+63.3pum), but similar mean
nerve length and 0.7x maximum nerve regeneration distance by 10 weeks (60.9+4.4um vs 61.1
+1.0pm; 1607.3£13.5um vs 2303.3+200.3pm).

Wnt5a0X also promoted peripheral nerve regeneration, with instances of BIII tubulin®
staining in all animals at both time-points (11.0+1.2 at 4W; 14.8+0.6 at 10W). A strong early
response was observed although the degree of nerve regeneration did not quite reach MSC/
CD34" HSPC levels at 4 weeks (mean nerve length 41.3+2.9um vs 55.2+3.7um; mean maxi-
mum nerve regeneration distance 1035.6+20.7pm vs 1826.0+63.3um). By 10 weeks, mean
nerve length was comparable to MSC/CD34+ HSPCs (64.1+4.5um vs 61.1+1.0um), but maxi-
mum nerve regeneration distance remained reduced (1326.5+277.1pm vs 2303.3+200.3um).

Urothelium Quantification

Previous findings demonstrated that grafts seeded with both MSCs and CD34" HSPCs dis-
played greater urothelium thickness than grafts with MSCs alone [7]. The urothelial layer from
a subset of these earlier cell lines, along with urothelial tissue from the current cell lines, was
examined further to allow quantification of thickness. As expected, mean urothelium width for
MSC grafts was lower than for MSC/CD34" HSPC grafts at both time-points (33.1£1.3um vs
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Fig 4. Effects of Cyr61 and Wnt5a on urothelium growth. (A) Wnt5aOX resulted in mean urothelium width
similar to MSC/CD34" HSPCs. Cyr610X resulted in urothelium width significantly greater than Cyr61KD at
both time points. Cyr61KD and unseeded grafts had the thinnest urothelium. Data shown as means + SEM,;
*P<0.05 and ****P<0.0001 for Cyr61KD vs Cyr610X. Unseeded, MSC and MSC/CD34* HSPC data
represent new quantitative assessment for a subset of samples from a previous study.[7] (B) Sample
photomicrographs demonstrate thickened urothelium with homogenously small nuclei consistent with
urothelial hyperplasia in the Cyr610X and Wnt5aOX groups. Black arrows mark the transition between
regenerated and native tissue. Scale bar, 200 um. (Unseeded, MSC and MSC/CD34* HSPC images shown
in S2 Fig).

doi:10.1371/journal.pone.0138643.9g004

74.3+4.5um, p<0.01 at 4W; 48.6+3.4um vs 73.1+6.0um, p<0.05 at 10W) (Fig 4). A significant
increase in thickness from 4 to 10 weeks was observed only for MSC grafts (33.1+1.3um vs 48.6
+3.4pm, p<0.05). Cyr610X resulted in urothelium width greater than, but within the range of,
MSC at both time-points (40.3£6.3pum vs 33.1+1.3um at 4W; 58.8+0.6um vs 48.6+3.4um at
10W). Cyr61KD resulted in urothelial thickness significantly less than Cyr610X (21.9+1.5um
vs 40.3+6.3um, p<0.05 at 4W; 26.1+2.4um vs 58.8+0.6um, p<0.0001 at 10W), and did not
increase over time; accordingly, at 10 weeks Cyr61KD mean urothelial width was only 0.5x
MSC (26.1+2.4um vs 48.6+3.4pm, p<0.001). Cyr61KD urothelial thickness was similar to
unseeded POC (21.9+1.5um vs 19.5+3.3um at 4W; 26.1+2.4um vs 25.7+4.2um at 10W) (S3
Fig). Wnt5aOX resulted in a pattern of urothelium regeneration similar to that observed in
MSC/CD34" HSPC grafts, with a strong early response but no additional thickening over time
(71.0£5.4um vs 74.3+4.5pm at 4W; 74.9+3.8um vs 73.14£6.0um at 10W).

Urodynamics

Bladder capacity, voiding pressure and compliance (the percentage of bladder filling at lower
than 20 cm H,0) were measured pre- and post-augment. Voiding pressures were consistent
across all time-points and groups. For all groups, mean percent recovery of bladder capacity
was >90% by 4 weeks (percent recovery calculated as [(post-augment capacity—pre-augment
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Fig 5. Effects of Cyr61 and Wnt5a on urodynamics. (A) Data shown as means + SEM (range) for pre- and
post-augment capacity (volume infused prior to first urine leak), voiding pressure (highest pressure at time of
void) and compliance (percentage of bladder volume infused at pressures < 20 cmH,0). By 4 weeks,
Cyr61KD, Cyr610X and Wnt5aOX groups all demonstrated >90% mean percent recovery of pre-augment
bladder capacity [(post-augment capacity—pre-augment capacity)*100]. (B) Representative tracings from
urodynamics evaluation. Voiding pressures averaged 40 cm H,O.

doi:10.1371/journal.pone.0138643.9g005

capacity)*100]). A possible trend toward decreased compliance post-augment was observed
(Fig 5).

Discussion

Efforts to regenerate functional bladder tissue have been met by confounding results in both
basic science and clinical arenas. Although many tissue engineering-based strategies have been
employed to attain this goal, discouraging data from a recent clinical trial would suggest that
alternative strategies must continue to be pursued to meet this great unmet clinical need.[6] A
highly novel study recently performed by our group utilized spina bifida derived bone marrow
MSCs in combination with donor-matched CD34" HSPCs in an attempt to regenerate bladder
tissue in vivo.[7] Although the results from this study demonstrated the unique positive syner-
gistic effects of combining both cell populations with regards to bladder tissue regeneration,
the study mainly evaluated the regeneration of bladder tissue at the macro- and microscopic
levels. Thus, in-depth analyses regarding the elucidation of molecular pathways crucial to blad-
der tissue regeneration were not examined. Within the context of this study, the pro-angio-
genic Cyr61 gene and the pleiotropic Wnt5a gene demonstrated profound effects on multiple
aspects of bladder tissue regeneration in our in vivo model. Specifically, as compared to
Cyr610X grafts, regenerating bladder tissue from Cyr61KD constructs demonstrated greater
collagen accumulation, diminished vasculature, the reduced ability to regenerate peripheral
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nerves, and decreased urothelium width. Conversely, as compared to Cyr61KD grafts,
Cyr610X constructs induced increased bladder smooth muscle and urothelium regeneration
as well as peripheral nerve regeneration. Nonetheless, neither Cyr610X nor Cyr61KD con-
structs achieved levels of tissue regeneration demonstrated by MSC/CD34" HSPC seeded con-
structs with the exception of Cyr610X-stimulated vascular growth at the later time-point.
Contrastingly, Wnt5aOX constructs performed similarly than MSC/CD34" HSPC seeded con-
structs across measures suggesting that the varied role of Wnt5a affects multiple aspects of
bladder regeneration. Urodynamic testing of augmented bladders did not show significant dif-
ferences between Cyr61KD, Cyr610X and Wnt5aOX constructs in several bladder functional
parameters including voiding pressure and capacity. The complicated results observed with the
Cyr61 studies shifts our focus upon the examination of downstream molecular players affected
by Wnt5a signaling in order to gain a better understanding of the molecular landscape involved
in bladder tissue regeneration.

Functional neo-vascularization of primitive tissues undergoing regeneration is a major
obstacle for contemporary tissue regeneration strategies.[7, 46] Cells localized at the center of
large grafts are more likely to experience ischemic cell death given the limitations of oxygen
and nutrient diffusion resulting in subsequent graft failure. The blood vessel growth-promoting
features of Cyr61 have been shown to be essential in a variety of in vivo models including a rab-
bit based model of musculoskeletal regeneration.[50] Frey et al describe the positive effects of
Cyr61 coated scaffolds used to envelope a simulated osteotomy of the rabbit femur. Treated
animals underwent statistically significant increases in callus diameter and increased torsional
strength as compared to controls. The evidently uncomplicated cause and effect relationship of
Cyr61 application seen in the Frey study was not as readily straightforward during the present
study. Cyr61 appeared to play a very complex role in various aspects of bladder tissue regenera-
tion as exemplified by vasculature and muscle quantification data. Tissue vascularization data
suggests there was an approximate 2.5 fold reduction in vessel number when comparing
Cyr61KD constructs to Cyr610X constructs. However, Cyr61KD constructs still maintained a
level of vasculature at both time-points that was able to sustain regenerating bladder tissue.
This may have been attributed to several scenarios including the limited stoichiometric levels
of Cyr61 being produced by these constructs that still met a minimum threshold level to initiate
angiogenesis and maintain post-angiogenic events. It is also plausible that secondary compen-
satory angiogenic mechanisms went into effect, albeit in a mild manner, again to attain mini-
mum levels to promote vessel growth. Multiple redundant mechanisms have been identified
that could initiate angiogenesis and maintain vascular-related events post-angiogenesis.[51,
52] These include VEGF independent and FGF mediated pathways that are evident in solid
tumor development under hypoxic conditions that demonstrate unregulated vessel growth.[51,
53] The seemingly mild effects that Cyr61KD constructs had on vasculature growth were anti-
thetical with regards to bladder muscle and urothelium development. At the terminal time-
point of the study, Cyr61KD constructs contained approximately 75% collagen which is in
complete contrast to normal bladder muscle to collagen ratios that approach 1:1 in a variety of
species.[54] This was accompanied by a morphologically thinner and frail urothelial layer with
a mean width of approximately 25um. This data approaches levels found in unseeded POC
scaffolds in which poor bladder tissue regeneration was observed.[45] The limited levels of
blood vessel regeneration also affected peripheral nerve regeneration in deleterious manner. As
there was no evidence of peripheral nerve regeneration at the initial time-point, scant levels of
peripheral nerve tissue became apparent by 10 weeks but had no statistical difference compared
to unmanipulated MSC constructs. As blood vessels are typically located within close proxim-
ity to nerves in order to serve as a nutrient source, [55, 56] it is not surprising that there was a
poor peripheral nerve regenerative response within these constructs.
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Cyr610X constructs, on the other hand, exceeded vasculature and peripheral nerve regener-
ation parameters demonstrated in previous MSC-seeded groups and even surpassed vascula-
ture levels at 10 weeks that were similar to peak 4 week levels attained by MSC/CD34" HSPC
constructs. Despite this, the over-expression of Cyr61 resulted in unorganized, highly tortuous
vessels similar to those seen in developing solid tumors that were leaky in nature and led to the
formation of hematomas throughout the bladder.[57, 58] The lack of structural integrity of the
blood vessels may have been caused by the dissolution of the tight junctions between cells
mediated by Angl and Syx, for example, thus negatively affecting the proper function of the
vessels.[59] Surprisingly, our observations regarding vascularity and peripheral nerve regenera-
tion did not coincide with statistically relevant functional gains as measured by urodynamics.
The lack of functional differences may result from the small size of the graft, where even sub-
optimal angiogenesis could be adequate to prevent central graft ischemia and/or that the
remaining native bladder tissue was resilient enough to maintain normal bladder function.
Cyr61 data taken as a whole would suggest that more studies are required to decipher its role in
bladder tissue regeneration.

nt5a signaling independent of B-catenin involvement plays numerous roles ranging from
organ system genesis and development to the modulation of cell planar polarity to aspects of
stem cell regulation throughout the lifespan of many organisms.[60-63] Over-expressing Wnt5a
constructs utilized in our studies were able to reconstitute several pivotal bladder tissue compo-
nents including vasculature, smooth muscle content, urothelium and peripheral nerves in blad-
der tissue undergoing regeneration. Quantitative data exemplifying the regenerative potential of
Wnt5aOX constructs with regards to aforementioned tissues rivaled those that were previously
described in MSC/CD34" HSPC seeded constructs used for augmentation. Regenerated blood
vessels were patent, appeared to sustain blood flow as demonstrated by capillaroscopy, and could
be grossly described as a widely distributed meshwork of blood vessels encompassing regenerated
bladder tissue. There was no evidence of blood vessel leakiness as experienced with Cyr610X
constructs while the tortuosity of the vessels, which is indicative of angiogenesis, was observable
to a lesser degree than those found in Cyr610X constructs. Intriguingly, our previous studies
support the notion that Wnt5a plays a role in the angiogenic response within our bladder regen-
eration model. The MSC/CD34" HSPC seeded grafts express Wnt5a in the proximity of blood
vessels undergoing angiogenesis, with concurrent expression of its receptor, Fzd4, on the vascula-
ture itself.[29] As Wnt proteins have been shown to function in a paracrine fashion in a dose-
dependent manner, it may be plausible to surmise that a concentration gradient of Wnt5a could
have been established during this regenerative process providing stimulus for vessels to grow and
develop. Unfortunately, due to the inability to create a functional Wnt5aKD construct, a true
head-to-head comparison against Wnt5aOX constructs could not be achieved. The failure of
Wnt5aKD MSCs to thrive in vitro is hardly surprising as other studies have shown the require-
ment of Wnt5a ranging from the cellular to organismal levels. This is clearly demonstrated by
the absence of Wnt5a expression which is perinatal lethal in homozygous null knockout mice
while heterozygous counterparts suffer from severe malformations at the gross and microscopic
levels in heterozygous counterparts. [64, 65]

The interior lumen of the bladder is lined with urothelium, a unique tissue which protects
the bladder from urine and multiple urogenic pathogens.[66, 67] We observed that Wnt5a0X
constructs demonstrated the greatest urothelial thickness which was comparable to that
observed in the previously described composite MSC/CD34" HSPC grafts. This could have
implications in the clinical setting where larger grafts may require more robust urothelium
regeneration both in order to protect the regenerating tissue at the geographical center of the
grafts and to minimize the risk of urine leaking into the abdominal cavity, a significant source
of morbidity seen in a recent clinical trial of autologous bladder cells seeded onto a scaffold and
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used to augment native bladder tissue.[6] Normal human urothelium is 24 cells thick if
stretched and 4-7 if contracted. In clinical practice, thickened urothelial lesions can be non-
malignant as is the case with urothelial hyperplasia where the urothelium is thickened due to
an increased number of normal cells with normal organization and homogeneous small nuclei.
In contrast, urothelial carcinoma is characterized by a thickened urothelium exhibiting disor-
ganized cells, large hyperchromatic nuclei and multiple mitotic figures. In all groups, we
observed normal sized urothelial cells with accompanying nuclei and normal organization
leading us to believe that the thickened urothelium seen in the Cyr610X, Wnt5a0OX, MSC, and
MSC/CD34" HSPC groups was secondary to urothelial hyperplasia as compared to hypertro-
phy or carcinoma in situ. While thicker urothelium has no clinical advantage in a normal blad-
der, a more robust urothelial regenerative response is likely to be clinically important in
regenerative medicine where the normal urothelial regrowth is unable to reach the center of
the grafts. The ability to improve urothelial coverage over the entire graft is vital given that this
barrier reduces the likelihood of a urine leak. Urine penetrating the graft is not only toxic for
seeded cells but causes significant clinical morbidity.[6]

Interestingly, our findings are in contrast with studies performed by Mysorekar et al with
regards to Wnt5a signaling in urothelial regeneration. Data from their study demonstrate that
the highly restricted expression of endogenous Wnt5a initiates urothelium regeneration.[68] Fol-
lowing the infection of mice with FimH" uropathogenic E. coli (UPEC), the virulent bacteria
attached to the urothelium via FimH adhesin and triggered the rapid differentiation of basal and
intermediate urothelial cells into terminally differentiated umbrella cells. These events occurred
in concert with the diminished expression of the Ca** dependent Wnt5a signaling cascade sug-
gesting Wnt5a may be a checkpoint gene with regards to urothelial differentiation. This may be
attributed to several factors including the mechanism in which regeneration was initiated and
subsequently achieved. In the Mysorekar study, FimH" UPEC was the insulting factor that pro-
vided the stimulus for regeneration following cell exfoliation while our study utilized a specifically
created surgical defect combined with genetically modified cells. The different modes of urothe-
lial injury and regeneration should be further investigated as this could have significant clinical
impact in the bladder replacement or augmentation setting. Secondly, the roles of other Wnt
genes have also been implicated in urothelium regeneration. Shin et al describe the role of the
Wnt/Shh signaling pathway in an UPEC induced bladder injury model.[69, 70] However, those
studies implicated the roles of Wnt2 and Wnt4 suggesting their ability to influence urothelial
regeneration as mediated through the adjacent stroma. Interestingly, Wnt2 serves as the ligand
for Fzd4 receptor similar to Wnt5a and may function in an analogous manner in this situation.
[71,72] To our knowledge, this is the first study that describes the pleiotropic effects of Wnt5a
and its direct relationship to multiple aspects of bladder tissue regeneration that include blood
vessels, peripheral nerve, smooth muscle and urothelium in a bladder augmentation model.

Our findings suggest that MSC-based bladder tissue regeneration is impacted by the modi-
fied expression of Cyr61 and Wnt5a. However, the complicated results attained with Cyr61
constructs pose a dilemma as to whether the application of this protein would actually be rele-
vant in a clinical setting. Furthermore, modulating the concentration and/or timing of Wnt5a
expression will be important for optimizing tissue regeneration. As the previous use of a sim-
plistic biodegradable scaffolds combined with a pathological cell source proved ineffective in
clinical trials, future strategies for tissue-engineered bladder need to be re-evaluated with
regards to the underlying cell sources along with scaffold design and implementation. Finally,
the number of cells and cell types used should also be taken into consideration when making
comparisons between MSC, MSC/CD34+ HSPC, and the genetically modified cell groups. The
addition of the CD34+ HSPC population to the constructs provides not just a source of cyto-
kine, namely Wnt5a, but a battery of other factors that could affect regeneration. The goal of
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this study was to determine the role of Wnt5a and its effects on bladder regeneration. Altering
the number of CD34+ HSPCs may provide a different landscape in the regenerative process
and is the subject of future studies.

Conclusion

Within this study, we have demonstrated that both Cyr61 and Wnt5a are potent extracellular
signaling molecules whose expression directly influences several salient features of bladder tis-
sue regeneration. Coerced expression of Wnt5a in grafted MSCs closely mimicked the previ-
ously encouraging findings observed with MSC/CD34" HSPC co-transplantation. The
elucidation of the role of Wnt5a during this regenerative process may represent a putative
mechanism by which implanted CD34" HSPCs interact with MSCs to improve multiple out-
come parameters. This further suggests that Wnt5a may act in lieu of CD34" HSPCs and opens
up the realm of possibilities with regards to the in vivo delivery of Wnt5a, be it by functiona-
lized scaffolds or nanoparticle systems.

Supporting Information

S1 Fig. Representative photomicrographs of regenerated vasculature and musculature of
unseeded, MSC (unmanipulated) and MSC/CD34" HSPC grafts (similar to previously
reported [7]). Photomicrographs demonstrate that at 4 weeks MSC/CD34" HSPC grafts had
mean muscle content 1.4x MSC grafts and 2.9x unseeded grafts, with a greater number of ves-
sels/mm? and higher percent vasculature (data previously reported [7]). Scale bar, 50 um.
(TIF)

S2 Fig. Representative photomicrographs of regenerated peripheral nerves of unseeded,
MSC (unmanipulated) and MSC/CD34" HSPC grafts (similar to previously reported [7]).
Unseeded grafts at 4 and 10 weeks and MSC grafts at 4 weeks had no identified peripheral
nerve regeneration. MSC/CD34" HSPC grafts demonstrated increased early and robust nerve
regeneration with BIII tubulin (green) neuronal staining (rows 2 and 4, blue: DAPI, green
arrows: regenerated nerves, white arrows: transition between native and regenerated tissue, R:
regenerated tissue, N: native tissue). Masson’s trichrome-stained images are of a serial section
of tissue for each sample (rows 1 and 3; black arrows: transition between native and regener-
ated tissue). Scale bar, 200 pm.

(GIF)

S3 Fig. Representative photomicrographs demonstrating urothelium regrowth of
unseeded, MSC (unmanipulated) and MSC/CD34" HSPC grafts (similar to previously
reported [7]). Photomicrographs demonstrate unseeded grafts with significantly thinner
urothelium overlying regenerated tissue. Black arrows mark the transition between regenerated
and native tissue. Scale bar, 200 um.

(GIF)

S1 File. Capillaroscopy of in vivo bladder tissue demonstrating blood flow through blood
vessels that have undergone angiogenesis.
(MP4)
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