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Bone marrow-derived mesenchymal stem cells (BM-MSCs) are valuable platforms for new therapies based on regenerative
medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give
origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal
cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of
BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle
disease (i.e., muscular dystrophies), the heavier toll of heart disease in developed countries, and the still not completely understood
mechanisms of muscle differentiation and repair.

1. Introduction

Regenerative medicine and its exceptional potential in clinics
[1–4] are based on the discovery of the properties of stem
cells. Till et al. [5] showed that single cells could yield
multilineage descendants while preserving the multipotency
of the mother cell. The researchers gave substance to the idea
of a stem cell and gave us methods to define the cardinal
properties of those cells—self-renewal and differentiation
[5].

This latter discovery paved the way to subsequent explo-
sion of the stem cell biology, one of the most fast developing
and interesting areas of biomedical research, and the possibil-
ity to manipulate human stem cells to obtain new cells with a
needed phenotype was exploited since the discovery of these
cells.

In the beginning, only the hematopoietic derived lineage
was pursued: more knowledge of the biology of these cells
and their plasticity allowed for larger manipulation with the
possibility to obtain several cell lineages with amazing per-
spectives on a clinical point of view [1–4].

Remarkably, bone marrow contains different types of
progenitors: the hematopoietic progenitors that give rise to
all the hematopoietic cell types (haematopoietic stem cells:
HSCs); the mesenchymal stem cells (BM-MSCs) that are able
to differentiate into chondroblasts, osteoblasts, and adipocyte
precursors and the endothelial progenitors that give rise to
the inner layer of vessels.

These cells communicate through cell contacts, growth
factors, cytokines, and extracellular matrix proteins, creating
microdomains or niches and regulating their self-renewal,
differentiation, and quiescence [6]. Recent evidence uncov-
ered an unprecedented partnership between the two distinct
somatic stem cell types that is indicative of a unique niche in
the bone marrow made of heterotypic stem cell pairs [7, 8].

In the last 15 years, the induction of both hematopoietic
and mesenchymal cells to different mesodermal fates like
cardiomyocytes and skeletal myoblasts in vitro, ex vivo, and
in vivo has been reported. Indeed, this will be the focus of
this short review: the possibility to derive muscle cells from
several cell precursors is of pivotal interest not only to better
understand muscle physiology and metabolism, but also to
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define a road map for the regeneration of diseased muscle
(even heart muscle) that often is not able to repair itself to
a complete “restitutio ad integrum.”

Initially, mouse hematopoietic progenitors have been
identified as Lineage (Lin)−, c-Kit+, and Sca1+ cells [9], but
later it emerged that almost all progenitorswere characterized
by the absence of CD34 [10]. In humans, it is the contrary,
as the first marker of HSCs that was discovered was CD34
[11]; hematopoietic precursors also showed positive to dif-
ferent isoform of CD45 [12]. HSCs marker physiology and
discussion are beyond the scope of this review: for a complete
report and comparison on mouse and human hematopoiesis
we suggest recent papers written by Doulatov et al. [13]. The
importance of the bone marrow niche and the relationship
in the microenvironment between HSCs, BM-MSC, and also
endothelial precursors cells (EPC) are highlighted by the
studies by Scadden [6, 8].

1.1. Skeletal Muscle Differentiation of HSCs. An active role
of hematopoietic cells to muscle regeneration has been
established [14], but the related molecular mechanisms are
still unclear.

In vitro study performed by Polesskaya et al. in 2003
[15] demonstrated that CD45+/Sca1+ cells isolated from
muscle can form myogenic clones when cocultured with
skeletal myoblasts. Just one year later, Sherwood et al. [16]
demonstrated that CD45+/Sca1− cells, derived from muscle,
showed in vivo myofiber-forming ability but were not able
to differentiate into myocytes either alone or in coculture in
vitro.

Hence, attempts were made to characterize mecha-
nisms of in vivo contribution of bone marrow-derived cells
to myofibers and it emerged that hematopoietic stem cells
participated in muscle regeneration by direct fusion without
specification of a myogenic program [17, 18].

First approaches on muscle disease therapy did not
have positive outcomes. In fact in vivo transplantation of
hematopoietic fraction isolated from bone marrow did not
restore dystrophin expression in dystrophic dogs [19].

Recently, Xynos et al. [20] demonstrated that CD45+/
Sca1+ cells both isolated from bone marrow and muscle
did not express key myogenic factors like Pax7 and MyoD,
although they underwent myogenic reprogramming and
participated in myofiber fusion. These results suggest that
CD45+ cells isolated from muscle form a population that
contributes to tissue regeneration that is distinct from satellite
cells.

1.2. Cardiac Muscle Differentiation of HSCs. Studies per-
formed in 2001 in mice by Anversa’s group [21] proved
efficient regeneration of myocardium after ischemia by trans-
plantation of Lin− cKit+ HSCs. Later they also showed that
stem cell factor (SCF) and granulocyte colony-stimulating
factor (GCSF) mobilization of Lin−, c-Kit+ hematopoietic
stem cells significantly decreased infarct size, cavitary dila-
tion, and diastolic stress [22].

In this paper, they demonstrated cardiac differentiation
of transplanted HSCs; but this result was not confirmed by

other groups [23, 24]. Instead, it emerged that HSCs generate
cardiomyocytes with low frequency by fusion with resident
cells [25, 26] but not by active cardiac differentiation.

Emerging roles in cardiac disease therapies have been
demonstrated for hematopoietic cytokines like GCSF, gran-
ulocyte macrophage colony-stimulating factor (GM-CSF),
SCF, Flt-3 ligand, and erythropoietin (EPO). In fact, these
molecules induce mobilization and homing of HSCs and also
exert cytoprotective effects like reduction of apoptosis and
induction of angiogenesis [27].

Currently, phase I and II clinical trials (REPAIR-ACS,
REGEN-AMI, TIME, and LATE TIME) are ongoing with
bone marrow-derived HSCs in the therapy of myocardium
infarct [28]. In TOPCARE clinical trial of heart failure
affected patients, BMSCs cell transplantation was associated
with a significant, though moderate, amelioration of left
ventricular ejection fraction. Instead, isolated bone marrow
HSCs were not as beneficial (AMI clinical trial) suggesting
that all the bone marrow stem cell populations are important
for cardiac recovery. There is an ongoing hot debate on
the conflicting results of resident cardiac stem cells and/or
migrating blood derived stem cells in heart regeneration and
repair: several publications question the appropriateness of
the animal models as well as the tracking systems utilized to
identify cells involved in regeneration and repair [29–35].

2. Bone Marrow-Derived Mesenchymal
Stem Cells (BM-MSCs)

The nonhematopoietic bone marrow-derived cells can be
cultured as plastic adherent cells and are defined by different
names: bone marrow stromal cells, bone marrow mesenchy-
mal stem cells [36]. Of note, these cells defined as MSCs
are so labeled because of their function in vitro, not in
vivo, and we have to consider that mesenchymal cells grown
in vitro have extensive biological testing but lack rigorous
confirmation that they reflect an in vivo stem cells population.
In this minireview, they will be called bone marrow-derived
mesenchymal stem cells (BM-MSCs). Initially described by
Friedenstein et al. [37, 38], BM-MSCswere defined by Caplan
[39] who considered their differentiation ability towards
other mesenchymal lineages beside the osteogenic one.

BM-MSCs are characterized by the expression of CD29,
CD73, CD105, CD90, CD44, and CD146 surface markers,
all of them reviewed in [40, 41]. However, all these markers
are expressed in other bone marrow cells, thus creating
an issue for prospective isolation. Recently, other markers
such as CD271 and W8-B2/MSCA-1 have been suggested for
BM-MSCs purification but definitive confirmations by other
laboratories are still lacking [42].

Basically, BM-MSCs are defined as plastic adherent cells
that express CD105, CD90, and CD73 but lack the expression
of pan-leukocyte, endothelial or primitive haematopoietic,
and monocytic or B cell markers and lack HLA class II
antigens on the cell surface [43].Usually, bulk cell populations
must demonstrate trilineage differentiation into osteoblasts,
adipocytes, and chondroblasts [43].

Bianco’s group [44] showed that human CD146+CD45-
expression marked self-renewing osteoprogenitor cells
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containing all the BM CFU-activity and capable of gene-
rating a heterotopic BM niche in a subcutaneous trans-
plantation model. More recent studies have suggested that
a similar frequency of CFU-Fs could be recovered from
CD271+CD146low/CD45-human BM cells [45]. Another
independent study has revealed that the intermediate fila-
ment protein Nestin marked perivascular stromal cells
(Nestin+CD31-CD45-) that contain all the CFU-F activity
within the BM and the exclusive capacity to form clonal
spheres (termed mesenspheres) when cultured in nonad-
herent conditions [46]. Because only a fraction of CFU-Fs
represents truly BM-MSCs, more work is required to define
BM-MSCs and distinguish them from differentiated progeny.

BM-MSCs represent the optimal candidate for cell ther-
apy because they can be easily obtained from a bone marrow
aspirate and expanded on a large scale before autotransplan-
tation, avoiding ethical problems. Recently, it emerged that
the principal role of BM-MSCs is the protection of the host
tissue after transplantation: they produce different cytokines
that reduce apoptosis and induce neovascularization in neu-
ronal and cardiac tissues [47, 48].

2.1. Skeletal Muscle Differentiation of BM-MSCs. In addition
to the classical trilineage potential, BM-MSC may also dif-
ferentiate into other mesodermal or even nonmesodermal
cell types, such as myoblasts, hepatocytes, and neural cells
[34, 49, 50]. In vitro skeletal myogenic induction of BM-
MSCs was demonstrated by Dezawa et al. in 2005 [51]. Cells
were treated with basic fibroblast growth factor (bFGF),
platelet derived growth factor-AA, and neuregulin. After
3 days the cells were transfected with Notch1 intracellular
domain (NICD) containing plasmid.Myotube formation and
contraction together with expression of late markers such
as myogenin and myosin heavy chain were observed after
treatment with supernatant of the original BM-MSCs.

Muscle regeneration has been tested after transplanta-
tion of BM-MSCs obtained from GFP-transgenic mice [52].
Immunosuppressed mdx-dystrophic mice received GFP-
positive BM-MSCs after damage induced with cardiotoxin
treatment. After 4 weeks, histological analysis showed a sig-
nificant number of GFP+/dystrophin+ fibers. At that point,
if the same muscles were treated with cardiotoxin, it was
possible to observe GFP-positive immature myofibers after 2
weeks. This important result showed that transplanted BM-
MSCs contained a subpopulation that acts as satellite cells,
retaining capability for future muscle regeneration.

Similar experiments were performed by de la Garza-
Rodea et al. [53]. In this case BM-MSCs were transduced
with a LacZ-coding lentivirus. Four weeks after cell trans-
plantation, lacZ positive myofibers corresponded to 5% of
total myofibers, equally distributed along all the muscle, thus
confirming myogenic differentiation of BM-MSCs, though
with low frequency.

2.2. Cardiac Muscle Differentiation of BM-MSCs. In vitro
cardiac differentiation of BM-MSCs after addition of the
demethylating agent 5-azacytidine was showed by different
groups [54–56]. Typically, 2–4 weeks after treatment, BM-
MSCs changed morphology and expressed cardiac specific

genes (e.g., Nkx2.5, Gata4, andMef2C). Besides 5-azacytidine
treatment, other molecules have been used to induce cardiac
differentiation of BM-MSCs: dexamethasone and ascorbic
acid [57]; bone morphogenetic protein-2 (BMP-2); and
fibroblast growth factor-4 (FGF-4) [58]. The coculture with
cardiomyocytes has also been used to induce cardiac differ-
entiation of BM-MSCs [59–61]. Positive effects on cardiac
differentiation of BM-MSCs, when put in coculture with
cardiomyocytes, suggest a role of cell-cell communication for
the induction of in vitro differentiation.

There is an open controversy on the role of BM-MSCs in
cardiac therapy. There are different papers that show engraft-
ment of BM-MSCs in models of myocardium infarct with
functional amelioration. Toma et al. [62] demonstrated that
0.44% of injected human BM-MSCs engrafted immunodefi-
cient murine hearts and adopted mature cardiac phenotype 2
weeks after injection.

In a model of chronic cardiomyopathy, Quevedo et al.
[63] showed that 10% of the injected cells differentiated into
new vessels, while the remaining 76% was found in the
interstitial cardiac compartment without evidence of lineage
commitment.

In contrast, two groups did not find either engraftment
or cardiac differentiation of BM-MSCs in a sheep model
of myocardium infarct [64] or dog model of ischemic car-
diomyopathy [65], suggesting that other experiments are still
necessary to clarify the role of BM-MSCs in cardiac repair.

Moreover, functional recovery could not be explained
simply by differentiation of injected BM-MSCs, since the
number of differentiated cells corresponds to 10–15% of the
total. Therefore, other possible mechanisms of action have
been investigated. In particular, since BM-MSCs secrete dif-
ferent antiapoptotic and angiogenic factors (e.g., bFGF, HGF,
IGF1, and VEGF), different groups have studied whether or
not these molecules could mediate left ventricular functional
improvement and reduction of infarct scar [66–69]. Although
a positive effect of BM-MSCs conditioned media adminis-
tration was encountered, it was not the same as obtained
by BM-MSCs injection. Of note, paracrine factors do not
recruit cardiac stem cells (CSCs) in the infarct area as BM-
MSCs do [70]. This result obtained in a porcine model was
not confirmed in mice, suggesting that more experiments
should be performed to understand the role of BM-MSCs in
myocardium infarct recovery [71].

2.3. Smooth Muscle Differentiation of BM-MSCs. Direct
smooth muscle differentiation of BM-MSCs was investigated
in vitro by comparing expression of smooth muscle markers
like alpha-smooth muscle actin (ASMA) and h1-calponin
(CALP) inBM-MSCs cultured on extracellularmatrix (ECM)
proteins: laminin (LM), collagen type IV (Col-IV) and
fibronectin, or normal plastic. Results showed increased
expression of ASMA and CALP in vitro [72].

TGFbeta-1 has been shown to be important for smooth
muscle differentiation of BM-MSCs, although, in this case,
cell-cell contact is required for resembling tissue develop-
ment in vivo [73]. On the contrary, in vivo angiogenesis
had been shown with both mesenchymal precursors and
osteoblasts in transplanted scaffolds, but it was strongly
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related to VEGF production [74]. This suggests that new
angiogenesis is independent by vascular differentiation of
BM-MSCs.

3. Conclusions

Bone marrow stem cells represent a useful source of pro-
genitors for cell therapy thanks to the fact that they can
be isolated by a relatively simple method which is a single
marrow biopsy. HSCs efficiently reconstitute blood cells,
but they have a positive effect on muscle disease therapy.
BM-MSCs cells normally differentiate towards osteocytes,
chondrocytes, and adipocytes. Like HSCs, BM-MSCs present
plasticity in vitro towards other mesodermal cell types such
as cardiac and skeletal myocytes. However, for both HSCs
and BM-MSCs, it is now widely recognized that they par-
ticipate in cell therapy also producing cytokines and growth
factors that have antiapoptotic and angiogenic effect. Our
understanding of what constitutes an HSC and BM-MSC, its
metabolic activities, and therapeutic potential has improved
considerably since the initial isolation of colony-forming
cells a few decades ago. The benefits of heterogeneous cell
populations (including hematopoietic stem cells, endothelial
progenitor cells, and platelets) and limitations of allogeneic
BM-MSCs require further basic and clinical investigation.On
the basis of the preliminary reports of safety and efficacy in
several medical specialties, autologous cell therapies (freshly
harvested or culture-expanded cells) represent a method to
treat conditions that currently are inadequately treated and
generally result in poor outcomes or invasive surgery [75, 76].

More clinical data is necessary to determine the in vivo
distribution and therapeutic mechanisms of HSCs and in
particular of BM-MSCs to optimize their use in a per-
sonalized regenerative medicine portfolio. This process will
require the collaborative efforts of physicians, scientists, and
industry and regulatory agencies to translate nature’s basic
regenerative element into the continuum of clinical care.
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