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Abstract: Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in
wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering
using compressive sensing only considers either multi-hop relaying based or multiple random walks
based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection
and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm
with delayed acceptance, an improved random walk algorithm for a mobile collector to collect
data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for
spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal
compressive measurements from a small subset of randomly selected nodes along a random routing
path. More importantly, from the theoretical perspective we prove that the equivalent sensing
matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy
the property of KCS models. The simulation results demonstrate that the proposed scheme can not
only significantly reduce communication cost but also improve recovery accuracy for mobile data
gathering compared to the other existing schemes. In particular, we also show that the proposed
scheme is robust in unreliable wireless environment under various packet losses. All this indicates
that the proposed scheme can be an efficient alternative for data gathering application in WSNs.

Keywords: compressive sensing; mobile data gathering; machine learning theory; random walk;
Gaussian kernel; wireless sensor networks

1. Introduction

Wireless sensor networks have been widely deployed in a variety of applications including
environmental monitoring, traffic surveillance and social sensing and analysis [1–4]. In such networks,
data gathering is one of most fundamental tasks, where a large amount of sensory data is required to
be transmitted to a fusion center (FC). However, owing to power limitation and resource constraints
of sensor nodes, it is impractical for them to directly transfer all of data to the FC without any
dimensionality reduction. Since sensory data collected in many scenarios intrinsically exhibits
spatial-temporal correlations, some conventional data gathering schemes have been proposed to
reduce energy consumption of data transmissions [5–8]. Recently, compressive sensing provides a new
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approach for data gathering applications in WSNs, which allows for the original signal recovery from a
small number of measurements as long as the signal can be sparsely represented in a certain transform
domain [9]. Compressive sensing is able to perform sensing and compression simultaneously to
reduce the amount of data transmitted over the network so as to save energy consumption at each
sensor node.

Various compressive sensing based approaches have been investigated for efficient data gathering
in WSNs [10–27]. However, most of the current CS-based data gathering schemes try to exploit either
spatial or temporal correlation among nodes. Thus, the performance improvement brought by CS
is limited. Considering many sensor network applications in practice especially in environmental
monitoring, sensory data are usually periodically collected for a long time. Thus, the temporal
correlation at each sensor node can be further exploited. Consequently, one can take full advantage of
both spatial and temporal correlations to further improve the data gathering performance.

Recently, some CS-based data gathering schemes have been proposed to exploit both spatial
and temporal correlations of sensory data in WSNs [28–32]. (See Section 2 for more discussions.)
For example, Mahmudimanesh et al. proposed a balanced temporal-spatial CS scheme by applying
a joint sparsity model to improve the reconstruction accuracy of the spatial-temporal profile of
WSNs [28]. Quer et al. proposed an effective framework for data gathering to exploit spatial and
temporal correlations by jointly using CS and Principle Component Analysis (PCA) [29]. These two
schemes above mainly utilize the spatial-temporal correlation characteristic of the signal in the
recovery algorithm to improve the reconstruction accuracy. Xu et al. proposed a spatial-temporal
hierarchical data aggregation scheme using compressive sensing, where a subset of nodes is randomly
selected to collect the corresponding subset data at each data collection instant and then matrix
completion algorithm is applied to reconstruct all the data of the entire network [30]. In this scheme,
some specific nodes or cluster heads are designated to forward data to the FC, which inevitably
leads to unbalanced energy consumption. Wang et al. proposed a data gathering scheme based on
Kronecker compressive sensing theory by exploiting both temporal and spatial sparsity of sensory data
to improve reconstruction accuracy [31]. In this scheme, for each data gathering period, only a subset
of nodes is randomly selected to transmit their CS measurements to the FC.

Mobile data gathering has also attracted much attention in the past few years, where one or more
mobile collectors are designated to take responsibility for collecting data from sensor nodes [33–38].
The reason to use mobile collector(s) for data gathering is to reduce energy expenditure at each node.
Since a mobile collector can come closely to a node for data collection, it is not necessary for a node to
use a powerful transceiver to communicate with the mobile collector. Instead, a node only needs to wait
for the mobile collector to get close enough, which can significantly reduce power for communication.
Furthermore, it is also not necessary for all of nodes to maintain the connectivity of an entire network
since they only need to communicate with the mobile collector(s) instead of with the other nodes.
Due to the merits of mobile data gathering, the mobility pattern combining with compressive sensing
has been exploited for data gathering in several works [24–27,39–41]. However, previous work above
does not exploit spatial-temporal correlation of sensory data.

In this paper, we propose a novel mobile data gathering scheme by exploiting spatial-temporal
correlation of sensory data to improve the performance of energy consumption and signal recovery
quality in WSNs. The contributions of this paper are summarized as follows.

• We propose a data gathering scheme using the Metropolis-Hastings algorithm with delayed
acceptance (MHDA), a random walk algorithm for a mobile collector to collect data from sensor
nodes. In this scheme, the mobile collector only needs to collect temporal CS measurements from
a subset of nodes by sequentially visiting these nodes along a random routing path. Unlike [26,27]
which need to perform multiple random walks to obtain random projections, the mobile collector
takes only one random walk to collect measurements from nodes, which can significantly reduce
the cost of data transmissions and improve energy efficiency. On the other hand, instead of
using a standard random walk as [41], we adopt an improved Metropolis-Hastings algorithm
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as a mobility pattern which results in more uniform sampling distribution to improve signal
reconstruction accuracy.

• We prove that the sensing matrix for spatial dimensional signal which is constructed from the
proposed random walk algorithm and a kernel-based sparsity representation basis satisfies the
Restricted Isometry Property (RIP). We also exploit KCS for spatial-temporal correlation of sensory
data to improve the compression performance and prove that the equivalent sensing matrix for
spatial-temporal dimensional signal can satisfy the property of KCS models.

• We also show that the proposed scheme is robust to the packet loss environment. We present
simulation results to demonstrate that the proposed scheme is able to not only reduce
communication cost but also improve recovery accuracy for mobile data gathering compared to
some existing schemes.

The remainder of this paper is organized as follows. In Section 2, we introduce the related work.
In Section 3, the preliminaries on CS basics and system model are given and the problem is formulated.
In Section 4, we present a random walk algorithm with CS for mobile data gathering and the design
for measurement matrix and sparsity representation basis. In Section 5, we give theoretical analysis
and the performance analysis for the proposed scheme. In Section 6, we conduct extensive simulations
to evaluate the performance of the proposed scheme. Finally, we draw a conclusion and discuss our
future work in Section 7.

2. Related Work

In the past few years, much research work has been done to investigate the efficiency of
compressive sensing for data gathering in WSNs [10–16]. For example, Luo et al. proposed a
CS-based data gathering scheme for large-scale sensor networks. The goal of this work is to improve
network capacity by alleviating the bottleneck effect of the sink. On the other hand, there are much
work dedicated to improve the energy efficiency of data gathering by employing CS technique [10].
For instance, Xiang et al. also proposed a data gathering scheme to improve energy efficiency, where the
entire network is partitioned into subnetworks and CS is employed within each subnetwork for data
gathering [12]. Zhao et al. proposed a treelet-based clustered data gathering scheme to save energy
expenditure, where a treelet transform is adopted as a sparsity representation basis and then CS is
applied in conjunction with a clustered routing algorithm [16]. Furthermore, another research line for
improving energy efficiency of data gathering by using CS is to design sparse random measurement
matrices [19–22]. For instance, Zheng et al. designed a new type of random measurement matrix
by using random walk algorithm for data gathering which follows the theory of expander-based
compressive sensing [21]. Liu et al. proposed a non-uniform sparse random matrix by constructed
from an opportunistic routing algorithm [22]. Meanwhile, Nguyen et al. exploited an integration
between CS and the random mobility of sensors in distributed mobile sensor networks [26,27,39].
In their work, a small number of mobile sensors are utilized to collect data at their random positions
and exchange their readings with their neighbors within the sensor transmission range to form one CS
measurement. Rana et al. proposed a method for the mobile nodes to adaptively predict the number
of projections based on the speed of the mobile nodes and compute a deterministic projection matrix
from a learnt dictionary [40]. However, the aforementioned work only considers spatial correlation of
sensing field by using CS.

Recently, some work has been dedicated to exploiting both spatial and temporal correlations
of sensory data to improve the performance of data gathering in WSNs. For example,
Mahmudimanesh et al. proposed a balanced temporal-spatial CS scheme by applying a joint sparsity
model to improve the reconstruction accuracy of the spatial-temporal profile of WSNs [28]. Quer et al.
propose an effective framework for data gathering by exploiting spatial and temporal correlations
jointly using CS and Principle Component Analysis (PCA), where they develop a sparse sampling
matrix [29]. Different from their work, we study on how to collect temporal-spatial sensory data with
a mobile collector whereas they focus on improving the recovery quality on the reconstruction side
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by exploiting spatial and temporal correlations using PCA. Xu et al. proposed a spatial-temporal
hierarchical data aggregation scheme using compressive sensing, where a subset of nodes is randomly
selected to collect the corresponding subset data at each data collection instant and then matrix
completion algorithm is applied to reconstruct all the data of the entire network [30]. In their work,
they adopted a multi-level clustering fashion to collect spatial-temporal data. Since random projections
are forwarded to the FC along the tree, any packet loss at some specific nodes or cluster heads during
transmission will results in the loss of previously calculated random projection. Thus, the value of
random projection obtained at the FC is inaccuracy. Consequently, such an approach is susceptible
to packet loss. Wang et al. proposed a data gathering strategy based on KCS theory by exploiting
both temporal and spatial sparsity of sensory data to improve reconstruction accuracy [31]. Li et al.
proposed a CS-based data gathering algorithm which utilize random sampling and random walks to
select sensory data in temporal and spatial domains [32]. In their work, each projection is obtained
by summing the received measurements and the sensing matrix is designed based on the adjacency
matrix of an unbalanced expander graph. Different from the above work, we exploit the mobility
pattern for spatial-temporal data collection, where it allows the mobile collector to gather data by
sequentially visiting a subset of nodes, thus significantly reducing energy expenditure of sensor nodes.
Furthermore, in our scheme a projection is generated from only one sensor node instead of a linear
combination of the measurements from multiple nodes.

3. Preliminaries and Problem Formulation

3.1. Compressive Sensing Basics

Compressive sensing provides a new paradigm for signal sampling and compression. CS theory
asserts that a sparse or compressible signal can be reconstructed with high probability from a small
number of measurements, which is far smaller than the length of the original signal. For example,
consider an n-dimensional signal vector x = (x1, . . . , xn)T . We say that x is a k-sparse signal if there
are at most k(k� n) nonzero elements in x.

To reduce the dimensionality of x, CS applies a measurement matrix Φ ∈ Rm×n onto x to obtain
an m-dimensional signal y ∈ Rm. The measurement matrix Φ can be a Gaussian or Bernoulli random
matrix which follows the restricted isometry property (RIP) [42]. CS theory states that the k-sparse
signal x can be accurately recovered with high probability from m = O(k log(n/k)) linear combinations
of measurements y. It has been proven that recovering the signal x from y can be achieved through
solving an `1-minimization problem [43]:

min
x∈<n

‖ x ‖`1
s.t. y = Φx. (1)

However, the signals existing in nature, such as temperature and humidity, are not perfectly
k-sparse as they may have k large transform coefficients while the remaining coefficients are small.
Suppose that the signal x can be represented Ψ = (ψ1, . . . , ψn) as

x = Ψθ =
n

∑
i=1

θiψi, (2)

in an n× n orthogonal basis Ψ, where θ = (θ1, . . . , θn)T is the transform coefficients of x in the basis Ψ.
We reorder the coefficients θi in decreasing magnitude such that

|θ1| ≥ |θ2| ≥ |θ3| ≥ . . . ≥ |θn|. (3)

We say that the signal x is a power-law decay signal in the basis Ψ if for some fixed p, the ith
largest transform coefficient satisfies

|θi| ≤ Ri−1/p, R > 0, p ∈ (0, 1] (4)
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for each 1 ≤ i ≤ n, where p controls the compressibility of the transform coefficients (i.e., a smaller p
implies faster decay) and R is a constant. The best k-term approximation of x (obtained by keeping the
k largest coefficients and setting the others to zero) is given by x̂k = ∑k

i=1 θiψi, where 1 ≤ k ≤ n is fixed.
We say that x is compressible in Ψ when the mean squared approximation error behaves like

‖x− x̂k‖2
2 ≤ CrR2k−r, r = 2/p− 1, (5)

for some fixed constant Cr > 0 that only depends on p, where the parameter p controls the
compressibility of x in Ψ. CS theory states that the compressible signals can also be optimally
recovered from m = O(k log(n/k)) random measurements with high probability [42] through solving
an `1-minimization problem [43]:

min
θ∈<n

‖ θ ‖`1
s.t. y = Φx, x = Ψθ. (6)

3.2. System Model

We consider a multi-hop wireless sensor network for data gathering, which consists of n sensor
nodes N = (1, . . . , n) and one mobile collector C. We assume that the sensor nodes are deployed
uniformly and randomly in a unit square area to periodically sample spatial-temporal data from a
sensing field. Suppose that the ith sensor node takes m readings for every sensing period T at a certain
sampling speed in a data gathering tour, which is denoted as a signal vector xi = (x1,i, x2,i, . . . , xm,i).
In this paper, we model the WSN as a random geometric graph G(V , E), where V is a set of vertices
representing the sensor nodesN and E is a set of edges representing the links among the sensor nodes.

Consider a mobile collector roaming over the graph G. The mobile collector can be a physical
mobile agent (e.g., data mule) [44]. We assume that the mobile collector can visit a sensor node to
collect data at time t and then moves to one of its neighbors within its detection range r(n) at time t + 1.
The detection range is defined as the maximal distance that the mobile collector can move in each time
slot. Figure 1 illustrates an example of collecting sensory data in a WSN. In this work, sensory data
collected by the mobile collector at each node comes from the compressive temporal measurements of
a node in a sensing period.

r(n)

 !"#$%&'$(! )$*+,!&-$,,!./$%  !"#$%0&12/2

32"($4&52,6&72/8 1!/!./+$"&32"9!

Figure 1. An example of data collection with a mobile collector in a WSN.

A similar model for mobile data gathering in WSNs was adopted in [37]. We assume that there is
an edge between two sensor nodes if the Euclidean distance between them is smaller than the distance
r(n). One of the merits to use the mobile collect is due to the fact that it does not need to equip with a
powerful transceiver to communicate with sensor nodes. Instead, the mobile collect can roam closely



Sensors 2017, 17, 2575 6 of 22

to sensor nodes (much smaller than r(n)), which can also significantly reduce energy budget at each
sensor node.

3.3. Problem Formulation

In this paper, we assume that the sensory data exhibits both spatial and temporal correlations,
which is typical for most environmental monitoring applications in a densely deployed WSN.
Let D ∈ Rm×n represent spatial-temporal sensory data collected by n sensor nodes in every sensing
period T, where the ith column of D is data vector sampled by the ith sensor node during the sensing
period T and the jth row of D is data vector sensing by n sensor node at a sampling instant Tj. We also
assume that the signal D is sparse in both spatial domain Ψs and temporal domain Ψt. It has been
proven that by using a certain type of sparse projection matrix the information of the entire sensing
field can be approximately reconstructed from only a small fraction of randomly selected sensor nodes
from the perspective of CS theory [23]. As discussed above, if these random selected sensor nodes
directly transmit their data to the FC through multi-hop, it will consume a large amount of energy
budget. Therefore, in this paper we consider a random walk based strategy for the mobile collector to
travel over the graph G to collect spatial-temporal data from a small subset of sensor nodes. We tackle
the following problems: (1) What is the appropriate movement strategy (i.e., the transition probability
of a random walk ) for the mobile collector so that the sensing field can be reconstructed from a small
fraction of sensor nodes? (2) How many nodes and how many measurements at each node should
be collected in a data gathering period? (3) How many steps for the mobile collector should take to
collect these measurements in a data gathering period?

4. Design of a Mobile Data Gathering Scheme with Compressive Sensing

4.1. Spatial-Temporal Data Gathering with Random Walk

In this section, we propose a random walk based scheme for spatial-temporal data gathering in a
WSN. In every period T of data gathering, after sampling m measurements, each sensor node applies
CS to compress temporal sensory data using a random projection matrix Ψt, i.e., yi = Ψtxi, where yi is
the random projections of the ith sensor node and Ψt ∈ Rmt×m can be a Gaussian or Bernoulli random
matrix. We now describe how to employ mobile collector with a random walk algorithm to gather
random projections from a fraction of sensor nodes. We adopt an improved Metropolis-Hastings
random walk algorithm (MHRW), named Metropolis-Hastings random walk algorithm with delayed
acceptance (MHDA) [45]. The MHDA algorithm not only achieves a uniform stationary distribution
for the mobile collector to unbiasedly visit sensor nodes but also improves efficiency comparing with
the traditional MH algorithm. Specially, under the MHDA algorithm, the mobile collector reduces the
bias of visiting previous nodes when choosing its next step. Different from MHRW, MHDA avoids
the random walk to backtrack to the previous visited node. The idea using the MHDA algorithm for
mobile data gathering is described as follows. At the beginning of the algorithm, the mobile collector C
randomly selects one of sensor node i ∈ N to invoke a random walk with the length t = 0 and collect
random projections yi from node i. At time t, the mobile collector C chooses a node j uniformly at
random from its neighbors of the current visited node u within its detection range r(n) to visit. MHDA
considers two scenarios for the mobile collector to harvest data when it selects the next step. Let Yt and
k be the previous visited node and the next node to be visited, respectively. First, if j is the previously
visited node Yt, then the walk will stop going to j and the transition to node j is delayed. Instead,
it will go to another node k ∈ N(u) \ {j} with another proposal probability 1/(d(u)− 1), where N(u)
is the set of the neighbor nodes of u and d(u) denotes the degree of node u. The proposed transition to
k is then accepted with another acceptance probability [45]

A′(u, k) = min{1, min{1, (
d(u)
d(k)

)2}max {1, (
d(j)
d(u)

)2}}. (7)
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It has been proved in [45] that when the acceptance probability A′(u, k) is chosen as the
condition in Equation (7) then the transition matrix P = [P(i, j)] of the random walk is irreducible
and non-reversible with a unique stationary distribution and leads to the unbiased estimator.
Second, if k 6= Yt, then the walk will go to k to collect data as in the traditional MHRW algorithm.
The proposed state transition to k is accepted with an acceptance probability A(u, k) = min{1, d(u)

d(k) }.
Figure 2 shows two scenarios for MHDA algorithm. At each time, when the walk visits a new node,
the node sends its random projections to the mobile collector and increments the length t. When t
reaches a given quantity, then the mobile collector C stops the algorithm and performs the CS recovery
algorithm. The procedure of the mobile collector employing the MHDA algorithm is summarized
in Algorithm 1.

u

k

r(n)

A'(u, k)

u

j=k

r(n)

A(u, k)

!4#(j= Yt !,#(j Yt

j=Yt Yt

Figure 2. Illustrating two scenarios for MHDA algorithm. (a) The next node j is the previous visited
node Yt; (b) The next node j is not the previous visited node Yt.

In the proposed scheme, it requires accurate location information of sensor nodes to help the
mobile collector to find the nodes to be visited at each step. On the other hand, these location
information is also needed to construct Gaussian kernel basis required for the recovery algorithm.
Generally, there are mainly two categories to obtain location information in WSNs: range-free
and range-based approaches. Range-free approaches provide imprecise estimation of the node
location, which mainly rely on connectivity measurements (e.g., hop count), whereas range-based
approaches provide more precise location estimation by measuring the Euclidean distances among the
nodes with various ranging techniques such as TOA (time of arrival), TDOA (difference of arrival),
AOA (angle of arrival) and RSSI (received signal strength indicators). One also can combine range-free
and range-based approaches to improve the localization accuracy [46]. On the other hand, for an
outdoor environment, the mobile collector can be equipped with a GPS module to obtain the location
information. With the location information, the mobile collector can get closely to a node for data
collection. For the recovery algorithm of CS, the mobile collector should know which nodes have been
visited. Thus, the additional overhead for the mobile collector only needs to contain the corresponding
indices of the nodes to indicate which nodes have been visited. We also note that this overhead does
not increase with the size of sensory data collected by the mobile collectors and only depends on the
number of sensor nodes in the network. For example, in practice, we only need one bit for each sensor.
Therefore, the additional overhead for the random walk is very small compared to the size of data
sensory collected by the mobile collector, which can be neglected.
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Algorithm 1 The MHDA random walk algorithm for mobile data gathering at time t.

1: Select a node j uniformly at random from neighbors of u, i.e, N(u)
2: Generate a uniform random probability p ∈ [0, 1]
3: if p < min{1, d(u)/d(j)} then

4: if node j is the previous node Yt (i.e., Yt = j) and d(u) > 1 then

5: select a node k uniformly at random from neighbors N(u) \ {j}
6: Generate a uniform random probability q ∈ [0, 1]
7: if q < min{1, min{1, (d(u)/d(k))2}max {1, (d(j)/d(u))2}} then

8: C visits node k and collects random projections yk from node k
9: Bt+1 = Bt ∪ yk and Yt+1 ← i

10: else

11: C visits node j and collects random projections yj from node j
12: Bt+1 = Bt ∪ yj and Yt+1 ← j
13: end if
14: else

15: C visits node j and collects random projections yj from node j
16: Bt+1 = Bt ∪ yj and Yt+1 ← j
17: end if
18: else

19: Stay at node u and Yt+1 ← Yt
20: end if

4.2. Random Measurement Matrices Design

In this section, we study the random matrices used in the proposed scheme. As discussed above,
the random matrix Φt for temporal data can be a Gaussian or Bernoulli random matrix. In the following,
we study the random matrix constructed from the MHDA algorithm. Let Φs be an ms × n boolean
random matrix. Each row of Φs contains only one nonzero element, i.e., “1”, which denotes that the
corresponding sensor node has been visited by the mobile collector. For example, Φs(i, j) = 1 denotes
that node j is the ith node visited by the walk. Then each element of Φs can be expressed as follows

Φs(i, j) =

{
1, j ∈ Vi
0, otherwise.

(8)

where Vi is the set of the vertices which is the ith visited node by the mobile collector.

4.3. Spatial-Temporal Sparsity Representation Bases Design

Due to spatial-temporal correlation of sensory data, we consider a two-dimensional sparsity
representation basis to sparsify a sensing field. For time-series sensory data from one sensor node,
we adopt DCT transform basis Ψt to compress these data in temporal domain. For spatial correlation
of sensory data, we use a kernel-based method to sparsify a sensing field as in [41]. A two-dimensional
Gaussian kernel function is adopted to construct a transform basis in spatial domain as follows

K(µi, µj) = e−
‖µi−µj‖

2

2ω2 , (9)
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where µi ∈ R2 represents the coordinates of node i following an i.i.d. sample with uniform distribution
on [0, 1]2. ‖µi− µj‖ = dij represents the distance between node i and node j. We assume these distances
are known. As a result, the corresponding kernel matrix Kn can be expressed as follows

Kn =



e−
d2

11
2ω2 e−

d2
12

2ω2 · · · e−
d2

1n
2ω2

e−
d2

21
2ω2 e−

d2
22

2ω2 · · · e−
d2

2n
2ω2

...
...

...
...

e−
d2

n1
2ω2 e−

d2
n2

2ω2 · · · e−
d2

nn
2ω2


. (10)

We adopt a centered version of the kernel matrix where data is centered in the feature space.
Each entry K̃ij of the centered kernel matrix K̃n is given as [47]

K̃ij = Kij −
1
n

n

∑
l=1

Kl j −
1
n

n

∑
l=1

Kil +
1
n2

n

∑
l=1

n

∑
m=1

Klm, (11)

where Kij is the entry of the uncentered kernel matrix Kn. We then diagonalize the kernel matrix K̃n as
K̃n = ΨΛΨ−1, where Ψs is an orthonormal eigenvector basis, Λ is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues of K̃n. In this paper, we use Ψs as a representation basis to
sparsify sensory data in spatial domain.

4.4. Reconstruction Algorithm of Spatial-Temporal Data

Let xi = (x1,i, x2,i, . . . , xm,i) denote the measurement vector taken by node i and x ∈ Rm×n

represent the matrix of all the measurements sampled by n nodes. Hence, x can be represented as a
2-D signal. In this work, we employ the framework of KCS for spatial-temporal sensory data [48].

As aforementioned, we use Ψs and Ψt as the sparsifying bases for spatial and temporal
domain data, respectively. According to the theory of KCS, a single sparsifying basis for an entire
multidimensional signal can be obtained by the Kronecker products of sparsifying bases for each
dimensional signal [48]. Then, a single sparsifying basis for x can be obtained as Ψ̄ = Ψs ⊗Ψt, which is
defined as

Ψ̄ :=

 Ψt(1, 1)Ψs . . . Ψt(1, m)Ψs
...

. . .
...

Ψt(m, 1)Ψs . . . Ψt(m, m)Ψs

 . (12)

Hence, x can be represented as x′ = Ψ̄θ, where x′ is a vector-reshaped representation of x and θ is
the vector of transform coefficients of x′.

Similarly, we can also use Kronecker products to develop measurement matrices. As discussed
above, at each sensor node the matrix Φt is used to obtain its individual compressive measurements
and the matrix Φs is used to obtain compressive measurements of all the sensor nodes, which is a
boolean random matrix. Hence, the joint measurement matrix can be expressed as Φ̄ = Φs ⊗ Φt

as follows

Φ̄ :=


Φt 0 0 . . . 0
0 0 Φt . . . 0
...

...
...

. . .
...

0 0 0 . . . Φt

 , (13)

where 0 represents a matrix with all entries being 0.
Suppose that the compressive measurements obtained at the sink are denoted as

Y = (yT
1 yT

2 . . . yT
ms)

T where ms is the number of the nodes visited by the mobile collector. The data
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obtained by the sensor nodes is denoted as X = (xT
1 xT

2 . . . xT
n )

T . Then, recovering the signal X from
compressive measurements Y can be conducted by solving the following `1-minimization problem:

min ‖ θ ‖`1
s.t. Y = Φ̄Ψ̄θ, X = Ψ̄θ. (14)

5. Algorithm and Performance Analysis

In this section, we first prove that the random CS matrix A = Φ̄Ψ̄ constructed from the
proposed spatial-temporal data gathering scheme with the MHDA algorithm and the spatial-temporal
representation basis Ψ̄, follows the RIP. Then, we analyze the performance of the proposed scheme in
terms of the actual number of steps that the mobile collector needs to take during a data gathering tour.

5.1. Algorithm Analysis

We now prove the following lemma stating that the random CS matrix A = Φ̄Ψ̄ follows the RIP
with the following bounds of restricted isometry constants. The restricted isometry constant is defined
as follows:

Definition 1. The K-restricted isometry constant δ for the matrix A = Φ̄Ψ̄ is the smallest nonnegative number
such that, for all θ ∈ RN with ||θ||0 = K

(1− δ)||θ||22 ≤ ||Aθ||22 ≤ (1 + δ)||θ||22 (15)

Lemma 1. Let Φ̄s = ΦsΨs, Φ̄t = ΦtΨt and A = Φ̄Ψ̄, where Φ̄ = Φs ⊗Φt, Ψ̄ = Ψs ⊗ Ψt. If Φs, Φt are
defined as in Section 4.2 and Ψs, Ψt are defined as in Section 4.3, then Φ̄s and Φ̄t satisfy the RIP with high
probability, respectively, and

max (δs, δt) ≤ δ(A) ≤ (1 + δs)(1 + δt)− 1, (16)

where δs and δt are the restricted isometry constants of Φ̄s and Φ̄t, respectively.

Proof. We first prove that both Φ̄s and Φ̄t follow the RIP with high probability. As discussed above,
we adopt a random Gaussian or Bernoulli random matrix as the random measurement matrix Φt

and the DCT transform basis as the orthonormal sparsity basis Ψt. Obviously, the random matrix
Φ̄t = ΦtΨt follows the RIP with high probability. We now are ready to prove that Φ̄s = ΦsΨs also
follows the RIP with high probability. The proof can be done following the similar reasoning as in [41].
Compared with [41], a different random walk algorithm is employed in this paper, which results in a
distinct node sampling probability.

As proved in [41], the entries of Ψs follow a sub-Gaussian distribution, i.e., Ψs(j, i) ∼ Sub(c2),
where c > 0 is a constant. Then, for any x ∈ RN , < Ψs(j, :), x >∼ Sub(c2‖x‖2

2) [49] Lemma 4.2.
Let Y = (Y1, Y2, . . . , Yms) and E((< Ψs(j, :), x >)2) = σ2, where Yj =< Ψs(j, :), x > for j = 1, . . . , ms.
Then we have E(‖Y‖2

2) = msσ2 [49] Theorem 4.2. As discussed above, the probability that each row
is selected from Φ̄s is equal to the probability that the corresponding node is visited by the random
walk. As proved in [45], the MHDA algorithm is theoretically guaranteed to construct a random walk
algorithm to achieve a uniform stationary distribution, improving efficiency over the standard MHRW
algorithm. According to the theorem in [49] Theorem 4.2, for any α ∈ (0, 1) and β ∈ [c2/σ2, βmax],
there exists a constant C∗ ≥ 4 depending only on βmax and the ratio σ2/c2 such that

Pr(‖Y‖2
2 ≤ αmsσ2) ≤ e−ms(1−α)2/C∗ (17)

and
Pr(‖Y‖2

2 ≥ βmsσ2) ≤ e−ms(β−1)2/C∗ . (18)
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By normalization, Φ′s =
√

n
ms
(Φ̄s1, Φ̄s2, . . . , Φ̄sm)

T . Furthermore, we have E(Φ′s(j, i)2) =

(
√

n
ms
)2E(Φ′s(j, i)2) = 1

ms
and E(Φ′s(j, i)) =

√
n

ms
E(Φs(j, i)) = 0. Then, we obtain

E(‖Y‖2
2)

= E(
m

∑
j=1

(Φ′s(j, :)x)2)

=
m

∑
j=1

E(
n

∑
i=1

(Φ′s(j, i)xi))
2

=
m

∑
j=1

(E(Φ′s(j, i)2)‖x‖2
2 + 2

n

∑
i=1

∑
k 6=i

E(Φ′s(j, i))E(Φ′s(j, i))xixk)

= ‖x‖2
2.

(19)

By setting α = 1− δ, Equation (17) can be expressed as

Pr(‖Y‖2
2 ≤ (1− δ)E(‖Y‖2

2)) ≤ e−msδ2/C∗

Pr(‖Φ̄sx‖2
2 ≤ (1− δ)‖x‖2

2) ≤ e−msδ2/C∗ .
(20)

Similarly, by setting β = 1 + δ, Equation (18) becomes

Pr(‖Φ̄sx‖2
2 ≥ (1 + δ)‖x‖2

2) ≤ e−msδ2/C∗ . (21)

For a k-sparse signal x, there exist (n, k) possible signal sets x. Then we have (n, k) ≤ (en/k)k

by Sterling’s approximation. Therefore, we have the probability exceeding 1− 2(en/k)k · e−mδ2
C∗ =

1− 2e−
mδ2
C∗ +k log(n/k)+k such that

(1− δs)‖x‖2
2 ≤ ‖Φ̄sx‖2

2 ≤ (1 + δs)‖x‖2
2. (22)

Therefore, we can choose ms = O(k log(n/k)) such that Φ̄s satisfies the RIP with the probability
approximating to 1.

From the above analysis, we have proved that Φ̄s and Φ̄t follow the RIP with high probability,
respectively. According the property of Kronecker product, we have

A = Φ̄Ψ̄

= (Φs ⊗Φt)(Ψs ⊗Ψt)

= (ΦsΨs)⊗ (ΦtΨt)

= Φ̄s ⊗ Φ̄t.

(23)

Let δs and δt are the restricted isometry constants of Φ̄s and Φ̄t, respectively. In [48], it has
been proven that the RIP constant of the Kronecker product matrix δ(Φ̄s ⊗ Φ̄t) satisfies the
following inequality

max (δs, δt) ≤ δ(Φ̄s ⊗ Φ̄t) ≤ (1 + δs)(1 + δt)− 1. (24)

Then, we obtain
max (δs, δt) ≤ δ(A) ≤ (1 + δs)(1 + δt)− 1, (25)

which finishes the proof.
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5.2. Performance Analysis

We are now ready to calculate the actual number of steps ml that the mobile collector needs to
take to visit ms distinct sensor nodes. Since the mobile collector may visit a sensor node for several
times including self loop steps the actual number of steps ml should be larger than ms. The advantage
of the MHDA algorithm is that it can avoid backtracking to the previously visited nodes to reduce the
number of steps that it spends at the same nodes.

Lemma 2. The expected number of steps that the mobile collector needs to take to visit ms distinct sensor nodes
over the graph G is

E(ml) ≤ ms/(
dmin

dmax
+

1
dmax

· ( dmin

dmax
)3) (26)

where dmin and dmax are the minimum and maximum degree of the graph G, respectively.

Proof. Consider a random walk with a length of ml using the MHDA algorithm and let U1, U2,. . .,
Ums be the distinct nodes that the mobile collector may visit during the random walk. Suppose that
for a random walk and a sequence of nodes v1, v2, . . . , vi, U1 = v1, U2 = v2, . . . , Ui = vi. Let Xi
denote the number of steps that the mobile collector needs to spend at node vi until it visits the next
distinct node. Hence, Xi is 1 plus the number of steps that the mobile collector stays at the self loop.
Note that Xi is a random variable which only depends on Ui and not on the previously visited node.
Now consider any step at node vi. Then, the probability of Xi = 1 excluding the number of steps at the
self loop is dvi pij, where dvi is the degree of vi and pij is the transition probability of the random walk.
Hence, E(Xi|U1 = v1, U2 = v2, . . . , Ui = vi, . . .) = E(Xi|Ui = vi) =

1
dvi pij

. Furthermore, ∑ms
i=1 Xi = ml .

Note that for every sequence of node v1, v2,. . ., the random variables X1, X2,. . . are independent given
that U1 = v1, U2 = v2,. . . According to Wald’s identity,

E(
ms

∑
i=1

Xi|U1 = v1, U2 = v2, . . .)

= E(ms|U1 = v1, U2 = v2, . . .)E(Xi|U1 = v1, U2 = v2, . . .)

=
ms

dvi pij
.

(27)

Note that ms is a fixed number given before the random walk runs and ml is a random variable.
So E(ml) is the actual number of steps that we want to calculate. Since ∑ms

i=1 Xi = ml , we obtain:

E(ml) =
ms

dvi pij
. (28)

Since

dvi pij = dvi (min{ 1
dvj

,
1

dvi

}+ min{ 1
dvj

,
1

dvi

} · 1
dvj − 1

·min{1, min{ 1
d2

vj

,
1

d2
vk

}/ min{ 1
d2

vj

,
1

d2
vi

})

≥ dmin

dmax
+

dmin

dmax
· 1

dmax
·

d2
min

d2
max

,

(29)

then we have
E(ml) ≤ ms/(

dmin

dmax
+

1
dmax

· ( dmin

dmax
)3). (30)

Note that the probability pij is the transition probability of the random walk involving the two
scenarios as described in the Algorithm 1.
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5.3. Discussion

In the following, we discuss the performance improvement of the proposed scheme over the
other existing schemes in terms of the number of transmissions that the sensor nodes require to
deliver their measurements to the mobile collector. Firstly, we take the raw data transmission without
compression as a baseline scheme for comparison, where the measurements of n sensor nodes with
each having m measurements are collected by a mobile collector by using a standard random walk
algorithm until all of nodes have been visited. Obviously, it requires at least total mn transmissions
in one round of data gathering. Additionally, it also requires O(mn log n) time slots to visit all of
nodes in a random geometric network, which has been proven in [50]. In the meanwhile, compared
with the schemes using multiple random walks as proposed in [21,26,27], our scheme only needs to
take a random walk, which consumes E = O(ktks log(m/kt) log(n/ks)) transmissions and spends
T = O(ktks log(m/kt) log(n/ks)) time slots, whereas it takes mr = O(ks log(n/ks)) random walks
with a length of Tr = O(n/ks) steps [21], resulting in total E = O(ktn log(m/kt) log(n/ks)) number of
transmissions. Therefore, the proposed scheme has significant improvements on energy consumption
and data gathering delay over the existing CS-based approaches.

However, we note that it is not efficient to use only one single mobile collector for data gathering,
since it incurs high delay due to the low moving velocity of the mobile collector. To further reduce the
collection time, multiple mobile collectors can be employed so that each mobile collector may visit
fewer sensor nodes to collect their measurements. On the other hand, we also note that the proposed
scheme might incur high cost due to the deployment of mobile collector. Such a mobile collector
requires high power to allow it to move around a sensing field. However, it in turn helps to save
energy consumption at each sensor node since it is possible for a node to use a relatively small power
of its transceiver for data transmission when a mobile collector comes by.

6. Numerical Simulations

In this section, we evaluate the performance of the proposed scheme for spatial-temporal data
gathering in WSNs through simulations. The proposed algorithm is implemented by MATLAB.
A cvx package is used to solve `1 programming for CS decoding algorithm [51].

6.1. Spatial and Temporal Correlation Characteristics of the Dataset

In this section, we first introduce the dataset adopted in the simulation and then analyze the
correlation characteristics. The real dataset we use is obtained from a remote sensing system to measure
sea surface temperature [52]. We assume that a wireless sensor network is composed of 512 sensor
nodes which are randomly and uniformly deployed in a sensing field to monitor the sea environment.
Such a deployment will result in an irregular network topology. Figure 3 presents spatial-temporal
temperature data collected by the sensor nodes. To analyze the correlation characteristics of the real
dataset, we compute the spatial correlation and the temporal correlation of the dataset following the
approach proposed by Zordan et al. in [53]. In order to calculate the spatial correlation, we randomly
select 3000 pairs of points from the total number of pairs. For each pair of points, we calculate its
distance d and the corresponding spatial correlation function ρS using Equation (2) in [53]. Similarly to
the procedure adopted in [53], we divide the maximum distance dmax of the all pairs of points into
20 intervals. Then we calculate the average spatial correlation coefficients for all the pairs of points
whose distance falls within the same interval. We also calculate the spatial correlation vs. the distance
using the Power Exponential (PE) model and the Rational Quadratic (RQ) model [53]. In this simulation,
we select the parameters ξ = 0.38 and ν = 0.3 for the PE model and ξ = 1.8 and ν = 1.2 for the
RQ model (corresponding to Equations (3) and (4) in [53], respectively). In Figure 4, we plot the
spatial correlation ρS with the normalized distance d/dmax ∈ [0, 1] for the real dataset. As shown in
Figure 4, we can see that the spatial correlation of the real dataset used in this paper nicely fits the PE
model. On the other hand, we also calculate the temporal correlation coefficients of the dataset using
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Equation (6) in [53]. We find that the average temporal correlation coefficient of the dataset is 0.9984,
which shows the strong temporal correlation.
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Figure 3. The spatial-temporal temperature data collected by 512 sensor nodes.
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Figure 4. Spatial correlation for the real dataset and the two correlation fitting models (PE and RQ).

6.2. Performance of Spatial-Temporal Sparsity Representation Basis

In this section, we evaluate the performance of the proposed scheme using spatial-temporal
sparsity basis and show the performance improvement over the other conventional bases. We use
Gaussian kernel basis (GKB) and DCT as the spatial and temporal transform bases (GKB-DCT),
respectively. The kernel parameter ω is set to 1 for GKB. The relative error is used to evaluate the
reconstruction quality, which is defined as ε = ‖x̂− x‖2

2/‖x‖2
2, where x and x̂ are the original sensory

data and the reconstructed data, respectively. Figure 5 shows 2D transform coefficients by using
GKB-DCT. From Figure 5, it can be seen that there are only few transform coefficients whose absolute
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values are much larger than the remaining coefficients. This explains that GKB-DCT can be well used
to sparsify sensory data for an irregular topology. We also compare the reconstruction performance
with the other schemes using spatial sparsity bases such as Laplacian eigenvector basis (LEB), discrete
wavelet transform (DWT) and discrete cosine transform (DCT) and temporal sparsity basis DCT
(termed as LEB-DCT, DWT-DCT, DCT-DCT), respectively. The eigenvector of the Laplacian matrix
of a graph G(V, E) has been commonly adopted to sparsify data for an irregular topology [21,54].
The Laplacian Matrix of a graph is usually used to characterize the topology of a sensor network,
which is defined as follows [55]:

L =


−1 if (i, j) ∈ E
di,i if i = j
0 otherwise,

where di,i is the degree of node i.
From Figure 6, it is noticed that the proposed scheme using GKB-DCT outperforms the other

schemes using LEB-DCT, DWT-DCT, DCT-DCT. This indicates that GKB-DCT is a more efficient
spatial-temporal transform basis to sparsify data than other bases in an irregular deployment. Figure 6
also shows that the conventional bases (e.g., DCT and DWT) perform poorly. This is because such
bases are more appropriate for a regular deployment.
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Figure 5. The transform coefficients employing GKB-DCT as a 2D transform basis.
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Figure 6. The reconstruction error under different transform bases.
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6.3. Performance of Spatial-Temporal Data Gathering with Mobile Collector

In this section, we evaluate the performance of the proposed spatial-temporal data gathering

scheme using the MHDA algorithm. We choose r(n) =
√

8 log n
n as the detection range of the mobile

collector since it has been proven that a random geometric graph has optimal partial cover time with

high probability if r(n) ≥
√

8c log n
n where c ≥ 1 [50]. We first investigate the performance for data

gathering without considering temporal data under the varying compression ratios. We compare
our scheme with the other schemes using simple random walk (RW) algorithm, IID algorithm and
dense random projections (DRPs). In the RW scheme, the mobile collector randomly and uniformly
selects one node from its neighbors for the next visit. In the IID scheme, we assume that the fusion
center randomly picks up some of the nodes to send their data. In the DRPs scheme, we employ
a Bernoulli random matrix instead of using a mobility model to generate a random measurement
matrix as the baseline scheme for performance comparison. We use the Gaussian kernel basis as the
sparsity representation basis for all the schemes. Figure 7 plots the reconstruction error for the schemes
above. The reconstruction error is computed over 20 trials for each scheme. From Figure 7, we observe
that the proposed MHDA algorithm outperforms the RW algorithm when compression ratios vary
from 0.1 to 0.3. This is because the node sampling distribution induced by the MHDA algorithm is
more uniform than the one induced by the RW algorithm. The IID algorithm outperforms the MHDA
algorithm due to the same reason. However, we also notice that when compression ratios vary from
0.4 to 0.6, the MHDA algorithm can achieve the similar reconstruction quality compared to the IID and
DRPs schemes.

We next compare the performance in terms of communication cost of sensor nodes for the
four schemes above. The communication cost is evaluated in terms of the number of transmissions
required for the sensor nodes to send their data to the mobile collector or the fusion center. Figure 7
plots the number of transmissions required for different schemes. We can see that the proposed
scheme outperforms all of the other schemes. For instance, our scheme can provide about on average
4%, 49% and 87% transmission cost reduction compared to ST-SRW, ST-IID, ST-MRW. Compared to
ST-SRW, the performance gain of our scheme benefits from the fact that the MHDA algorithm makes
the mobile collector avoid backtracking the previously visited nodes.
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Figure 7. The number of transmissions required for different CS-based schemes.

We also conduct simulations to validate the analytical result derived in Lemma 2. As discussed
before, since the mobile collector may backtrack to some previously visited nodes, it needs to take
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additional steps that it spends at the same nodes. In this simulation, we calculate the actual number
of steps ml taken by the mobile collector to visit ms distinct sensor nodes under the various sizes
of network n. Figure 8 plots the expected number of steps E(ml) and the upper bound of the
analytical result (i.e., the right term in Equation (30)) with the parameter ms/n for n = 512 and
n = 1024, respectively. It can be seen that the actual number of steps E(ml) is upper bounded by
the analytical result, which is approximately smaller than msdmax/dmin. In [56], it has been proven
that the maximum and minimum degree of a connected random geometric graph G are in the same
order, i.e, dmax/dmin = c where c is a constant. This indicates that the actual number of steps E(ml)

approximately scales linearly with the number of distinct nodes ms and has the same order with ms

(i.e., E(ml) = O(ms)).
We then compare the performance with various spatial-temporal data gathering schemes

including ST-SRW, ST-IID, ST-MRW. ST-SRW and ST-IID extend the aforementioned schemes SRW
and IID to the spatial-temporal case. In the ST-MRW scheme, we extend the multiple random walks
based algorithm adopted in [21] to the spatial-temporal data collection scheme where an LEB-DCT
transform basis is adopted. Figure 9 shows the reconstruction performance for the four schemes above.
We observe the similar results as obtained in the only spatial data collection scheme above.

On the other hand, instead of using multi-hops as in ST-IID or multiple random walks as in
ST-MRW, the proposed scheme performs only a random walk for data collection, which is able to
significantly reduce the communication cost of sensor nodes.
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Figure 8. The expected number of steps ml taken by mobile collector to visit ms distinct sensor nodes.

On the other hand, it is worth noting that it might be not efficient by using only one single
mobile collector for data gathering since it incurs high delay. In this simulation, we investigate the
performance of employing multiple mobile collectors for data collection. Obviously, we can make use
of multiple mobile collectors to increase the speed of data collection since each one may visit fewer
sensor nodes to collect the measurements. Figure 10 plots the reconstruction error when the number of
mobile collectors is nc = 1, 2, 4, 6, respectively. It is clear that the similar reconstruction quality can be
achieved when the total number of measurements collected by all the mobile collectors in each scheme
is the same. Therefore, our scheme can also be easily extended to the case using multiple collectors to
reduce the data gathering delay although only one collector is utilized in this work.



Sensors 2017, 17, 2575 18 of 22

0.1 0.2 0.3 0.4 0.5 0.6

Compression Ratio

0

0.005

0.01

0.015

0.02

0.025

0.03

R
ec

on
st

ru
ct

io
n 

E
rr

or

ST-MHDA

ST-RW

ST-IID

ST-MRW

Figure 9. The reconstruction error for spatial-temporal data collection with different CS-based schemes.
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Figure 10. The reconstruction error for the proposed scheme with multiple mobile collectors.

6.4. Performance of the Proposed Scheme with Packet Loss

We further evaluate the performance of the proposed scheme against unreliable wireless channel
environments. In this simulation, we assume that the temporal data at each sensor node in one
round of data gathering is compressed by CS and encapsulated into a packet. We also assume that a
packet at a sensor node is transmitted to the mobile collector with a packet loss rate P. we compare
the performance of various spatial-temporal data gathering schemes under a 20% packet loss rate.
As shown in Figure 11, the performance of the proposed scheme is superior to the other schemes
compared to ST-RW, ST-IID, ST-MRW. This is due to the fact that a projection in our scheme is generated
from only one sensor node instead of a linear combination of the measurements from multiple nodes as
in ST-MRW. The result also demonstrates the mobile data gathering schemes outperform the multi-hop
transmission strategies as adopted in ST-IID because any packet loss during the transmission to the
fusion center through multi-hops will increase the loss probability of a packet.
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Figure 11. A comparison of the reconstruction error for different CS-based schemes under packet loss.

7. Conclusions and Future Work

In this paper, we studied an energy-efficient data gathering scheme using compressive sensing
for spatial-temporal sensory data in mobile wireless sensor networks. We proposed a novel
spatial-temporal data gathering scheme using the Metropolis-Hastings random walk algorithm
with delayed acceptance, which allows a mobile collector to harvest compressive measurements
by sequentially visiting a small subset of nodes along a random routing path. We proved that the
equivalent sensing matrix constructed from the proposed scheme for spatial-temporal dimensional
compressible signal satisfies the RIP. In particular, we showed that from the mobile collector needs to
visit ms = O(ks log(n/ks)) randomly selected nodes and collect mt = O(kt log(m/kt)) compressive
measurements from each node so as to reconstruct a sensing field assuming that the field has ks and kt

spatial and temporal dimensional sparsity, respectively. We presented extensive simulation results to
demonstrate that the proposed scheme is able to not only significantly reduce communication cost
but also improve reconstruction accuracy compared to some existing CS-based schemes. We also
showed that the proposed scheme be also resilient to unreliable wireless environment under various
packet losses. However, we shall note that it requires accurate location information of sensor nodes to
construct a sparsity representation basis for signal recovery due to the use of Gaussian kernel basis.
On the other hand, the mobile collector also requires these location information for the navigation in
the sensing field. When these location information is not available, how to develop a more efficient
sparsity representation basis and a more practical random walk algorithm may be more important for
a wireless sensor network. As a result, we intend to leave it for future study.
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