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Abstract
Biomedical literature articles and narrative content from Electronic Health Records (EHRs)

both constitute rich sources of disease-phenotype information. Phenotype concepts may

be mentioned in text in multiple ways, using phrases with a variety of structures. This vari-

ability stems partly from the different backgrounds of the authors, but also from the different

writing styles typically used in each text type. Since EHR narrative reports and literature

articles contain different but complementary types of valuable information, combining

details from each text type can help to uncover new disease-phenotype associations. How-

ever, the alternative ways in which the same concept may be mentioned in each source

constitutes a barrier to the automatic integration of information. Accordingly, identification

of the unique concepts represented by phrases in text can help to bridge the gap between

text types. We describe our development of a novel method, PhenoNorm, which integrates

a number of different similarity measures to allow automatic linking of phenotype concept

mentions to known concepts in the UMLS Metathesaurus, a biomedical terminological

resource. PhenoNorm was developed using the PhenoCHF corpus—a collection of litera-

ture articles and narratives in EHRs, annotated for phenotypic information relating to

congestive heart failure (CHF). We evaluate the performance of PhenoNorm in linking

CHF-related phenotype mentions to Metathesaurus concepts, using a newly enriched ver-

sion of PhenoCHF, in which each phenotype mention has an expert-verified link to a con-

cept in the UMLS Metathesaurus. We show that PhenoNorm outperforms a number of

alternative methods applied to the same task. Furthermore, we demonstrate PhenoNorm’s

wider utility, by evaluating its ability to link mentions of various other types of medically-

related information, occurring in texts covering wider subject areas, to concepts in different

terminological resources. We show that PhenoNorm can maintain performance levels, and

that its accuracy compares favourably to other methods applied to these tasks.
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Introduction

Human phenotypic information constitutes the observable traits of human beings (e.g., height,
eye colour, etc.) resulting from genetic make-up and environmental influences. A more con-
temporary definition of phenotypes includes the measurable biological, behavioural or cogni-
tive markers that distinguish individuals with specificmedical conditions from the general
population [1]. In the context of this article, the term phenotypic information refers specifically
to the causes, risk factors, signs or symptoms of a given disease.

Detailed information about phenotype concepts relating to different diseases can be found
in documents from various sources with different focus and perspective, e.g., narrative reports
within EHRs and scientific literature articles. Narrative EHR information includes details
about individual patient diagnoses,medication, family history, patient past history, signs,
symptoms and findings, whilst scientific articles tend to summarise the latest research findings,
results and advances in knowledge relevant to different diseases [2, 3]. Given that these differ-
ent types of information can often be complementary to each other, important details may be
overlooked if only a single source (or text type) is considered. As such, automated methods to
combine relevant details from different text types can be extremely useful, not only to discover
extended information about a given concept (e.g., to gather alternative perspectives regarding
risk factors contributing to a given disease), but also to uncover novel associations between dis-
eases and phenotypes, which may be scattered amongst documents, both within a given text
type and across different text types.

An important means of establishing links between information contained within different
documents is to determine when certain types of information are shared, e.g., those documents
that mention a common concept. However, this can be problematic, according to the many
possible ways in which a given concept can be mentioned in text. For example, rheumatoid
arthritis, RA and atrophic arthritis are examples of ways in which the same disease concept
could appear in text. The types of variability amongst concept mentions may also be dependent
on the characteristics of the text type. For example, scientific literature articles constitute for-
mal text conforming to conventions of structure and readability, whereas the narrative content
within EHRs, intended to be used only in a hospital context by doctors, often exhibits a prolif-
eration of undefined (and partly ad hoc) short forms, e.g., acronyms and abbreviations, and
there are typically many spelling and/or grammar mistakes [3].

The automatic identification and classification of words and phrases describing important
concepts is carried out by a process known as Named Entity Recognition (NER). Each of these
words and phrases (subsequently referred to as entity mentions) is assigned a label or semantic
category from a pre-defined set, to characterise the type of concept being described, e.g., gene,
disease, symptom, etc. NER systems have been customised for both literature and narrative clin-
ical text [4–9], and their accuracy has improved greatly over the last decade.

To allow different types of information about a given concept to be gathered/combined,
possibly from multiple documents belonging to heterogeneous text types (e.g., narratives in
EHRs and literature articles), it is important to associate each entity mention in a document
with the unique concept that it represents. Links can then be established between entity men-
tions that describe the same concept in different ways, both within and across documents
belonging to different text types.

Typically, each entity mention is automatically linked or mapped to a concept entry in a
terminology, ontology or thesaurus (henceforth referred to collectively as terminological
resources), which provides a comprehensive inventory of information about domain-specific
concepts. According to recent conventions, we refer to this process as entity normalisation.
Terminological resources usually assign a unique identifier to each concept, and provide
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various other types of information about the concept, such as a textual or formal definition, an
account of semantic relationships with other concepts, and a listing of several terminological
units, i.e., single or multi-word phrases that are frequently used to refer to the concept in text,
including acronyms and abbreviations [10]. We subsequently refer to these terminological
units as (concept) synonyms.

Normalisation methods usually work by trying to match each entity mention in a document
with a concept synonym in a terminological resource. This allows the entity mention to be
associated with the concept under which the synonym is listed in the terminological resource.
A potential issue is that terminological resources are typically manually curated and not pri-
marily designed for use by automatic entity normalisation methods. Thus, they do not attempt
to exhaustively account for all possible ways of mentioning a concept in text. Indeed, given the
often highly creative nature of language, compiling such a list would be virtually impossible.
Accordingly, automatic normalisation methods propose different ways to find the most accu-
rate mapping between an entity mention in text and a concept synonym in a terminological
resource, when no exact match can be found.

To the best of our knowledge, no previously reported automatic normalisation method has
focussed specifically on phenotype concepts. However, this represents a particularly challeng-
ing task, due to the diverse ways in which concepts describing phenotypes can be mentioned in
text. Such diversity is particularly prevalent within narrative EHR reports. In this article, we
report on our development of a novel method (PhenoNorm), specifically designed to normalise
phenotype entity mentions in heterogeneous text types to concepts in the UMLS Metathe-
saurus [11], a large and widely-used repository of biomedical terminology. To address the com-
plexity of the task, PhenoNorm integrates a number of different string-based and semantic
similarity measures to allow flexible, accurate normalisation of phenotype entity mentions with
a range of different internal structures/characteristics.

PhenoNorm was developedwith the aid of a pre-existing text corpus, PhenoCHF [12],
whose documents (both narrative EHR reports and biomedical literature articles on the subject
of congestive heart failure (CHF)) are annotated (i.e., marked up) by medical experts with phe-
notypically-focussed entity mentions belonging to a number of semantic categories. As such,
PhenoCHF provides valuable evidence about how phenotype concepts can be mentioned in
text, and how these mentions vary in different text types.

We have evaluated the performance of PhenoNorm in normalising phenotype mentions in
PhenoCHF, and we show that it achieves higher accuracy than other, more general normalisa-
tion methods when they are applied to the same task. We have also conducted a number of
additional experiments to demonstrate that PhenoNorm is a highly flexiblemethod, which per-
forms robustly and consistently when used to normalise entity mentions belonging to a range
of semantic types, in documents belonging to different text types and covering alternative bio-
medical subject areas. This is particularly the case when normalisation is carried out to the
same terminological resource, although good performance can still be achieved when a differ-
ent terminological resource is used. We furthermore demonstrate that when applied to these
alternative normalisation tasks, PhenoNorm is still able to perform competitively with alterna-
tive methods.

The remainder of this article is organised as follows. Firstly, in the Related Work section, we
review a number of areas of research that are highly relevant to our own work. These include
previous efforts to recognise and normalise entity mentions in biomedical text, as well as recent
work to recognise phenotype-related information in text. Subsequently, in the Methods section,
we describe the work involved in designing our novel PhenoNorm method, and provide a
detailed description of the different steps involved in the final algorithm. In the Results section,
we firstly report and analyse the normalisation results produced by PhenoNorm, and compare
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these with a number of baseline methods applied to the same task. We then provide a more
detailed analysis of the different types of concepts that are mentioned in narrative EHR reports
and literature articles, and finish this section by assessing the performance of PhenoNorm
when applied to other normalisation tasks. Finally, in the Conclusion section, we summarise
our contribution and results, and we provide some directions for future work.

Related Work

As mentioned above, NER is an important first step to determine which phrases in text corre-
spond to concept mentions. Approaches to NER may be largely divided into terminology-
driven and corpus-driven approaches. In the former, normalisation of entity mentions occurs
as an integral part of the NER process, whilst the latter normally require a separate normalisa-
tion step, thus motivating the need for dedicated normalisation methods, such as PhenoNorm.
Depending upon the subject of the text and the purpose of the normalisation, a large variety of
terminological resources could be used to provide the target concepts. For example, compre-
hensive resources are available that concentrate on specialised types of terminology, e.g., gene-
related information [13], diseases [14, 15], clinical care [16, 17] and phenotypes [18, 19], as
well as larger-scale resources that cover a wider range of biomedical and health-related con-
cepts (e.g., the UMLS Metathesaurus [11], which integrates a large number of different termi-
nologies, including several of the above, such as those relating to phenotypes).

NER approaches

In terminology-drivenNER systems, the process of finding entity mentions is primarily driven
by matching words and phrases in text with concept synonyms in a terminological resource.
As such, the normalisation of entity mentions to concepts is an integral part of the NER pro-
cess, and a separate normalisation step is not required.

The earliest terminology-driven NER methods used strict matching between phrases in the
text and concept synonyms listed in the associated resource (e.g., [20]). Subsequent methods
introduced simple ways to better account for the variable nature of language, such as removing
inflections (e.g., plurals) [21], whilst later approaches (e.g., [22–28]) have employed a greater
variety of heuristics to try to account for the potential multitude of ways in which concepts can
be mentioned in text. These include ignoring certain words that occur in entity mentions but
not in concept synonyms (e.g., articles, pronouns, etc.), generating derivations of words in con-
cept synonyms to match more entity mentions (e.g., elevate -> elevation), using additional lexi-
cal resources, generating permutations of words in concept synonyms (e.g., increase in blood
pressure -> blood pressure increase) and disambiguating mentions with several potential con-
cept mappings, according to surrounding text (e.g., the entity mention MI could correspond to
myocardial infarction or mitral incompetence). Linguistic pre-processing ensures that only lin-
guisticallymeaningful units (e.g., noun phrases) are considered as potential concept mentions.
Partly as a consequence of the frequent update of certain underlying terminological resources
(e.g., the UMLS Metathesaurus) to include new concepts and synonyms, such approaches
remain popular. This is evidencedby the continuing evolution and improvement of very
mature tools (e.g., MetaMap [29]) and the appearance of new methods that follow the same
general approach (e.g., [30]).

The major drawback of terminology-driven approaches is their primary reliance on manu-
ally curated (and hence, incomplete) terminological resources. Regardless of the heuristics
applied, only entity mentions that match (or closely resemble) synonyms listed in the resource
will be recognised and normalised.

Linking Electronic Health Records to the Biomedical Literature

PLOS ONE | DOI:10.1371/journal.pone.0162287 September 19, 2016 4 / 27



Corpus-driven approaches to NER tackle the problem from a different angle, by using evi-
dence from text corpora to derive general linguistic patterns that signify the presence of entity
mentions, usually using sophisticated machine learning methods. Corpus-drivenmethods usu-
ally have less (if any) reliance on information in terminological resources, and according to
their employment of generalised patterns to recognise entity mentions, they can often recog-
nise a wider range of entity mentions than terminology-drivenapproaches.

Despite the advantages of corpus-drivenmethods, there are some potential issues. The first
of these is their usual reliance on annotated corpora, in which expertsmust meticulously mark-
up mentions of relevant concept types in a collection of documents; such corpora require
much time and effort to produce. Secondly, since corpus-drivenNER methods are usually
largely detached from terminological resources, the entity mentions that these methods recog-
nise may have forms that vary considerably from associated concept synonyms listed in termi-
nological resources. This means that dedicated normalisation methods are usually required to
“bridge the gap” between the ways in which concepts are actually mentioned in text and how
they are represented in the terminological resource.

Despite the difficulties faced in creating annotated corpora, numerous collections of bio-
medical literature have been annotated with molecular-level entities (e.g. genes and proteins)
and diseases, either by individual research groups (e.g., [31–34]), or more recently in the con-
text of shared tasks (e.g., [35–41]), which encourage several research teams to focus their
attention on challenging natural language processing (NLP) problems. When developed in
the context of shared tasks, the production costs of annotated corpora are offset by the high
likelihood that they will act as a driver for advancing research, and that they will be widely
used by the NLP community. Although annotated corpora of narrative clinical text are
scarcer, largely according to privacy concerns in relation to their potentially sensitive content
[7], efforts to stimulate rapid advances in clinically-focussedNLP methods through shared
tasks [42] have resulted in the organisation of a number of shared task series, e.g., i2b2 [5, 7,
43, 44] and the ShARe/CLEF eHealth Evaluation Labs [45–47]. The ShARe/CLEF corpus of
narrative clinical reports released for Task 1 of the 2013 Lab [45], annotated with mentions
of disorders, each mapped to an appropriate concept in the UMLS Metathesaurus (hence-
forth referred to as the ShARe/CLEF corpus), has also formed the basis for further shared
tasks [48, 49].

Normalisation of entity mentions

The need for sophisticated normalisation methods to handle entity mentions recognised by
corpus-driven approaches is clearly demonstrated in [50], in which an assessment of the ability
of four widely-used, terminology-driven tools to carry out recognition and normalisation of
disorder entities, using the ShARe/CLEF corpus as a gold standard, demonstrated poor perfor-
mance by all of them. However, the increasing emergence of annotated corpora that include
gold-standard links between entity mentions and concepts in terminological resources [33, 34,
45] has stimulated a large amount of research into the development of dedicated normalisation
methods for both biomedical scientific text and narrative clinical text.

The majority of normalisation methods are based on matching entity mentions against con-
cept synonyms listed in a terminological resource (e.g., [22, 23, 51–53]); more sophisticated
methods combine or rank the results obtained using a number of different terminological
resources [54, 55]. Approaches based on pattern-matching or regular expressions (e.g., [56–58])
can account for frequently occurring variations not listed in the terminological resource (e.g.,
Greek or Roman suffixes for genes) and/or by helping to post-process initial normalisation out-
put [59], in order to better handle problematic cases such as abbreviations or coordinated

Linking Electronic Health Records to the Biomedical Literature

PLOS ONE | DOI:10.1371/journal.pone.0162287 September 19, 2016 5 / 27



phrases [60]. Methods based on machine learning, or hybrid methods combining rules and
machine learning, have also been proposed (e.g., [61, 62]).

String similarity methods have also been employed in a number of normalisation efforts
(e.g., [63, 64]). They assign a numerical score representing the degree of similarity between an
entity mention and a concept synonym, which means that, unlike the limited types of varia-
tions that can be handled by rules or regular expressions, string similarity methods can handle
a virtually unlimited range of variations. Character-level methods consider the number of edits
(e.g., insertions, deletions or substitutions) required to transform one phrase into another (e.g.,
[65]), or look at the proportion and/or ordering of characters that are shared between the
phrases being compared [65–67]. This can help to account for the fact that concepts may be
mentioned in text using words that have the same basic root but many different forms, includ-
ing different inflections (e.g., reduced vs. reduce), alternative spellings (e.g. oedema vs. edema)
and nominal vs. verbal forms (e.g., reduce vs. reduction).

Word-level similarity metrics (e.g., [68]) can be more appropriate when the phrases to be
compared consist of multiple words. Such metrics make it possible to ensure that a match is
only considered if a certain proportion of words is shared. Weights may be applied to the indi-
vidual words (as is the case for TF-IDF (Term Frequency-Inverse Document Frequency)[69]),
to ensure that greater importance is placed on matching words with high relevance to the
domain, than functionwords like the, of, etc.

Hybrid methods (e.g. SoftTFIDF [70]) also operate at the word level, but use a character-
based similarity method to allow matches betweenwords that closely resemble each other, even
if they do not match exactly. This helps to account for the fact that concepts may be mentioned
in text using multi-word terms whose exact forms may vary from synonyms listed in the termi-
nological resource. Such methods can also help to address the problem of normalising entity
mentions containing spelling errors, which are very frequent in clinical narrative text (e.g., to
allow mapping of the entity mention high blood presser to the concept synonym high blood
pressure [69]).

Despite their flexibility, string similarity methods can only handle surface-level variations. If
an entity mention has a similarmeaning to concept synonym, but it uses words whose appear-
ance is different to those used in the concept synonym, then is likely that an incorrect mapping
will be assigned. An example is the entity mention worsening in exercise tolerance, whose clos-
est concept synonym in the UMLS Metathesaurus is reduced exercise tolerance. String similarity
methods will typically map entity mentions only to those concept synonyms in which all words
match or look similar to words in the entity mention. In the case that the UMLS Metathesaurus
is used as the terminological resource, this would result in a mapping to the more general con-
cept synonym exercise tolerance. Accordingly, the accuracy of string similarity methods could
be improved by integrating semantic-level information.

Acquiring phenotype knowledge from text

There has been increasing interest in the automatic acquisition of knowledge about phenotypes
from text. This has been partly driven by the Phenotype day events [71, 72], which have the
overarching aim of bringing together researchers with different backgrounds to support the
process of deep phenotyping. Topics covered have included creating ontologies to represent
phenotypes [73–75], developing tools and pipelines to support phenotypic data curation and
integration with ontologies [55, 75, 76], and applying phenotype knowledge acquisition in real
world applications (e.g., discovery of phenotype-genotype relations) [77–79].

Efforts to create corpora that are focussed specifically on annotating mentions of pheno-
type-related concepts have included a silver-standard (i.e., automatically annotated) corpus
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[50], which combined the outputs of several tools to ensure higher quality annotations, as well
as a number of gold standard corpora concerning the annotation of mentions of phenotype
concepts concernedwith specific diseases (i.e., COPD [55], CHF [12], heart failure, rheumatoid
arthritis and pulmonary embolism [73]). Of these, only the latter 3 corpora (all developed as
part of the same research effort) include normalised annotations, i.e., entity mentions are
linked to concepts in the UMLS Metathesaurus. In all of these phenotype-centric annotated
corpora, fine-grained semantic categories such as Cause, Risk Factor, Individual Behaviour and
Sign or Symptom provide a more detailed encoding of phenotype information. However, the
fact that several of these categories do not correspond directly to semantic categories in the
UMLS Metathesaurus motivates need to develop customisedmethods to recognise and nor-
malise phenotype entity mentions. Whilst in our previous work, we reported on our efforts to
develop NER methods to recognise phenotype entity mentions relating to CHF, we are not
aware of any previous research that has specifically targeted the normalisation of phenotype
entity mentions.

Methods

In this section, we describe how the design of our PhenoNorm method began with a prepara-
tory analysis of entity mentions previously annotated in a phenotype-focussedcorpus, i.e., Phe-
noCHF, to try to determine the range of ways in which phenotype concepts can be expressed
in text. As a result of this initial analysis, we set down a number of important considerations
for the design of a normalisation method for phenotype entity mentions. Finally, we provide a
detailed account of the steps involved in the final PhenoNorm method, and we describe how
the design considerations have been fulfilledwithin the method.

Analysis of phenotype mentions in the PhenoCHF corpus

The PhenoCHF corpus [12] provides evidence of how a common set of phenotype concept
types is mentioned in heterogeneous text types (i.e., narrative EHR reports and biomedical lit-
erature). The EHR part consists of 300 discharge summaries (a subset of the documents from
the i2b2 recognising obesity challenge [5]), while the literature part consists of 10 full text liter-
ature articles. In both cases, documents are concernedwith patients suffering from CHF as a
major complaint, as well as from kidney failure. It has previously been shown that the corpus
can be used successfully to train NER methods that can robustly recognise phenotype entities
in heterogeneous text types [4].

All documents in PhenoCHF were manually annotated by medical experts for phenotypic
information related to CHF. The annotation includes entity mentions relating to four semantic
categories of phenotype-related concepts, as shown in Table 1.

An examination of the entity mentions annotated in PhenoCHF reveals that phenotype
concepts can be mentioned in text using varying syntactic structures of different lengths,
including simple noun phrases (e.g. progressive renal failure), coordinated noun phrases (e.g.,
increased chest pain and fatigue), noun phrases followed by prepositional phrases (e.g., increas-
ing dyspnea on exertion) and complete clauses or sentences (e.g., jugular venous pressure is ele-
vated). Phenotype mentions in narrative EHR reports exhibit a balanced distribution between
these different syntactic structures, whilst entity mentions in scientific articles usually corre-
spond to noun phrases.

The diversity of entity mentions exhibited in PhenoCHF would prove problematic for a
number of terminology-driven NER/normalisationmethods, since they are usually only able to
handle entity mentions expressed as simple noun phrases. Furthermore, the concept synonyms
listed in the UMLS Metathesaurus often have rather different forms to the entity mentions
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encountered in PhenoCHF. Specifically, synonyms in UMLS tend to constitute noun phrases,
which are frequently provided in a standardised form that does not typically reflect how the
concept is actually expressed in running text, e.g., the UMLS synonym Family history: myocar-
dial infarction may appear in text as father died of a myocardial infarction.

Design of a novel phenotype normalisation method

The annotated entity mentions in the original version of PhenoCHF did not include gold stan-
dard links to concepts in a terminological resource. Indeed, at the time that we developed Phe-
noNorm, we were not aware of any phenotype-focussedannotated corpus with gold-standard
normalisations of entities. Although the corpora reported in [73] have subsequently been
released, which do include gold standard normalisation of entity mentions to UMLS concepts,
these corpora only include formal text. However, as our analysis of PhenoCHF has shown, the
highly variable ways in which concepts can be mentioned in narrative clinical text means that
it is important to account for these in developing an effective and robust normalisation method
for phenotype entity mentions.

Without gold standard normalisation annotations, however, we could not develop a method
based on machine learning techniques. Instead, we chose to develop a hybrid method, which
integrates various similarity methods to specifically address the range of variability in entity
mentions that are evidenced in PhenoCHF. We determined that our novel method should take
the following into account:

• Variability—differences between entity mentions in text and concept synonyms in the
UMLS Metathesaurus are particularly prevalent for phenotype entity mentions, e.g., varia-
tions in word order and internal structure of entity mentions, different word forms, etc. The
flexibility offered by string similarity methods makes them far more suitable than rules in
this context.

• Specificity—entitymentions should be mapped to concepts with the correct level of specific-
ity. A large number of UMLS concepts correspond to qualified versions of more general con-
cepts. Therefore, if an entity mention includes a qualifier, it should normally be mapped to a
qualified UMLS concept. For example, the mention elevated jugular venous pressure should
be mapped to the concept synonym raised jugular venous pressure. Even though the qualifier
terms used in the mention and the concept synonym are different, it is important that, in
contrast to existing methods, our novel method should not simply map the entity mention to
the shortest concept synonym with the greatest number of shared words (in this case jugular
venous pressure), since this represents a more general concept.

Table 1. Types and statistics of entity mentions annotated in the PhenoCHF corpus.

Semantic

categories

Description # of annotated mentions in

narrative EHR reports

# of annotated mentions

in literature articles

Cause Any medical problem that contributes to the occurrence of CHF 1320 1107

Risk factor A condition that increases the chance of a patient having CHF 1335 408

Sign or symptom Any observable manifestation of a disease. Symptoms are subjective

manifestations experienced by a patient and reported to a health

professional. Signs are physical manifestations of a disease observed by

someone other than the patient, e.g. a physician using by physical

examination of diagnostic tests.

2449 304

Non-traditional

risk factor

Conditions associated with abnormalities in kidney functions that put a

patient at higher risk of developing signs or symptoms and causes of CHF

308 329

doi:10.1371/journal.pone.0162287.t001
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• Semantic-levelvariations—Entity mentions may include not only different forms of words
compared to those contained within UMLS concept synonyms, but also words with closely
related meanings. For example, the entity mention elevated pulmonary capillary wedge pres-
sure should be mapped to the concept synonym pulmonary capillary wedge pressure
increased. However, using a string similarity (edit distance) approach, an incorrect concept
synonym (pulmonary capillary wedge pressure decreased) will be chosen.

PhenoNorm method

Our novel PhenoNorm method takes into account all of the above design considerations, as
detailed below in our description of the steps that are carried out by the main algorithm. How-
ever, we firstly describe a number of pre-processing steps that were carried out in an attempt to
improve the accuracy of the mappings:

• We created a filtered version of the UMLS Metathesaurus, to ensure that our normalisation
process would not consider irrelevant UMLS concepts (i.e., those not corresponding to pheno-
typic information). The Metathesaurus organises its large number of individual semantic cate-
gories into a smaller number of higher-level semantic groups. Although the phenotype entity
categories used in PhenoCHF do not correspond to individual UMLS semantic categories,
they can all be considered to fall within the scope of the more general disorder semantic group
(which includes categories such as Disease or Syndrome, Mental or Behavioral Dysfunction and
Finding). This has been confirmedboth by the PhenoCHF annotators and in previous studies
(e.g., [80]). We thus filtered the UMLS vocabulary to retain only those terms that belong to
this semantic group. We then built an inverted index, which, for each annotated entity men-
tion, links each word in the mention to all UMLS concept synonyms in which it occurs.

• We observed that a large number of annotated entity mentions in PhenoCHF take the form
of co-ordinated noun phrases, which actually correspond to mentions of two or more distinct
UMLS concepts, e.g., the annotation increased chest pain and fatigue mentions two different
UMLS concepts, i.e., increased chest pain and increased fatigue. To address this, we applied
an existing rule-basedmodule (Baumgartner et al. [81]), which uses information from a lin-
guistic analyser [82] to split coordinated phrases appropriately into separate entity mentions.

• Stop words (e.g., the, is, was, etc.) were removed from annotated entity mentions, and abbre-
viations were expanded into their full forms with the aid of MetaMap.

Following the pre-processing stages, the following steps were undertaken for each pheno-
type entity mention, as summarised in Fig 1.

1. Semantic-level variants of the mention were generated, with the aid of the WordNet lexical
database of English [83]. In this large resource, words are organised into sets of synonyms,
called synsets, which are linked together into a semantic network, using different types of
relations. For example, the words elevated and raised occur in the same synset, which is
linked to the synset that contains the word increased, via the similar to relation. Potential
semantic variants of each entity mention were obtained by using WordNet to find syno-
nyms and closely related words for each adjective or noun appearing in the original men-
tion. All possible combinations of semantic variants were then generated, resulting in a set
of phrases (including the original entity mention), each consisting of n tokens (token(1),
token(2). . .. . .token(n)).

2. For each token(i) in each mention/variant, the inverted index is consulted, and all UMLS
concept synonyms in the filtered list that contain the token are retrieved.
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3. Candidate UMLS concept synonyms with the most similar sets of tokens to the phenotype
mention/variant are found by computing the intersection between the sets of hits retrieved
for each token (i). This set of candidates is then reduced by considering only those whose
tokens match most closely to those in the mention/variant. If any of the candidate UMLS
synonyms matches exactly with the phenotype mention/variant, then the algorithm termi-
nates. Otherwise, the closest non-exact matches are sought. Firstly, it is determinedwhether
any of the candidate UMLS synonyms shares all words with the mention/variant (but possi-
bly in a different order). If such candidates exist, then the algorithm moves on to step 4. If
no such candidates exist, then the constraint is relaxed, such that candidates with only (n-1)
matching words will be considered, and so on. Note that this step will potentially retain

Fig 1. PhenoNorm normalisation workflow.

doi:10.1371/journal.pone.0162287.g001

Linking Electronic Health Records to the Biomedical Literature

PLOS ONE | DOI:10.1371/journal.pone.0162287 September 19, 2016 10 / 27



UMLS synonyms with words that do not match words in the entity mention. This can help
to increase the likelihood of a correct mapping when neither a mention nor its generated
semantic variants correspond exactly to a concept synonym. For example, given the men-
tion heightened blood pressure, the concept synonym high blood pressure, corresponding to
the correct qualified concept, will be retained as a potential candidate.

4. Each candidate UMLS synonym identified in step 3 is assigned a score based on its level of
similarity to the mention/variant. This score is calculated according to both the Levenshtein
distance and the overall difference in the length of the mention/variant and the candidate
UMLS synonym. Length is considered to be important, especially when considering quali-
fied concepts, since it would normally be expected that mentions of qualified concepts will
have similar overall lengths to concept synonyms listed in the resource. We chose to use the
Levenshtein distance metric, according to its flexibility in taking into account different types
of character-level operation (insertion, deletion, replacement) that may be required to trans-
form one phrase into another, and also based on its successful application in other normali-
sation efforts [84, 85].

5. The phenotype mention is mapped to the UMLS concept associated with the synonym that
achieves the lowest score from step 4 when compared to either the original phenotype men-
tion or one of its semantic variants. The lowest score indicates the highest degree of similar-
ity between the phenotype mention/variant and UMLS synonym.

6. If the phenotype mention does not contain any tokens that match with a UMLS synonym
(e.g.,diabetesmellitus, whose closest UMLS synonym is diabetes mellitus), then character n-
grams (which have been used in previous normalisation efforts e.g., [86]) are employed as
the means of retrieving candidate UMLS synonyms (where n = 5 by default, and n = 3 if the
length of the token (i) is less than 5). For each token (i) in the phenotype mention, all UMLS
synonyms containing the least frequent (rarest) n-gram in token (i) are retrieved, since rare
n-grams tend to be the most informative. Steps 3–5 are then repeated.

Results

To allow the performance of the PhenoNorm method to be evaluated, we created an enriched
version of the PhenoCHF corpus, with gold standard normalisations, i.e., links between each
annotated entity mention and its corresponding UMLS concept, which are verified by a
domain expert.We created this mapping in a semi-automatic manner, in order to reduce the
time and effort required on the part of the medical expert annotator. In this respect, we follow
a similar approach to [73], where it was shown that this process can result in high quality anno-
tation. We firstly applied PhenoNorm to the complete PhenoCHF corpus, and then asked the
medical expert to verify or correct the mappings identified. The expert was one of the annota-
tors of the original PhenoCHF corpus, and so was already very familiar with the characteristics
of the corpus and the nature of the task.

To verify the utility of PhenoNorm, we compared its performance to that of a range of pre-
viously proposed “baseline” normalisation methods, when applied to the same task. We com-
pare both terminology-drivenand string similarity methods, which have previously been
applied to the task of normalising entity mentions in clinical narrative text [50, 87].

We have applied two terminology-drivenbaselines, i.e., the mature and highly used Meta-
Map [22], and the more recently released BeCAS [30], both of which firstly split the input text
into sentences, and then identify the noun phrases in each sentence. Entity mentions are found
by matching these noun phrases against concept synonyms in the UMLS Metathesaurus.
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Heuristics are employed to allow non-exact matches between entity mentions and UMLS syno-
nyms, i.e., MetaMap generates potential variants while BeCAS uses regular expressions. Both
tools were configured to recognise (and normalise) mentions of concepts falling under the dis-
order semantic group, according to our previous observation that mentions of phenotypes will
normally fall under this group.

As the string similarity baseline method, we selected SoftTFIDF [70], according to the com-
mon features that it shares with PhenoNorm, i.e., it combines both token-level and character-
level similarity measures. We used the implementation of this method provided in the second-
string package [70], which has been shown to perform well across several different string-
matching problems (e.g., record linkage) [70].

To evaluate the normalisation performance of PhenoNorm and the other baseline methods
when applied to the PhenoCHF corpus, we follow the procedure employed in a closely related
task (i.e., the entity normalisation task in the 2013 ShARe/CLEF eHealth Evaluation Lab) in
that we report the results in terms of accuracy. This is calculated as follows:

Accuracy ¼ correct=total

Where correct refers to the number of entity mentions that are normalised to the correct
UMLS concept, while total refers to the total number of entity mentions in the corpus.

For both PhenoNorm and the baseline methods, we provide in-depth analyses of the nor-
malisation results, including some specific examples of cases where the method in question is
able to produce correct normalisations. For each method, we also highlight some problematic
cases.

PhenoNorm performance evaluation

Detailed evaluation results of applying PhenoNorm to the PhenoCHF corpus are summarised
in Table 2. To assess the contribution of the WordNet-driven generation of semantic variants
of entity mentions, we compare the results obtained both with and without the application of
this step.

PhenoNorm generally achieves very high levels of performance, which are always improved
by the WordNet-based pre-processing step, and in some cases by a significant margin. The
higher performance on literature articles is likely to be due to the more formal nature of the

Table 2. Results of applying PhenoNorm to the PhenoCHF corpus.

Phenotypic categories Accuracy

Without post-processing With post-processing

EHRs

Cause 0.899 0.907

Risk factor 0.745 0.759

Sign or symptom 0.789 0.835

Non-traditional risk factor 0.869 0.887

Average 0.825 0.847

Articles

Cause 0.917 0.917

Risk factor 0.878 0.889

Sign or Symptom 0.837 0.859

Non-traditional risk factor 0.869 0.880

Average 0.875 0.886

doi:10.1371/journal.pone.0162287.t002
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writing, in which authors frequently use more standardised forms that tend to closely resemble
the concept synonyms listed in the UMLS Metathesaurus.

An analysis of the output of PhenoNorm confirms that it is able to handle a variety of types
of variation in entity mentions, e.g., orthographic differences (light-headedness vs. lightheaded-
ness), morphological differences (hyperkalemia vs. hyperkalemic), alternation of Roman and
Arabic numerals (type II diabetes vs. type 2 diabetes), differing numbers of words (mild mitral
regurgitation vs. mitral regurgitation), semantic synonyms (worsening renal function vs.
decreased renal function) and different word ordering or internal structure of mentions (jugu-
lar venous pressure is elevated vs. elevated jugular venous pressure). Entity mentions containing
spelling mistakes can also be handled, e.g., left ventricular hypertrophi is correctly normalised
to left ventricular hypertrophy.

Literature article analysis. In the majority of cases, PhenoNorm makes the correct deci-
sions in mapping phenotype entity mentions in literature articles to UMLS concepts, even
when there are differences in the number and ordering of words in the closest concept syno-
nym. For example, the mention increasing chest pain is correctly mapped to the UMLS syno-
nym chest pain increasing in severity, while the mention stenosis in left anterior descending is
mapped to the synonym left anterior descending coronary artery stenosis.

A small number of cases cannot be handled by PhenoNorm. Since the generation of seman-
tic variations only operates on a word by word basis, it is impossible for the method to normal-
ise the mention increased oxygen requirement to the UMLS concept synonym hypoxia.
However, it is also the case that none of the baseline methods could handle such a mapping.
Even though UMLS lists oxygen deficiency as a synonym for this concept, PhenoNorm actually
maps increased oxygen requirement to increased insulin requirement, based on the similarities
between their lengths and the fact that two words are shared. Even though, in terms of seman-
tics, the two shared words are not the most important ones, PhenoNorm is not able to consider
this.

There are also cases where matching particularwords can be more important than consider-
ing overall length. For example, the mention chronic leg edema is mapped to the concept syno-
nym chronic leg ulcer instead of leg edema. Although, in semantic terms, it is most important to
map a mention to a concept that concerns the same disorder, the importance of overall length
for PhenoNorm means that in this case, it actually chooses a synonym that includes the same
qualifier term as the mention, but which describes a different disorder. Such problems are
partly due to the inconsistency amongst concepts listed in UMLS; for some disorders, there are
specific concepts corresponding to qualified versions of the disorder, whilst in other cases,
there is only a concept corresponding to the general disorder. Because of this, it may be advan-
tageous to investigate a different method of assigning similarity scores, according to the types
of words that are matched by the method, e.g., matching nouns may be more important than
matching adjectives.

EHR analysis. In narrative content from EHRs, the performance of PhenoNorm in nor-
malising entity mentions belonging to the Cause and Non-traditional risk factor semantic cate-
gories is almost as high as for literature articles, because such concepts are mentioned in quite
standardised ways across both text types. For example, mentions of Cause concepts often corre-
spond to disease names, e.g., hypertension and mitral regurgitation, which are rarely qualified
with additional words or expressed using complex syntactic structures in either text type.

The results are somewhat lower for risk factor and sign or symptom in narrative EHR
reports, which appears to be due to their frequent occurrence as long phrases, usually accompa-
nied by qualifiers (e.g., increased, reduced, elevated, moderate, severe, etc.). Although the design
of PhenoNorm aims to account for potential presence of such qualifiers, there is a wide range
of possible qualifier terms, which are often not provided amongst the lists of synonyms of
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qualified concepts in UMLS. However, our WordNet-based pre-processing step, which targets
such variation, can be very helpful in increasing the accuracy of the normalisation in such cases
(by up to 4.6% for sign or symptom entity mentions in narrative EHR reports).

Another type of mapping error can occurwhen, even though the phenotype mention contains
all of the words in a UMLS concept synonym, it should actually be mapped to a synonym of a
different concept. An example is the mention family history for coronary heart disease, which is
mapped to the UMLS concept synonym family history: premature coronary heart disease instead
of to family history of coronary artery disease. This highlights the potential need to investigate
more sophisticated methods of discovering semantic similarities between the terms being com-
pared, e.g., to allow a link between heart and artery to be established. A possible solution would
be to explore the use of more complex semantic relations that are encoded in WordNet, such as
meronomy and holonomy, which deal with part-whole relationships betweenword referents.

Baseline method evaluation

Table 3 compares the best overall results achieved by PhenoNorm when applied to PhenoCHF
(i.e., using WordNet-driven semantic variant generation), with the results achieved by the
baseline methods. For both text types, PhenoNorm achieves higher performance than any of
the baseline methods, thus demonstrating its superior handling of the different types of vari-
ability that is inherent in phenotype entity mentions.

In both MetaMap and BeCAS, the steps of NER and normalisation are essentially combined.
Thus, if these tools fail to match a phenotype entity mention against a UMLS concept syno-
nym, then no entity mention will be recognised and hence no normalisation will take place.
Accordingly, we count as incorrect normalisations both a) cases in which the tool has recog-
nised an entity mention whose text span is (partially) the same as an annotated mention in
PhenoCHF, but where the recognisedmention is mapped to the incorrect UMLS concept and
b) cases where the tool does not recognise an entity mention that is annotated in PhenoCHF.
In contrast, since, like PhenoNorm, SoftTFIDF takes as its starting point the annotated
entities in PhenoCHF, it will always produce a mapping for each entity mention annotated in
PhenoCHF.

It is also important to note that the performance of BeCAS cannot be directly compared to
the other two methods, because it recognises disorders based on the SNOMED-CT [17] defini-
tion of the disorder semantic group which, in contrast to the definition used in the UMLS
Metathesaurus, excludes the finding semantic type. However, a significant proportion of phe-
notype entity mentions annotated in PhenoCHF describe concepts that belong to the finding
semantic type.

SoftTFIDF achieves the highest performance amongst the baseline methods, which is fairly
close to the performance of PhenoNorm for literature articles. However, the lower results
achieved for narrative EHR reports demonstrate that this method is not sufficiently robust to
handle the wider variability in entity mentions encountered in this text type.

Table 3. Comparison of MetaMap, BeCAS, SoftTFIDF and PhenoNorm when applied to PhenoCHF.

Method Accuracy

Narrative EHR reports Articles

MetaMap 0.469 0.631

BeCAS 0.187 0.353

SoftTFIDF 0.764 0.837

PhenoNorm 0.847 0.886

doi:10.1371/journal.pone.0162287.t003
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The considerably lower results achieved by MetaMap and BeCAS occur because they can
essentially only recognise and normalise entity mentions corresponding to simple noun
phrases that include the same words as those found UMLS concept synonyms (although possi-
bly with a different ordering). Accordingly, they are usually unable to correctly recognise and
normalise mentions of more complex concepts, and instead split them into a number of sim-
pler mentions, each of which is mapped (incorrectly) to a separate concept. For example, in
encountering the mention stenosis in left anterior descending, MetaMap detects three separate
concepts, i.e., the more general medical condition stenosis, the spatial concept left anterior and
the qualitative concept descending. Whilst BeCAS behaves in a similar way, it also separately
recognises phrases that correspond to anatomical entities. For example, Three Vessel Coronary
Artery Disease is recognised as two concepts, i.e., Three Vessel and Coronary Artery Disease.

Entity mentions containing words whose forms are different to those in concept synonyms
within UMLS will also fail to be recognisedby MetaMap and BeCAS. For example, the mention
bradycardiac is not recognised by BeCAS as a variant of the concept synonym bradycardia.
Problems also occur if the entity mention contains words that do not appear in the listed
UMLS concept synonyms. For example, if qualifier terms occurring in entity mentions do not
match the qualifier terms within any of the listed synonyms of a UMLS concept, then it is likely
that the entity mention will be incorrectly mapped by MetaMap and BeCAS to a more general
concept. So, the mention high jugular venous pressure (whose closest concept synonym in
UMLS is raised jugular venous pressure) will be mapped to the more general jugular venous
pressure.

Errors made by SoftTFIDF occurmainly because of its assignment of the highest similarity
score to the shortest UMLS concept synonym with the highest number of exact (or similar)
words shared with the entity mention. This means that it will often miss important qualifier
concepts that determine the degree of the condition or sign/symptom (e.g., high, low, moderate,
severe), if they are specified in the entity mention using different words to those used in any of
the synonyms associated with the concept in the UMLS Metathesaurus. Accordingly, mapping
may occur to a more general concept. For example, the phenotype mention moderately reduced
left ventricular systolic function is mapped to the concept synonym moderate left ventricular
systolic dysfunction instead of moderately or severely depressed left ventricular systolic function.
Although non-exact matches betweenwords can be handled, e.g., to pair moderately in the
entity mention with moderate in the UMLS concept synonym, the qualifier terms reduced
and depressed are not sufficiently similar to achieve a match, and semantic-level similarities are
not considered by this method. In contrast, PhenoNorm carries out the correct mapping, since
its initial selection of candidate UMLS concept synonyms considers synonyms that are longer
as well as shorter than the entity mention. Then, by considering overall length and edit dis-
tance, PhenoNorm is able to correctly choose the UMLS synonym that includes the qualifier
information.

In contrast to MetaMap and BeCAS, however, SoftTFIDF always considers the whole entity
mention when mapping (even when the mention corresponds to a complex concept described
using a long phrase). Since its “relaxed” token matching strategy is able to match words that
have different forms to those included in UMLS concept synonyms, more accurate normalisa-
tion performance can be achieved than the terminology-drivenapproaches.

Comparison of concepts used in literature articles and EHR narratives

The gold standard normalisations of entity mentions in PhenoCHF reveal that 835 concepts
are mentioned in the corpus as a whole. Of these, 184 occur in both narrative EHR reports and
literature articles, as shown in Fig 2.
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The dominant phenotype concept type in narrative EHR reports is Signs or symptoms,
whereas in the literature articles, there is far greater emphasis on discussingCauses [4]. How-
ever, the frequent mention of possible causes of observed signs and symptoms in narrative
EHR reports, combined with the fact that that literature articles will often summarise these
potential causes, helps to explain why Cause is the phenotype entity type with the greatest over-
lap between narrative EHR reports and literature articles.

The fact that the remaining 651 concepts are only mentioned either in EHR narrative
reports or literature articles (but not in both) provides strong evidence of the complementary
nature of the information contained within the two text types, and the need to combine this

Fig 2. The overlap between phenotype concepts appearing in EHR narratives and literature articles.

doi:10.1371/journal.pone.0162287.g002
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information to increase the opportunities of discovering new knowledge and generating novel
hypotheses. However, our finding that there is a significant overlap between the mentions of
concepts that occur in both parts of the corpus provides evidence that common types of infor-
mation are reported in the two text types. The shared concepts could form the basis of estab-
lishing links between information in literature articles and EHR narrative reports, thus making
it easier to combine information from the two sources in a sensible way. A further way of
exploiting the links would be to provide personalised healthcare by finding connections
between a patient’s EHR and new findings/ discoveries in the literature.

Some examples of the different ways in which concepts are mentioned in the two text types
are shown in Table 4. The fact that this divergence of expression between the two text types is
prevalent in mentions of shared concepts helps to emphasise the strong need to employ sophis-
ticated normalisation methods such as PhenoNorm, if links are to be successfully established
between the two information sources.

Evaluation of PhenoNorm on Other Normalisation Tasks

To demonstrate that PhenoNorm is useful in a wider range of scenarios than only normalising
mentions of phenotype concepts relating to CHF, we have evaluated its performance when
applied to other normalisation tasks. Specifically, we have applied the method to four different
corpora of biomedical documents that include gold-standard annotations of both entity men-
tions and links to concepts in terminological resources, i.e., the ShARe/CLEF corpus, the NCBI
disease corpus [34], and the recently released corpora containing phenotype annotations relat-
ing to heart failure and pulmonary embolism [73]. These were chosen according to their differ-
ent characteristics compared to PhenoCHF, i.e., either their documents belong to different text
types and/or cover different subject areas to PhenoCHF, they are annotated with entity men-
tions belonging to semantic categories that are different to those annotated in PhenoCHF, and/
or the entity mentions are mapped to concepts in terminological resources other than the
UMLS Metathesaurus. To facilitate comparison between the performance of PhenoNorm and
other normalisation approaches previously applied to the same corpora, we have used the met-
rics originally reported in evaluating these alternative approaches. Below, we provide brief
descriptions of each data set and analyse the results obtained by applying the PhenoNorm
method to each of them.

ShARe/CLEF corpus

The ShARe/CLEF corpus is a collection of 300 narrative clinical records annotated for disorder
mentions, which are linked to concepts in the UMLS Metathesaurus [11]. Although the types

Table 4. Examples of different ways of mentioning the same phenotype concepts in narrative EHR reports and literature articles.

Type of variability PhenoCHF corpus

EHR narrative mentions Article mentions

Synonymy • Sodium overload

• Drop in blood pressure

• Hypernatremia

• Hypotension

Syntactic structure • Left ventricle is dilated

• Mild mitral calcification

• Left ventricular dilatation

• Calcification of mitral valve

Word ordering • Cardiac output decreased • Decreased cardiac output

Morphological variation • Hyperkalemic • Hyperkalemia

Additional qualifier word • Moderate left ventricular enlargement • Left ventricular enlargement

doi:10.1371/journal.pone.0162287.t004
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of entity mentions annotated in this corpus have much in common with those annotated in
PhenoCHF, the subject areas covered by the narrative clinical records in the ShARE/CLEF cor-
pus are wider, as is the semantic scope of the entity mentions annotated.

PhenoNorm achieved an accuracy of 0.83 on the ShARe/CLEF corpus, which is only slightly
lower than its accuracywhen applied to narrative clinical records in PhenoCHF. Many of
the mapping errors made by PhenoNorm when applied to the ShARe/CLEF corpus can be
explained by the specific characteristics of some of the annotations in this corpus. In particular,
a large number of challenging abbreviations and acronyms are annotated, some of which are
ambiguous, e.g., 3VD, which PhenoNorm normalised to three vessel disease, but which in the
gold standard is normalised to triple vessel disease of the heart. Furthermore, in assigning gold
standard links between entity mentions and concepts, annotators of the ShARe/CLEF corpus
took into account the textual context of entity mentions. Thus, annotated entity mentions in
isolation may not exactly correspond to the UMLS concepts to which they are linked. This is
problematic for our method, since it considers only the entity mention, rather than the sur-
rounding context. As an example, the ShARe/CLEF corpus contains the entity mention recur-
rent ventral hernia, which exactly matches a UMLS concept synonym, and hence this is the
mapping chosen by PhenoNorm. However, the mapping assigned in the gold standard is to the
more specific recurrent ventral incisional hernia.

Normalisation results for several other systems have been reported in the context of the
ShARe/CLEFTask 1 in the 2013 eHealth Evaluation Lab (for which the ShARE/CLEF corpus
was originally developed), in which participant systems were expected to carry out both NER
and normalisation of the recognised entity mentions. Since the assessment of normalisation
performance in this shared task was not completely decoupled from NER performance, we
cannot directly compare the normalisation performance of other systems to that of Pheno-
Norm. However, to provide a general estimation of normalisation performance, we provide in
Table 5 the NER performance and the normalisation accuracy for the correctly recognised enti-
ties of three systems that used alternative normalisation strategies to PhenoNorm, i.e., termi-
nology-driven (MetaMap) [88], rule-based [56] and machine learning (DNorm) [89]. The
provision of the two performance measures for each system helps to estimate their overall nor-
malisation performance.

NER performance is reported in terms of F-Score, which is calculated as

F � Score ¼ 2 x ð ðPrecision x RecallÞ = ðPrecision þ RecallÞ Þ

Where

Precision ¼ TP = ðTPþ FPÞ

Recall¼ TP = ðTPþ FNÞ

TP is the number of true positives, i.e., cases where an entity mention recognised by the sys-
tem matches the gold standard annotation. FP is the number of false positives, i.e., cases in

Table 5. Comparison of PhenoNorm against other approaches applied to the ShARe/CLEF corpus.

Method NER Performance (F-score) Normalisation accuracy of recognised entity mentions

PhenoNorm - 0.83

Metamap 0.42 0.94

Rules 0.68 0.87

DNorm 0.85 0.90

doi:10.1371/journal.pone.0162287.t005
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which the system recognised an entity mention incorrectly. FN is the number of false negatives,
i.e., cases where the system should have recognised an entity mention, but it did not. Precision
measures the extent to which the entity mentions recognised by the system were actually cor-
rect; recall measures the extent to which the system recognised all of the entity mentions that it
was supposed to recognise. F-score is the harmonic mean of precision and recall, which pro-
vides an overall performance measure for the system.

The highest normalisation performance on correct, automatically recognised entity men-
tions, is achieved by MetaMap. However, this is to be expected, since recognised entity men-
tions are normalised as an integral part of the NER process. Thus, if an entity mention has
been recognised correctly, then it is also likely to have been normalised correctly. However, the
low NER performance confirms our previous findings that MetaMap struggles to recognise
more complex entity mentions. Hence, the correct normalisations are likely to concern only
simple entity mentions. The rule-basedmethod also achieves high normalisation performance
for correctly recognised entity mentions. However, the fact that NER performance only reaches
0.68 F-Score means that the ability of the method to normalise certain types of entity mentions
in the corpus is not being assessed. In contrast, the high NER performance achieved by
DNorm, accompanied by its ability to normalise these recognised entity mentions to a high
degree of accuracy, suggests that it is a very flexible method for both NER and normalisation.
The fact that DNorm is based on machine learning helps to explain this superior level of
performance.

NCBI disease corpus

The NCBI disease corpus [34] consists of 793 PubMed abstracts, annotated for 6,892 disease
mentions. In contrast to the other corpora compared, normalisation does not involve mapping
entity mentions to concepts in the UMLS Metathesaurus, but rather to concepts in a different
terminological resource, i.e., the MEDIC vocabulary [15], which merges Online Mendelian
Inheritance in Man (OMIM) [18] into the disease branch of the MeSH controlled vocabulary.
The annotated entity mentions represent a total of 790 unique disease concepts.

We evaluated PhenoNorm in terms of its ability to normalise diseasementions in the test
subset of the NCBI corpus (100 abstracts and 960 disease annotations) to the most similar dis-
ease concept in the MEDIC resource. The results are shown in Table 6, in which a comparison
is made with the normalisation methods applied by Leaman et al. [62] to the same data set. We
report results in terms of F-Score, to allow the performance of PhenoNorm to be compared
with other normalisation methods that have also been applied to the NCBI disease corpus. We
also report the accuracy of PhenoNorm when applied to this corpus, to facilitate direct compar-
ison of the performance of PhenoNorm on other corpora.

To calculate the performance of PhenoNorm in terms of F-Score, we determinedTPs, FPs
and FNs as follows:

Table 6. Micro-averaged performance comparison of PhenoNorm against other normsalisation

approaches applied to the NCBI disease corpus.

Method F-score Accuracy

PhenoNorm 0.69 0.64

Norm 0.33 -

MetaMap 0.57 -

Inference method 0.59 -

Cosine similarity 0.67 -

DNorm 0.78 -

doi:10.1371/journal.pone.0162287.t006
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1. Each case of a correct normalisation is counted as a TP.

2. Each case where an entity mention corresponds to a single concept, and where PhenoNorm
mapped the mention to a single incorrect concept, is counted as an FN.

3. Each case where an entity mention corresponds to a single concept, but where PhenoNorm
mapped this to two different (incorrect) concepts is counted as 1 FP and 1 FN. For example,
PhenoNorm mapped the entity mention breast and ovarian cancer to two separate concepts,
i.e., breast cancer and ovarian cancer, but the gold standard mapping is to a single concept,
i.e.,Hereditary Breast and Ovarian Cancer Syndrome.

An analysis of the results of applying PhenoNorm to the NCBI disease corpus show that its
ability to handle different word orders and non-exact matches of tokens are once again advan-
tageous in this context, e.g., in allowing the disease entity mention familial neurohypophyseal
diabetes insipidus to be mapped to the correct concept synonym in MEDIC, i.e.,Diabetes Insip-
idus, Neurogenic.

However, the results achieved by PhenoNorm on this corpus are somewhat lower than its
performance when applied to the PhenoCHF and the ShARe/CLEF corpora. This can be
explained partly by the fact that normalisation of entity mentions in the NCBI disease corpus is
being carried out to a completely different terminological resource, i.e., the MEDIC vocabulary.
Additionally, the strategy followed by annotators to create the gold standard, as well as certain
features of the entity mentions, complicate the normalisation process. For example, disease
mentions that could correspond to a complete family of diseases are mapped in the gold stan-
dard to the more general concept in MEDIC. This means that, e.g., the entity mention comple-
ment deficiency is mapped in the gold standard to the more general concept Immunologic
Deficiency Syndromes. PhenoNorm cannot handle mapping that requires such additional rea-
soning. According to the configuration of PhenoNorm to map mentions to concept synonyms
with similar length, the mention complement deficiency is mapped by PhenoNorm to the con-
cept synonym C9 Deficiency.

An additional difficulty concerns coordinated noun phrases. In some cases, they should be
split and mapped to separate concepts, which PhenoNorm can handle correctly. For example,
the phrase breast, brain, prostate and kidney cancer is correctly mapped by PhenoNorm to 4
separate MEDIC concepts, i.e., breast neoplasms, brain neoplasms, prostatic neoplasms and kid-
ney neoplasms. Indeed, PhenoNorm can sometimes produce mappings that are more correct
than those produced by the best-performingDNorm method, which incorrectly mapped this
coordinated phrase to a single concept, i.e., prostate cancer/brain cancer susceptibility. In
other cases, however, concept synonyms in MEDIC actually correspond to coordinated noun
phrases, e.g. breast and ovarian cancer syndrome is a single concept synonym. However, since
PhenoNorm always splits up coordinated phrases, in this case into breast cancer syndrome and
ovarian cancer syndrome, the correct mapping will not be achieved. An additional problematic
example also concerns a coordinated noun phrase, i.e., familial and sporadic cancers, which
PhenoNorm mapped to two separate concepts, i.e., familial cancers and sporadic cancers. How-
ever, in the gold standard, the rule concerningmapping of such phrases to a more general con-
cept was applied, such that the mention was actually mapped to the concept neoplasms.

The results show that in terms of F-Score, PhenoNorm achieves superior performance to all
methods compared, apart from DNorm (which was also applied to the ShARe/CLEF corpus, as
detailed in the previous section). It should be noted, however, that in contrast to PhenoNorm,
the other approaches reported are based on performing both NER and normalisation. As has
been previously mentioned, MetaMap performs NER and normalisation as an integrated pro-
cess; this is also the case for Norm. The other three methods perform normalisation on the
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output of the BANNER NER system [9]. This was the same system used to carry out NER for
disorder mentions for DNorm on the ShARe/CLEF corpus reported in Table 5. Thus, its high
performance in recognising such mentions has already been demonstrated.

Similarly to the PhenoCHF corpus, the performance of MetaMap on the NCBI disease cor-
pus falls behind that of PhenoNorm, although by a smaller margin than in the results reported
for PhenoCHF. This may be because, as we have observed in PhenoCHF, there tends to be less
variability in mentions of disease names than some other entity types, and particularly so in
more formal text. The Norm tool [90] deals with variation in entity mention by normalising
case, plurals, inflections and word order. However, its low performance suggests that account-
ing only for a restricted set of mainly grammatical differences between the entity mention and
the concept synonym is not sufficiently flexible. Both the inference and cosine similarity meth-
ods are string similarity metrics. The inference method [63] works by applying a combination
of rules that use the O (ND) difference string similarity algorithm [91]. The cosine similarity
method achieves results that are most comparable to those achieved by PhenoNorm, for
similar reasons to the comparable performance achieved by SoftTFIDF. As was the case for the
ShARe/CLEF corpus, the DNorm method outperforms the other methods by a considerable
margin, probably because of its very different approach to the problem. Specifically, it is based
on machine learning-based and uses pairwise learning to learn the level of similarity between
the diseasementions and concept synonyms in MEDIC. Taking into account that the F-scores
reported in Table 6 combine NER performance and normalisation, the performance of DNorm
on this task can be considered to be roughly equivalent to its ability to normalise disorder men-
tions in the ShARe/CLEF corpus.

Despite the superior performance of DNorm, it is worth noting that, since PhenoNorm was
the best performingmethod amongst those that are not machine-learning based, it represents
an attractive option when no gold standard normalisations are available to train machine learn-
ing methods.

Heart failure and pulmonary embolism corpora

As has been explained earlier, Wang et. al. [73] have recently developed corpora of formal bio-
medical text (including textbooks, evidence-basedonline resources, practise guidelines and
journal articles) pertaining to three different diseases (i.e., heart failure, rheumatoid arthritis
and pulmonary embolism), which are annotated with different types of phenotype-related
entity mentions (i.e., causes, sign or symptoms, diagnostic tests and treatments). The corpora
were annotated in a semi-automatic way (i.e., automatic pre-annotation was verified and/or
edited by domain experts). The annotation included both the identification and semantic
categorisation of entities, and mapping of these entity mentions to concepts in the UMLS
Metathesaurus. The heart failure corpus includes 2588 annotated entity mentions, while the
rheumatoid arthritis and pulmonary embolism corpora are annotated with 193 and 425 men-
tions, respectively. The mapping to UMLS concepts was mainly carried out by a single annota-
tor, although a small sample was annotated by a second expert, allowing a normalisation inter-
annotator agreement (IAA) of 0.84 F-score to be calculated.

We evaluated the ability of PhenoNorm to map entity mentions to the corresponding
UMLS concepts in the two corpora with the largest number of annotated entity mentions (i.e.,
the heart failure and pulmonary embolism corpora). The results are shown in Table 7, using
the same method as was detailed above for the NCBI disease corpus to calculate TPs, FPs and
FNs for PhenoNorm, and thus to allow its performance to be reported in terms of F-score.
Once again, we also report the performance in terms of accuracy, to facilitate comparison with
the other applications of PhenoNorm.
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To the best of our knowledge, our work constitutes the first attempt to use these corpora to
evaluate normalisation approaches. As such, we cannot compare our results with any other
methods applied to these corpora. However, for reference, we compare our results with the
IAA results mentioned above.

For the heart failure corpus, the normalisation accuracy achieved by PhenoNorm is almost
as high as for the literature part of the PhenoCHF corpus, and for both corpora, the results are
higher than those achieved on the NCBI corpus. This is likely to be because the types of entity
mentions annotated in the heart failure and pulmonary embolism corpora correspond closely
to those annotated in PhenoCHF, and also since normalisation is being carried out using the
same terminological resource for which PhenoNorm was originally designed, i.e., the UMLS
Metathesaurus.

In most cases, the design features of PhenoNorm were advantageous when carrying out nor-
malisation of entity mentions in the heart failure and pulmonary embolism corpora. For exam-
ple, the pre-processing step of splitting coordinated noun phrases into two or more phrases
was again very useful, and allowed mapping of phrases such as stable or unstable angina, to
appropriate separate concepts, in this case stable angina and unstable angina. PhenoNorm’s
consideration of concept synonyms that have different lengths and word orders to the entity
mentions also allowed mapping of mentions such as permanent pacemaker implantation to
Implantation of permanent intravenous cardiac pacemaker.

However, similarly to the other corpora compared, the guidelines for the gold standard nor-
malisation of entity mentions in the heart failure and pulmonary embolism corpora instructed
annotators to map each phenotypic mention to the concept conveying the mention’s specific
meaning within the context of the original sentence. As an example, the entity mention contin-
uous blood pressure monitoring is mapped in the gold standard to continuous sphygmomanom-
eters. Since PhenoNorm is unable to consider semantic level variations in which several words
in the mention are mapped to a single word in the corresponding concept synonym, the map-
ping predicted by PhenoNorm is to the more general blood pressure monitoring.

Conclusion

We have presented a novel method, PhenoNorm, for mapping mentions of phenotype con-
cepts appearing in heterogeneous textual sources, i.e., narratives in EHRs and literature articles,
to appropriate concepts in the UMLS Metathesaurus. To our knowledge, PhenoNorm is the
first method that is specifically targeted at the normalisation of mentions of phenotype con-
cepts. As our analysis has demonstrated, such mentions can exhibit considerable diversity,
with significant differences observable between narratives in EHRs and literature articles, in
terms of structural and word-level variations in the ways in which specific phenotype concepts
can be mentioned. These variations include different orderings of words, different forms of
words and the use of semantically related words. To address this potential variability, Pheno-
Norm combines different string-based and semantic-level similarity methods. The accurate
normalisation results produced by PhenoNorm, which we have shown to be superior to those
achieved by other normalisation methods when applied to the PhenoCHF corpus, for both

Table 7. Results of applying PhenoNorm to the heart failure and pulmonary embolism corpora.

Method Corpus F Accuracy

PhenoNorm Pulmonary embolism 0.76 0.77

PhenoNorm Heart failure 0.83 0.86

IAA between annotators 237 random mentions 0.84 -

doi:10.1371/journal.pone.0162287.t007
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narratives in EHRs and literature articles, constitute an important first step towards the effec-
tive integration of complementary information dispersedwithin these different text types, in
order to facilitate new knowledge discovery and generation of new hypotheses.

The expert-verifiedgold standard normalisations to UMLS concepts that have been added
to all entity mentions in PhenoCHF, with the aid of PhenoNorm, add value to the corpus, and
will allow it to be used in future for the training and evaluation of novel machine learning
approaches to normalising phenotype entity mentions.

The application of PhenoNorm to the ShAre/CLEF corpus, the NCBI disease corpus, and
the heart failure and pulmonary embolism corpora, has demonstrated that PhenoNorm can
also achieve competitive performance when the complexity and the parameters of the task
(e.g., text type, subject area, entity types and terminological resource) are changed. The encour-
aging results achieved, which are highly competitive with the results achieved by various other
normalisation methods applied to the same corpora, help to illustrate the potentially wide util-
ity of PhenoNorm as a means to normalise various types of entity mentions in biomedical liter-
ature and narrative clinical text.

According to the slightly lower results achieved for the NCBI disease corpus, there may be a
need to tune certain parameters of PhenoNorm when the underlying terminological resource
is changed; we will investigate this as future work. We also intend to consider the integration of
more sophisticated semantic-level similarity measures to further improve the accuracy of the
normalisation performance.
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