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Acrylamide (ACR) has various effects on biological systems, including oxidative stress

and its associated metabolic disorders. Previous research reports that plants growing

at high altitude have a different profile of antioxidants. In the current report, the Taify

pomegranate juice (TPJ) of the Taify pomegranate growing at the Taif region (high

altitude), Saudi Arabia, was investigated for its protective activity from ACR-induced

oxidative stress. Rats were treated with ACR, TPJ, or TPJ+ACR, and various assays,

including blood chemistry, liver function biomarkers, gene expression of endogenous

antioxidant enzymes, oxidative stress regulatory genes, inflammation biomarkers, and

apoptosis, were estimated using biochemical, real-time PCR, histopathological, and

immunohistochemical analysis. TPJ showed a protective function of ACR-induced

alteration of AST, ALT, GGT, urea, total proteins, albumin, MDA, and NO. It also increased

the level of the endogenous antioxidative enzymes, including SOD, catalase, and GSH.

It showed anti-inflammatory activity by reduction the TNF-α, IL-6 secretion and the

enhancing of IL-10 levels. At the gene expression level, TPJ upregulated the expression of

endogenous antioxidant genes (SOD and catalase) and of antioxidant-regulating genes

Nrf2 and HO-1; downregulated the expression of inflammatory genes TGF-β1, COX2,

and the apoptotic gene caspase-3; and upregulated the expression of antiapoptotic gene

Bcl2. At the histological level, TPJ showed a protective effect from the ACR-induced

hepatic histological damage. Results of this study conclude that TPJ has a protective

effect from ACR-induced oxidative stress and its associated metabolic alterations

through its antioxidant and anti-inflammatory activities.
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INTRODUCTION

Acrylamide (ACR) represents a major threat for human health.
It is considered to be one of the most important chemical
materials that is widely used in industry. It is also one of the
inevitable contaminants in the occupational environment (1).
Besides this, it is detected in the cooked starchy foods (1, 2). It
was declared a carcinogenic agent in 1994 by The International
Agency for Research on Cancer (3). Various studies report
the wide range of ACR’s negative impact on health, including
oxidative stress and cancer (1, 4–8), neurotoxicity (1, 3, 4, 9, 10),
reproductive toxicity (1, 4, 11), and developmental toxicity (1,
12). Acrylamide exerts its harmful effects by increasing the level
of reactive oxygen species (ROS) and decreasing the antioxidant
capacity via its deleterious effects to the endogenous antioxidant
enzymes, including superoxide dismutase (SOD) and glutathione
peroxidase (GSH-Px) (13, 14). Also, it provokes the production of
inflammatory cytokines, including TNF-α and IL-1β (12, 14), and
inducesmitochondrial and caspase-dependent apoptosis (15, 16).

During the last two decades, the use of herbal therapy in
counteracting the negative impact of oxidative stress, pollution,
obesity, aging, and tissue deterioration and synthetic drugs as
well as their associated metabolic disorders has gained a lot
of research interest worldwide (17–21). Various terms were
coined for natural products that are used in herbal therapy,
including functional foods, food supplements, or nutraceuticals
(17, 21). They are used for treatment of metabolic disorders
associated with oxidative stress without having the side effects
of chemically synthesized drugs (20). Their antioxidant activity
is due to the presence of various phytochemicals (22), mainly
including flavonoids and phenolic compounds (23–25). They are
detected in a wide range of plant species, including cereals, fruits,
vegetables, and oil seeds (19, 21, 26–29).

A plethora of investigations has been published reporting
different strategies to combat ACR toxicity and its associated
deleterious effects, especially the use of plant-driven
phytochemicals (15). Among these natural compounds are
thermoquinone and capsaicin (30), N-acetylcysteine (31–
34), quercetin (35–37), punicalagin (38), vitamin E (39),
carboxyflurene (40), cyaniding-3-O-glucoside (41), and
thymoquinone (8, 42). Similarly, plant extracts are used to
counteract the impact of ACR, including Trigonella foenum-
graecum seed oil (43); Spirulina platensis (44); Tetrastigma
hemsleyanum leaf extract (45); Portulaca oleracea seed extract
(46); white tea and raspberry ketone (47); hesperidin and
tiger nut (48); olive oil hydroxytyrosol (49); tea polyphenols
and resveratrol (50); and strawberry, grape, and blueberry
powder (51).

Chemical constituents of plant extracts and essential oil
differ based on geographical locations, altitude, and genotypes.
Samples collected from 20 different geographical locations of
Ducrosia anethifolia showed variations in essential oil (52).
Chemical constituents of pomegranate fruits vary with climate
conditions (53). Phytochemical variations among genotypes are
also reported in tomato (54). Metabolite analysis of Curcuma
longa shows differences up to 20% due to different agroclimatic
regions (55).

Plants respond to high altitude by producing higher levels
of a wide array of antioxidants compared with plants growing
at lower altitude (56, 57) or producing de novo compounds
not detected at normal elevations (58, 59). For example, a
significant increase in total phenolics and antioxidant activity
was reported in the methanolic extract of Scrophularia striata
growing at an elevation of 600m above sea level (60). Similarly,
high altitude is negatively correlated with the content of tannin
and positively correlated with flavonoids, rutin, total phenolic
content, and antioxidant capacity of Potentilla fruticosa L.
extract (61). In addition, phytochemical activity of Thalictrum
foliolosum root extract collected from different altitudes shows
that berberine content was negatively correlated with altitude
while total phenolics and flavonoid as well as antioxidant capacity
were positively correlated with altitude (62). The phenolic
content and antioxidant capacity of two major Rhodiola species
differed in samples collected from different elevations based on
the differential abundance of 178 flavonoids, which positively
correlated with elevation (63). The phenol and flavonoid contents
Thalictrum foliolosum as well as antioxidant capacity increased
at higher altitudes (62). Therefore, phytochemical content of
plants depends on various factors, especially their elevation above
sea level.

Pomegranate juice (PJ) shows a wide spectrum of effects,
including antioxidant activity (64–75), antimutagenic
activity (65), antiviral activity (76), antiobesity (19, 77),
anticryptosporidial (78), and amelioration of neurodegenerative
diseases (79). Also, pomegranate peel shows antioxidant
(64, 68, 80, 81) and antimicrobial activity (82). In addition,
several reports document that pomegranate seed extract presents
antioxidant activity (64, 68, 83, 84).

Taif is a high-altitude region elevated about 1,200–2,300m
above sea level, which makes it suitable for a wide variety
of indigenous plant species (85). This makes it unique in
weather and plant flora. Among the most important Taif
indigenous fruit plants are grape and pomegranate, Punica
granatum L. (Lythraceae). The most cultivated variety of
pomegranate is known as Taify, which has special cultural,
nutritional, and commercial value in the Kingdom of Saudi
Arabia (19). The elevated location of Taif as an indigenous habitat
for Taify pomegranate makes this variety a potential special
antioxidant source.

The previous theoretical framework detailed that few studies
have been conducted to investigate the different aspects of
Taify pomegranate (19, 86), which does not correlate with its
economic, nutritional, and cultural value. Therefore, the focus
of the current study was to investigate the antioxidant activity
of Taify pomegranate juice (TPJ) against ACR-induced oxidative
stress on the liver of rats. Various assays including biochemical,
molecular, inflammatory, apoptotic, and histopathological were
employed to achieve this goal.

MATERIALS AND METHODS

Plant Samples and Extraction
Taify pomegranate fruits were collected from their natural
habitat in the Taif region, Taif Governorate, Saudi Arabia. Intact
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seeds were collected from healthy ripened fruits, and TPJ was
extracted by hand squeezing in cheesecloth without disrupting
seed structure to get only the juice components. TPJ was filtered
using a 0.22-µm filter and administered fresh to rats.

Animals and Treatments
Forty male rats (Ratus norvegicus) 10 weeks of age were used
in this study. Animals were cared for at room temperature with
free access to food and water for 7 days for acclimation at
Turabah University labs. Animals were randomly and equally
distributed among four groups. Group 1 served as the negative
control and was given an equal volume of water. Group 2
orally received 20 mg/kg bw of acrylamide and served as the
positive control (ACR group) (87, 88). This was reported to
induce total liver toxicity (89). Group 3 (TPJ) orally received
2 ml/Kg bw of TPJ for 3 weeks (90). Group 4 (TPJ+ACR),
the protective group, received 20 mg/kg bw of ACR and 2
ml/kg bw of pomegranate juice. TPJ administration started 1
week earlier than ACR administration for the protective effect.
Treatments continued for 3 weeks. After the experimental period,
animals were anesthetized using isoflurane, decapitated, and
dissected. Blood samples were collected, and serumwas separated
and stored at −20◦C for blood chemistry assays. Liver tissue
samples were collected in QIAZOL reagent for RNA isolation
and quantitative real-time PCR (qRT-PCR) analysis of gene
expression. Liver samples were kept in Bowan’s solution for
histological and immunohistochemical analysis.

Blood Biochemical Analysis
The serum levels of ALT, AST, GGT, and urea were measured
using a colorimetric spectrophotometer as described in the
instruction manual. Malondialdehyde (MDA) was measured
according to a previously described method (91). Catalase,
superoxide dismutase (SOD), and nitric oxide (NO) were
estimated according to previously reported methods (92,
93). Well-established methods were employed to measure
albumin (94) and total proteins (95). GSH was estimated
according to the Tietze method (96) using spectrophotometric
absorbance at 412 nm.

Analysis of Inflammation and
Anti-inflammation Cytokines
IL-6 and TNF-α were estimated using specific ELISA (ab100768
and ab46070, respectively) kits and spectrophotometric analysis
according to the kits’ instructions. IL-10 was measured using a
commercial kit obtained fromAbcam, USA (Rat IL-10 ELISAKit,
ab100765). Data obtained from the ELISA reader were calculated
as described in the kit instructions.

Gene Expression Quantitation by
Real-Time PCR
Total RNA was isolated from liver samples using QIAZOL
according to the manufacturer’s instructions, 50 µg per 1ml
of QIAZOL. Concentration of the isolated RNA was estimated
spectrophotometrically (BIORAD, USA) at 260 nm. Total RNA,
2 µg, was used as a template for reverse transcriptase for
cDNA synthesis (MyTaq Red Mix, Bioline). cDNA was used

TABLE 1 | Summary of primer information used for quantitative real-time PCR in

rat liver.

Gene Primer name Sequence 5′-3′ Accession number

Bcl2 Bcl2-F ACTCTTCAGGGATGGGGTGA NM_016993

Bcl2-R TGACATCTCCCTGTTGACGC

HO-1 HO-1-F GTAAATGCAGTGTTGGCCCC NM_012580.2

HO-1-R ATGTGCCAGGCATCTCCTTC

BAX BAX-F AGGACGCATCCACCAAGAAG NM 017059

BAX-R CAGTTGAAGTTGCCGTCTGC

Nrf2 Nrf2-F TTGTAGATGACCATGAGTCGC NM_031789.2

Nrf2-R TGTCCTGCTGTATGCTGCTT

TGF-β1 TGF-β1-F GGACTACTACGCCAAAGAAG NM_021578.2

TGF-β1-R TCAAAAGACAGCCACTCAGG

COX2 COX2-F TGATCTACCCTCCCCACGTC NM 017232

COX2-R ACACACTCTGTTGTGCTCCC

SOD SOD-F ACACCTATGCACTCCACAGAC NM_053425.1

SOD-R ACATTCGACCTCTGGGGGTA

Catalase CAT-F GCGGGAACCCAATAGGAGAT NM_012520.2

CAT-R CAGGTTAGGTGTGAGGGACA

β-actin β-actin-F AGGAGTACGATGAGTCCGGC NM 031144

β-actin-R CGCAGCTCAGTAACAGTCCG

as a template for qPCR amplification of various liver using
SYBR Green master mix (Thermo scientific, USA). Primers were
synthesized at Macrogen Company (Seoul, Korea). Information
of primers used in qPCR amplification are summarized in
Table 1. The obtained qPCR data was analyzed using the 2−11Ct
method of the CFX96 Touch Real-Time PCR (Bio-Rad, USA).
Beta-actin gene expression was used as a reference for estimation
of gene expression.

Histopathology and Immunohistochemistry
Liver tissue samples were fixed in neutral buffered formalin
(10%). Fixed samples were processed and stained with
hematoxylin and eosin as described by Bancroft et al. (97).
The immunohistochemical protocol was conducted following
the method of Saber et al. (98). Wax was removed from tissue
sections, and they were rinsed in 0.05M citrate buffer, pH 6.8.
Non-specific binding was blocked by treating the sections with
0.3% H2O2 and a protein block. Sections were subjected to rabbit
monoclonal (anti-bcl2, Abcam, Cat# ab182858, dilution 1:500)
primary antibody. Sections were washed in phosphate-buffered
saline and subjected to goat antirabbit secondary antibody
(EnVision System Horseradish Peroxidase Labeled Polymer;
Dako) for 30min at room temperature. Slides were visualized
with DAB kit and counterstained usingMayer’s hematoxylin. The
immunolabeling indices of Bcl2 are presented as a percentage of
positive expression in a total of 1,000 cells per eight high power
fields (HPF).

Statistical Analysis
The SPSS program (IBM, Chicago, IL, USA) was used to perform
one way ANOVA of the obtained data. Means were separated
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using Duncan multiple range test (DMRT) at P ≤ 0.05. Values
were presented as means± SE.

RESULTS

Blood Chemistry
The capability of TPJ to rectify the impact of ACR on the level of
liver function enzymes as well as some essential blood parameters
was tested. TPJ alone did not induce significant changes in all
estimated parameters compared with the control group. ACR
increased AST (4.7-fold) and ALT (4.2-fold) compared with
controls. Co-treatment of TPJ+ACR reduced the high scores of
AST and ALT compared with the ACR group (Table 2). Also,
ACR reduced the GGT level to almost 0.5-fold compared with the
control and TPJ groups while co-treatment of TPJ+ACR highly
increased the GGT level to an insignificant level compared with
the control and TPJ groups (Table 2). Urea level was increased
by ACR to about 3.45-fold compared with the control. The TPJ
had a protective effect against ACR by which it reduced the
urea level to 1.3-fold of the control group. Albumin and total
proteins were reduced by ACR to 0.39-fold and 0.45-fold of
the control, consecutively, while the TPJ had a protective effect
against the ACR effect by increasing albumin and total proteins
to an insignificant level compared with the control and TPJ
(Table 2).

In vivo Antioxidant Capacity of TPJ
ACR induced a significant increase in MDA (3-fold) and NO (3-
fold) levels. It also decreased the level of antioxidant enzymes,

TABLE 2 | Protective effect of Taify Pomegranate juice (TPJ) on ACR-induced liver

dysfunction in rats.

Control ACR TPJ TPJ + ACR

AST (U/l) 31.7 ± 2.16c 149.99 ± 10.88a 29.77 ± 1.00c 61.24 ± 1.73b

ALT (U/l) 32.18 ± 1.14c 135.12 ± 3.87a 31.76 ± 1.79c 56.66 ± 2.35b

GGT (U/l) 4.14 ± 0.35b 1.9 ± 0.10a 3.70 ± 0.25b 3.9 ± 0.19b

Urea (mg/dl) 19.84 ± 1.40d 58.10 ± 1.2a 21.26 ± 1.78c 36.85 ± 1.01b

Albumin (g/dl) 6.99 ± 0.33b 2.65 ± 0.14a 5.73 ± 0.60b 6.80 ± 0.53b

Total proteins 10.09 ± 0.30b 4.85 ± 0.27a 9.6 ± 0.50b 9.99 ± 0.26b

(g/dl)

Values are expressed as means ± SE. Means in the same raw with different superscript

indicate significant statistical differences at p < 0.05.

including catalase (0.4-fold), SOD (0.56-fold), and GSH (0.5-
fold) compared with the control (Table 3). TPJ alone reduced
the MDA level below its level in the control and increased
the SOD and GSH levels compared with the control, whereas
it did not have significant changes on the catalase and the
NO levels (Table 3). Co-treatment of TPJ+ACR showed a
protective effect of the ACR oxidative stress. This was indicated
by significant reduction of MDA, increase of catalase, SOD,
and GSH, and decrease of NO compared with the ACR group
(Table 3).

Anti-inflammatory Effect of TPJ
TPJ alone enhanced the level of the anti-inflammatory cytokine
IL-10 while ACR reduced its level compared with the control.
Co-administration of TPJ and ACR abrogated the ACR effect
on the IL-10 (Table 4). TPJ reduced the inflammatory cytokine
TNF-α compared with the control, whereas ACR significantly
induced higher levels of TNF-α compared with the control. Co-
administration of TPJ and ACR significantly reduced TNF-α
levels compared with the control group (Table 4). Similarly, ACR
induced high levels of the inflammatory cytokine IL-6, and PJ
alone reduced the IL-6 levels to insignificant state compared
with the control. ACR administration with TPJ highly and
significantly reduced IL-6 production, indicating that TPJ has an
anti-inflammatory effect that was able to rectify the ACR increase
of IL-6, TNF-α, and the decrease of the anti-inflammatory IL-10.

TPJ Abrogated the ACR-Induced
Suppression of Endogenous Antioxidant
Genes SOD and Catalase
To investigate the capability of TPJ to rectify the ACR-induced
oxidative stress, its effect on the expression of the endogenous
antioxidative enzymes was investigated. Treatment with ACR

TABLE 4 | Protective effects of Taify Pomegranate juice (TPJ) against

ACR-induced alterations in serum cytokine levels.

Cytokine Control ACR TPJ TPJ + ACR

IL-10 118.00 ± 5.60b 77.60 ± 3.93d 144.40 ± 7.05a 102.60 ± 2.50c

TNF-α 87.80 ± 1.15c 305.20 ± 15.94a 92.60 ± 4.91c 161.80 ± 5.21b

IL-6 77.00 ± 5.92c 274.00 ± 11.10a 89.20 ± 3.06c 138.80 ± 1.07b

Values are expressed as means ± SE. Means in the same row with different superscript

indicate significant statistical differences at p < 0.05.

TABLE 3 | Protective effects of Taify pomegranate juice (TPJ) against ACR-induced alterations on serum MDA, catalase, SOD, GSH, and NO levels.

MDA

(nmol/ml)

Catalase

(U/ml)

SOD

(U/ml)

GSH

(U/ml)

NO

(nmol/ml)

Control 24.41 ± 1.00c 3.65 ± 0.22a 32.76 ± 0.64b 33.45 ± 0.59b 22.00 ± 0.75c

ACR 72.52.1.77 ± 1.77a 1.50 ± 0.06c 18.30 ± 0.59d 16.72 ± 1.44d 65.86 ± 1.78a

TPJ 20.17 ± 1.40d 3.68 ± 0.29a 42.30 ± 1.17a 43.12 ± 1.18a 25.14 ± 0.71c

TPJ+Acylamide 33.41 ± 1.06b 2.90 ± 0.25b 26.88 ± 0.93c 27.29 ± 0.78c 40.04 ± 2.38b

Values are expressed as means ± SE. Means in the same column with different superscript indicate significant statistical differences at p < 0.05.
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FIGURE 1 | Antioxidant enzyme gene expression in response to ACR and TPJ of Catalase (A) and SOD (B). Values are expressed as means ± SE. Means with

different letters are significant (p < 0.05).

FIGURE 2 | Gene expression of oxidative stress marker genes Nrf2 (A) and HO-1 (B) in response to ACR and the TPJ in rat liver. Values are expressed as means ±

SE. Means with different letters are significant (p < 0.05).

reduced catalase expression, whereas treatment with TPJ alone
induced its expression compared with the control. On the
other hand, co-treatment of TPJ and ACR rectified the catalase
expression to a level close to the control and significantly
higher than its level in the ACR group (Figure 1A). Also, the
expression of SOD was downregulated by ACR while TPJ alone
upregulated its expression compared with the control group. Co-
treatment of TPJ andACR had a protective effect of ACR-induced
downregulation of SOD compared with the control, where the
TPJ was able to rectify the ACR-induced reduction in SOD level
(Figure 1B).

TPJ Rectified the ACR-Downregulation of
Nrf2/HO-1 Axis
ACR and TPJ had diverse effects on the cytoprotective
antioxidant marker genes nuclear factor-erythroid 2-related

factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1). While ACR
greatly suppressed the Nrf2 to 0.31-fold of the control,
TPJ enhanced its expression to 1.2-fold compared with the
control group. Co-administration of TPJ and ACR significantly
normalized the expression of Nrf2 compared with the control
or the TPJ groups, yet it was still significantly higher compared
with the ACR group (Figure 2A) giving an indication that
TPJ had a protective effect from ACR-induced suppression of
cytoprotective antioxidant Nrf2 gene. Regarding HO-1 gene,
ACR and TPJ had similar expression profile to that of Nrf2.
ACR significantly suppressed HO-1 to 0.44-fold of the control;
meanwhile, TPJ enhanced its expression level to 1.2-fold of
the control. Co-administration of PJ and ACR enhanced its
expression to 0.84-fold of the control (Figure 2B), providing
evidence that TPJ had a protective effect against ACR-induced
oxidative stress.
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FIGURE 3 | Gene expression of fibrosis-associated genes TGF-B1 (A) and COX2 (B) in response to ACR and the TPJ in rat liver. Values are expressed as means ±

SE. Means with different letters are significant (p < 0.05).

FIGURE 4 | Gene expression of the apoptotic Caspase-3 (A) and the antiapoptotic Bcl2 (B) genes in response to ACR and the TPJ in rat liver. Values are expressed

as means ± SE. Means with different letters are significant (p < 0.05).

Anti-inflammatory Activity of TPJ
The protective effect of TPJ from inflammation was estimated by

modulating gene expression of the inflammatory transforming

growth factor β1 (TGF-β1) and cyclooxygenase2 (COX2). ACR
upregulated the TGF-β1 about 2.3-fold while TPJ downregulated
its expression to 0.88-fold of the control. Co-treatment of
ACR and TPJ indicated that TPJ abrogated the ACR effect
and downregulated the TGF-β1 expression to 1.35-fold of the
control, concluding its protective effect (Figure 3A). Treatment
with ACR highly induced the expression of the inflammatory
COX2 compared with the control with about 1.9-fold compared
to the control. TPJ reduced the expression of COX2 to a
level close to the control level (1.06-fold). Co-administration
of ACR and TPJ reduced the COX2 expression to 1.32-fold

of the control, indicating the protective effect of the TPJ
(Figure 3B).

Anti-apoptotic Activity of TPJ
The apoptotic caspase-3 gene expression was induced by
ACR about 1.85-fold, whereas the TPJ significantly reduced
its expression to 0.54-fold compared with the control. When
TPJ was co-administered with ACR, the TPJ rectified the
caspase-3 expression to 1.09-fold of the control (Figure 4A).
On the contrary, to the caspase-3 case, ACR was able
to suppress the antiapoptotic gene Bcl2 to 0.47-fold while
TPJ upregulated the Bcl2 gene 1.39-fold compared with the
control. Co-treatment of ACR along with the TPJ showed
a protective effect through the enhancement of the Bcl2
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FIGURE 5 | Photomicrographs of liver tissues stained with hematoxylin and

eosin in the control and TPJ group (A,B), the acrylamide-treated group (C),

and the group co-treated with acrylamide and TPJ (D). Sections from control

and TPJ groups (A,C) show the liver consisted of CV surrounded by hepatic

cords (h). The cords consisted of large hepatocytes with centrally located

nuclei and acidophilic cytoplasm. Sections from the acrylamide-treated rats

(B) the liver tissue showed vacular degeneration (v), hydrobic degeneration

(hy). The liver tissues showed proliferation of the vonkupher cells (k). The blood

sinusoids showed cellular infiltrates (Table 5). Co-treatment of rats with

acrylamide and TPJ (D) showed less vacuolar and hydrobic degeneration in

some hepatocytes. Some vonkupher cells still proliferated but were not

numerous compared with the acrylamide group. Scale bar = 20µm (original

magnification = 200×). The morphometric and scoring of hepatic lesions are

shown in Table 5.

gene to a comparable level (1.05-fold) to the control group
(Figure 4B).

Histopathological Protection of TPJ
Sections from normal and TPJ administered rats (Figures 5A,B)
displayed normal features of hepatic parenchyma organized in
hepatic cords radiating from the central veins (CV) at the
center of the hepatic lobule toward the lobular periphery.
Sections from acrylamide-treated rats (Figure 5C) showed
degenerative changes as indicated from vacuolar hepatocytes
(arrows). Sections from acrylamide-treated rats (Figure 5C)
showed that vascular degeneration (v) and hydrobic degeneration
(hy) of hepatocytes. The liver tissues showed proliferation
of the vonkupher cells (k). The blood sinusoids showed
cellular infiltrates. Some hepatocyte cells were characterized by
necrosis (n). The co-treatment of rats with acrylamide and TPJ
(Figure 5D) showed less vacuolar and hydrobic degeneration
in some hepatic cells. The Kupffer cells still proliferated but
were not numerous compared with the acrylamide group. The
detected degenerative changes are illustrated in Table 5. Co-
treatment of rats with acrylamide and TPJ (Figure 5D) reduced
the degenerative changes and protected rats from the bad effects
of ACR. Scale bar= 20µm (original magnification= 200×).

The intensity of Bcl2 immunostaining was remarkable in
control (Figure 6A) and TPJ (Figure 6B) as indicated from the
strongly positive hepatocytes (arrows), reduced in the acrylamide

TABLE 5 | Ameliorative impacts of TPJ against morphometric analysis and score

lesions induced by acrylamide rat’s liver.

Lesion Control ACR TPJ TPJ + ACR

Frequencies Inflammatory

infiltrate

0c 14 ± 2.9a 0c 2 ± 0.2b

Vacuolar and

hydropic

degeneration

0c 20.0 ± 3.0a 0c 8.3 ± 2.7b

Von Kupffer

cell

hyperplasia

0c 7 ± 1.3a 0c 2 ± 0.9b

Single-cell

Necrosis

0c 15 ± 4.2a 0c 8 ± 1.6b

Areas Central veins 0.9 ± 0.1a 2.9 ± 0. 4c 1. 1± 0.01a 1.2 ± 0.2b

Portal blood

vessels

1.1 ± 0. 3a 5.1 ± 0.7c 2.1 ± 0.2a 2.5 ± 0.2b

Sinusoidal

spaces

5.1 ± 0.1a 8.1 ± 1.1c 4.1 ± 0.3a 5.5 ± 1.0b

Values are mean ± SE for 5 slides/group. Means within the same row with different

superscripts are significantly different at p < 0.05.

group (Figure 6C) and partial restored to fair levels in pretreated
rats (Figure 6D). The reactive liver cells (arrows) are usually next
to CV. Reactive hepatocytes are marked with arrows. Scale bar
= 20µm (original magnification= 400×). This immunostaining
of Bcl2 is shown in the form of densitometric score and is
correlated with the estimated immunoreactivity (Figure 6E) of
immunostained liver sections (Figures 6A–D), confirming the
protective effect of TPJ.

DISCUSSION

Plant-derived phytochemicals collectively known as
nutraceuticals have biological functions for protection against
chronic disease, improving health, delaying aging, or supporting
various functions of the body (99). They have gained increasing
interest for their nutritional, pharmaceutical, safety, and
protective roles against oxidative stress-related metabolic
disorders, including allergy, cardiovascular diseases, cancer,
diabetes, inflammation, and obesity (99). It has been established
that nutraceuticals exert their biological functions through
their content of bioactive compounds, mainly polyphenols and
flavonoids (100). Besides their direct scavenging activity of
ROS, they also have the capability to inhibit ROS production
by neutrophils and the inhibition inducible-nitric oxide
synthases (iNOS) (100). Pomegranate is consumed fresh
or used in cosmetic and nutraceutical products because
of its antioxidant, anti-inflammatory, anti-microbial, and
antiproliferative attributes, which is based on its content of
functional phytochemicals (101).

Our results show that TPJ was able to decrease the ACR-
induced increase of AST, ALT, GGT, urea, and total protein when
co-administered with ACR. Our results agree with the results
obtained from other several studies. PJ showed a protective effect
from non-alcoholic fatty liver disease (NAFLD) induced by a high
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FIGURE 6 | Photomicrographs of hepatic sections immunostained with Bcl2

antibody in the control group (A), the TPJ group (B), the acrylamide-treated

group (C), and the group co-treated with TPJ and acrylamide (D). The

intensity of immunostaining was remarkable in the control and TPJ-treated

groups (A,B), less in the acrylamide-treated group (C), and ameliorated and

restored in the co-treated rats (D). Reactive liver cells (arrows) are frequently

seen next to CVs. Scale bar = 20µm (original magnification = 200×). The

degree of positive immunoreactivity for Bcl2 is graphed in (E). Densitometric

values are statistically significant at *p < 0.05 vs. the control and TPJ-treated

groups; #p < 0.05 vs. the acrylamide-administered group. In panel E, means

with different letters indicate significance (p < 0.05).

fat diet via lowering the level of AST, ALT, insulin, triglycerides,
and glucose compared with the control (102). Also, in NAFLD,
PJ decreased the liver enzymes AST and ALT while it increased
the antioxidant capacity (103). In addition, similar results
were observed using plant-derived products. Trigonella foenum-
graecum seed oil showed a protective effect against ACR toxicity.
While ACR increased serum levels AST, ALT, GGT, and urea,
Tigonella seed oil supplementation rectified the changed serum
parameters and enhanced the antioxidant capacity in the hepatic
cells, indicating its protective effects against ACR-induced
oxidative stress (43). Furthermore, previous reports show that
some PJ active constituents had consistent activity against ACR-
induced oxidative stress and its associated metabolic alterations.
For example, administration of 50 mg/kg bw quercetin had
a protective effect against ACR-induced toxicity through the
reduction of oxidative stress and protection from mitochondrial
dysfunction (35, 37). Ellagic acid showed protection from
ACR-induced neurotoxicity (13). Myricetin had a counteracting

activity of ACR-induced oxidative stress through the inhibition
of the MEK/ERK signaling pathway (104).

In the current study, ACR increased urea and decreased
albumin and total proteins, and TPJ normalized these serum
parameters. This aligned with other reported biological activities
of PJ. It presented protective effects against sodium fluoride
oxidative damages in liver tissue and erythrocytes of rats. It
showed an ameliorative effect on hematological parameters,
rectified the total protein, albumin, bilirubin levels, and the
activities of hepatic marker enzymes (105).

The increase of MDA and NO as well as the decrease in
catalase, SOD, and GSH in the current study is in line with the
results obtained from previous studies. PJ had protective effect
against ACR-induced oxidative stress through the reduction of
MDA with increased antioxidant capacity in NAFLD patients
(103). Also, PJ compromised the higher levels of lead acetate–
induced MDA and GSH, indicating a protective role against lead
acetate–induced oxidative stress (106). Similarly, PJ presented
a protective effect against the anxiety and depression induced
by aluminum trichloride exposure through the enhancement of
catalase, SOD, GST, and GSH (107). In addition, PJ showed
antifibrotic activity against NDEA-induced liver fibrosis via
increasing SOD, GST, and catalase levels (108) and enhanced
the antioxidant enzymes, including SOD, catalase, and the
GSH levels in liver, kidney, and testis tissues against lead-
induced oxidative stress (109). PJ had a protective effect of
diethylnitrosamine and phenobarbital-induced hepatic damage
by reducing the level of MDA, glutathione reductase (GSR),
decreased SOD and GST that were altered by diethylnitrosamine
and phenobarbital (110). Prolonged ingestion of PJ alleviated the
impact of systemic oxidative stress in mice by lowering oxidative
biomarkers including catalase, SOD, GSH, and GSSG (111). High
altitude-induced hypoxia and its associated metabolic alterations
were protected by PJ via lowering the level of lipid peroxidation
in muscle, rectifying the GSH:GSSG ratio (112).

Endogenous antioxidant enzymes, including SOD, catalase,
and glutathione peroxidase are induced by oxidative stress
through the binding of nuclear factor-erythroid 2-related factor
2 (Nrf2) transcription factor to the antioxidant responsive
elements (ARE) in their promoter regions (100, 113). Nrf2
regulates ARE-regulated genes (113, 114). Normally, Nrf2 is
bound to kelch-like protein-1 (KEAP1) and localized in the
cytoplasm and under oxidative stress, and Nrf2 is released
and translocated to the nucleus. In the nucleus, it induces
the transcription of antioxidant enzymes and provokes the
transcription of HO-1 expression. Also, oxidative stress is the
stimulant of nuclear factor-kappa B (NF-κB), inflammatory
cytokines, such as interleukin (IL)-6, IL-17, and tumor necrosis
factor-alpha (TNF-α) (115). TNF-α is an inflammatory cytokine
that is responsible for a wide range of molecular and signaling
pathways underlying necrosis and/or apoptosis. It also plays an
indispensable role in cancer and infection resistance (116).

ACR downregulated the antioxidant activating genes Nrf2,
HO-1; upregulated the inflammatory genes TGF-1β, and
COX2; induced the inflammatory cytokines IL-6 and TNF-
α, and reduced the anti-inflammatory cytokines IL-10. On
the other hand, preadministration of TPJ rectified these
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inflammatory and anti-inflammatory parameters. This provides
strong evidence that TPJ exerts an anti-inflammatory activity
against ACR-induced oxidative and inflammatory stress. Several
previous studies report results in line with ours. CuO-NPs-
induced oxidative stress was compromised using PJ via the
downregulation of the Nrf2/HO-1 axis (117). In addition, PJ
downregulated the expression of COX2 and Nrf2 induced by
NDEA in fibrotic rat liver (108). Trigonella foenum-graecum seed
oil reduced the ACR-elevated levels of inflammatory cytokines,
including IL-1β, IL-6, and TNF-α (43).

TPJ normalized the altered expression profile of caspase-3
and Bcl2 genes altered by ACR, which agrees with previous
published studies. PJ downregulated the caspase-3 induced by
diethylnitrosamine and phenobarbital (110) and downregulated
the CuO-NPs-induced high expression of caspase-3 (117). Garlic
and Spirulina maxima had a protective effect from Pb-induced
neurotoxicity, including the proapoptotic associated increase of
caspase-3 expression as well as the altered acetyl cholinesterase
enzyme activity and oxidative stress parameters (118).

At the histopathology level, TPJ protected hepatic tissue from
the ACR-induced histopathological effects. Similar activities of PJ
are reported by other authors. PJ reduced the histological changes
associated with non-alcoholic fatty liver disease, including
disturbed hepatic architecture, dilatation and congestion of
central veins, blood sinusoids and portal veins, cytoplasmic
vacuolation, mitochondrial structural changes, dilatation of
endoplasmic reticulum in addition to nuclear structural changes
like condensed chromatin, irregular shrunken nuclei and
vacuolated nuclei, inflammatory cellular infiltrations, deposition
of collagen fibers around the central vein, blood sinusoids, portal
areas and in between the hepatocytes in addition to significant
increase in number of hepatic stellate cells that was proved by
electron microscope and confirmed by immunohistochemical
study (119). Also, PJ was able to protect tissue damage induced
by lead acetate in kidney, liver, and heart as well as reduced
the accumulation of lead in kidney and testis (109). In addition,
PJ had a significant ameliorative effect against cisplatin-induced
renal damage at the histopathological level, giving evidence
that PJ could be used as dietary supplement for individuals
during chemotherapy treatments (120). Moreover, PJ reduce
the NAFLD-associated hepatic steatosis, ballooning, lobular
inflammation, and portal inflammation (102).

The obtained results indicate that TPJ had an integrated
protection effect against ACR at various levels, including

serum parameters, gene expression in tissues, and histological
parameters. This integrated protection of PJ was observed in
other previous studies (90, 106, 109).

The represented biological activities of TPJ, including
antioxidative, anti-inflammatory, and antiapoptotic activities
could be attributed to its components of various compounds with
previously shown beneficial biological activities. Also, prepared
from plants growing at high altitude, the TPJ has some unique
components, such as syringic acid, quercetin, naringenin, and
myricetin, that might have contributed to its biological activities
reported in the current study. In conclusion, TPJ has the
potential to ameliorate the toxicity of acrylamide through the
regulation of anti-inflammatory, anti-apoptotic, and antioxidant
molecular pathways.
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