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Abstract
Although it is well known that metabolic control plays a crucial role in regulating the 
health span and life span of various organisms, little is known for the systems met-
abolic profile of centenarians, the paradigm of human healthy aging and longevity. 
Meanwhile, how to well characterize the system-level metabolic states in an organ-
ism of interest remains to be a major challenge in systems metabolism research. To 
address this challenge and better understand the metabolic mechanisms of healthy 
aging, we developed a method of genome-wide precision metabolic modeling (GPMM) 
which is able to quantitatively integrate transcriptome, proteome and kinetome data 
in predictive modeling of metabolic networks. Benchmarking analysis showed that 
GPMM successfully characterized metabolic reprogramming in the NCI-60 cancer cell 
lines; it dramatically improved the performance of the modeling with an R2 of 0.86 be-
tween the predicted and experimental measurements over the performance of exist-
ing methods. Using this approach, we examined the metabolic networks of a Chinese 
centenarian cohort and identified the elevated fatty acid oxidation (FAO) as the most 
significant metabolic feature in these long-lived individuals. Evidence from serum me-
tabolomics supports this observation. Given that FAO declines with normal aging and 
is impaired in many age-related diseases, our study suggests that the elevated FAO 
has potential to be a novel signature of healthy aging of humans.
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1  |  INTRODUC TION

Population aging is an increasingly urgent issue confronting many 
countries worldwide (Chang et al., 2019). As most disabilities and 
fatal human diseases are age-related (DALYs & Collaborators, 2018), 
understanding the mechanisms of aging will help with the develop-
ment of therapeutics for aging-related diseases. Metabolic control 
plays a crucial role in regulating the health span and life span of vari-
ous organisms, for example, worms (Leiser et al., 2015) and primates 
(Mattison et al., 2012). Dysregulated metabolism often leads to 
premature aging and certain diseases in humans (López-Otín et al., 
2016). In contrast, long-lived people, such as centenarians (CENs), 
may have “healthy” metabolic profiles that support them in resisting 
age- and metabolic-related diseases, although the exact mechanism 
remains elusive (López-Otín et al., 2016).

Human metabolism is a complex network that contains thou-
sands of reactions and metabolites, and systematic identification of 
metabolic changes in health and diseases remains challenging (Brunk 
et al., 2018). Constraint-based reconstruction and analysis (COBRA) 
is based on flux balance analysis theory (Orth et al., 2010) and uses 
different types of constraints, including metabolite availability, nutri-
ent limits, and the most widely available data, gene expression from 
either microarray or RNA-seq, to build tissue-specific metabolic 
models (Blazier & Papin, 2012; O’Brien et al., 2015; Vlassis et al., 
2014; Wang et al., 2012) and perform metabolic modeling (Bordbar 
et al., 2014; Le Novere, 2015; Mardinoglu et al., 2014a,2014b; 
Yizhak et al., 2015). Many COBRA methods have been developed 
to perform the metabolic modeling, and most of them were merged 
into the COBRA toolbox, a desktop software suite of interopera-
ble COBRA methods (Becker et al., 2007; Heirendt et al., 2019; 
Schellenberger et al., 2011). COBRA methods have been widely used 
for modeling cellular metabolism (Bintener et al., 2020; Heirendt 
et al., 2019; Nam et al., 2012), and discovering disease mechanisms 
(Lewis et al., 2010; Mardinoglu et al., 2018), targets (Larsson et al., 
2020; Mardinoglu et al., 2014), and drug candidates (Agren et al., 
2014; Bintener et al., 2020).

A major challenge in previous metabolic modeling studies is the 
“low accuracy” in predicting metabolic fluxes in human cells, largely 
due to the fact that they considered merely qualitative data, rather 
than quantitative information. In the most commonly used meth-
ods (Agren et al., 2012; Blazier & Papin, 2012; Pacheco et al., 2019; 
Shlomi et al., 2008; Vlassis et al., 2014; Wang et al., 2012), quantita-
tive gene expression or proteomics data need to be translated into 
qualitative values (O’Brien et al., 2015). Such kind of doing inevitably 
leads to the loss of most of the quantitative information and thus 
introduces biases in predicting metabolic fluxes in human cells.

In this work, we present a systems biology approach to quan-
titatively integrate omics (i.e., transcriptome and proteome) data 

and kinetome information into genome-wide precision metabolic 
modeling (GPMM), aiming to accurately identify metabolic changes 
in human health and diseases. To benchmark its performance, we 
applied GPMM and other methods commonly used for metabolic 
modeling on the same transcriptome data from the NCI-60 cell lines 
(Reinhold et al., 2012) to compare the predicted metabolic fluxes 
with the experimentally measured values. GPMM robustly and reli-
ably predicted the experimentally measured fluxes and significantly 
outperformed the existing methods. We then applied GPMM to 
study the metabolism of a Chinese centenarian cohort to under-
stand why CENs can delay or avoid many serious age-related dis-
eases. We found that elevated fatty acid oxidation (FAO) is the most 
significant metabolic feature in the CENs. Further serum metabolo-
mic data showed that the decreased serum fatty acid concentration 
was the most significant feature in the CENs, supporting our obser-
vations from metabolic modeling results. Our study suggested a new 
signature in exceptional longevity.

2  |  RESULTS

2.1  |  Developing genome-wide precision metabolic 
modeling method

In the present study, we developed a genome-wide precision met-
abolic modeling (GPMM) method to address the “low accuracy” 
challenge. The method quantitatively integrates the enzyme kinet-
ics information from knowledge bases and the enzyme levels from 
transcriptome and proteome data into metabolic models (Figure 1 
and Figures S1–S3). Specifically, we first curated the generic human 
metabolic model (Recon 3D; Brunk et al., 2018) (Table S1) and set 
the upper bounds for the main nutrient uptake rates in blood using 
information from the literature. To reduce noise from reactions with-
out enzyme kinetics information (the turnover number, Kcats), we 
then constructed a reduced Recon 3D model to maximize the num-
ber of reactions with Kcats and minimize the number of reactions 
without Kcats (Table S1). We next quantitatively integrated the en-
zyme kinetic parameters and gene expression levels to constrain the 
upper and lower bounds of each reaction (Figures S1–S3). According 
to Michaelis–Menten kinetics, the upper bound of a reaction is the 
product of the concentration and turnover number (Kcat) of its en-
zyme. Finally, we used flux variability analysis (FVA) to obtain in-
dividual models by removing the reactions with zero flux and then 
performed Markov Chain Monte Carlo (MCMC) sampling to identify 
metabolic changes and key regulators.

Notably, GPMM enabled several in silico analyses that were 
not included in the state-of-art COBRA methods toolbox (COBRA 
toolbox v3.0), and hence can be broadly applicable in metabolic 
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engineering and therapy (Figure 2a and Table S2). These include 
not only genome-wide single and combinatorial knock-in and 
knock-out analysis, but also quantitative inhibition and activation 
analysis to identify key regulators for target discovery (Figure 2a 
and Table S2). In addition, GPMM can be applied to conduct per-
sonalized metabolic modeling for precision medicine (Figure 2a 
and Table S2).

2.2  |  GPMM robustly and precisely captured the 
experimentally measured fluxes

Since the input transcriptome may carry out noise from the ex-
perimental or mapping procedures, we analyzed the robustness of 
GPMM to demonstrate whether GPMM has the ability to tolerate 
gene expression noise. We first constructed a noise-induced tran-
scriptome by adding random values (viz. artificial noise) into the 
original expression data (viz. the genuine expression values) of each 
gene. Specifically, we induced 1%, 5%, and 10% noise into the gene 

expression data of NCI-60 cell lines to construct noise-induced 
transcriptomes. Then, we performed the metabolic modeling on the 
genuine and the noise-induced expression datasets, and then com-
pared the obtained flux results between both datasets. If a method 
is robust, this method should be able to tolerate a certain extent of 
noise on quantified gene expression; then, the correlation (measured 
by R2 or R-squared) between the genuine and noise-induced sam-
ples should approach 1. The results showed that the R-squared in 
each cell line is larger than 0.98 under either 1%, 5%, or 10% noise 
(Figure 2b). To further investigate the robustness of GPMM, we next 
performed multiple random sampling to investigate whether GPMM 
is still robust at different sampling times (Figure 2c). We induced 
5% gene expression noise to the H460 (one of NCI-60 cell lines) for 
100 times and performed metabolic modeling using GPMM. We ob-
tained an average R2 of 0.984 (Figure 2c) between the genuine and 
the noise-induced samples. Some important fluxes in cancer cells, 
such as ATP production and lactate secretion, were also consistent 
among these 100 simulations (Figure 2d). These results indicated 
that GPMM is a robust method.

F I G U R E  1 Flowchart of genome-wide 
precision metabolic modeling. A generic 
human metabolism model (Recon 3D) 
was first curated from the literature, 
and transcriptome data were then used 
to estimate enzyme abundance using a 
steady-state mathematical model. Next, 
a reducing model was constructed, and 
the upper bound of each reaction was 
calculated using the product of the 
concentration and turnover number 
(Kcat) of its enzyme. Finally, flux 
variability analysis (FVA) was performed 
to reconstruct individual models, and 
Markov Chain Monte Carlo (MCMC) 
sampling was used to detect metabolic 
differences and key regulators
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To benchmark the performance of GPMM, we chose to utilize 
the transcriptome and metabolic flux (uptake and secretion) data of 
the NCI-60 cell lines (Table S3; Jain et al., 2012). Four other methods 
commonly used for metabolic modeling, GIMME (Blazier & Papin, 
2012), Fastcore (Vlassis et al., 2014), rFASTCORMICS (Pacheco et al., 
2019), and ecModel (Robinson et al., 2020; Sánchez et al., 2017), were 
chosen as comparisons. We applied each of the four methods to the 
transcriptome data of the NCI-60 cells and compared the computa-
tionally calculated metabolic fluxes with the reported experimental 

measurements. The results showed that the GPMM method had a 
much higher correlation between the predicted and experimental 
values (Figure S4a, R2  =  0.72, p  =  2.3e-106) than GIMME (Figure 
S4b, R2 = 0.011), Fastcore (Figure S4c, R2 = 0.31), rFASTCORMICS 
(Figure S4d, R2 = 0.49), and ecModel (Figure S4e, R2 = 0.27).

The Warburg effect, indicated by an increase in lactate secre-
tion, is one of the most important cancer hallmarks in NCI-60 cells 
(Jain et al., 2012). We thus compared the predicted lactate secre-
tion fluxes with the experimental values, and found that GPMM 

F I G U R E  2 Benchmark analysis of GPMM. (a) Main applications of the GPMM toolbox and comparison with COBRA Toolbox 3.0. (b) 
Pearson correlation of fluxes between the noise-induced gene expression and the genuine samples using GPMM in NCI-60 cell lines. (c) 
The Pearson correlation between 5% noise-induced gene expression and genuine samples in the H460 cell line 100 times. (d) Variations 
in two important fluxes (ATP production and lactate secretion) in cancer cells after inducing 5% gene expression noise using GPMM. (e–i) 
Comparisons between predicted metabolic fluxes and experimentally measured lactate fluxes in NCI-60 cells using GPMM (e), GIMME (f), 
Fastcore (g), rFASTCORMICS (h) and ecModel (i). GPMM, Fastcore, and rFASTCORMICS had R2 values of 0.86, 0.088 and 0.33, respectively, 
whereas GIMME failed to predict lactate secretion. ecModel has the ability to predict lactate secretion, but the magnitude of the predicted 
fluxes is different from the experimental values. Note: the ecModel reconstruction and the flux detection were derived from Zenodo 
(https://doi.org/10.5281/zenodo.3577466), and only 11 ecModels are available

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

https://doi.org/10.5281/zenodo.3577466
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well-predicted the secretion of lactate in NCI-60 cells (R2  =  0.86, 
p = 2.2e-24) (Figure 2e). For other four methods, neither GIMME nor 
Fastcore could predict lactate secretion (Figure 2f,g). One of the up-
to-date methods, rFASTCORMICS, returned reasonable results with 
the R2 of 0.33 (Figure 2h). However, the other up-to-date method, 
ecModel, fails to quantitatively predict lactate secretion (Figure 2i), 
although its overall prediction performance is reasonable (Figure 
S4e). These results showed that GPMM can precisely capture the 
experimentally measured fluxes and significantly outperformed the 
existing methods.

2.3  |  Metabolic modeling reveals elevated fatty 
acid oxidation as the most significant metabolic 
feature in centenarians

To shed light on the metabolic characteristics of the CENs to better 
understand why these individuals are able to delay or avoid many 
serious age-related diseases that afflict the normal population (Evert 
et al., 2003), we aimed to study the metabolism of longevity in a 
CEN cohort sampled from Hainan Province, China. The cohort in-
cluded 76 CENs, 54 centenarian-children (F1s), and 41 spouses of 
centenarian- children (F1SPs; Table 1), whose RNA-sequencing data 
were reported in our previous study (Xiao et al., 2018).

We next applied GPMM to study the metabolic features of lon-
gevity in this cohort. In total, we developed 171 individual GPMM 
metabolic models based on white blood cell transcriptome infor-
mation. Each model contained 3977 reactions, which could be 
classified into four functional components (Brunk et al., 2018): nu-
trient uptake (22 reactions), metabolite transport (2478 reactions), 
enzyme-catalyzed reaction (1103 reactions), and secretion and 
demand reaction (374 reactions) (Figure 3a and Tables S4–S6). By 
comparing the differences in metabolic characteristics between 
the CENs and younger controls (viz. F1SPs) and adjusted for age 

and gender effect, we obtained 343 upregulated and 90 down-
regulated fluxes. We observed that the overall CEN flux signature 
was slightly negatively correlated with the aging effect (r = −0.15, 
p = 7.1e-12) (Figure S5a,b), suggesting that the CENs contain some 
signatures that are different from the ones associated with age. 
The most striking signature in all four metabolic processes con-
sistently indicated that long-chain fatty acid beta-oxidation (FAO) 
was elevated in the CENs. For illustration, in the nutrient uptake 
component, long-chain fatty acids (viz. octadecanoate and octa-
decenoate) and oxygen uptake were significantly elevated in the 
CENs (Figure 3b); in the metabolite transport component, trans-
port in the subcellular organelles for long-chain fatty acid oxi-
dation (viz. peroxisome and mitochondria) were also elevated in 
those long-lived individuals (Figure 3d). Similarly, the enzymatic 
catalyzing component showed that cellular fatty acid storage 
(viz. triacylglycerol synthesis), FAO, pyruvate metabolism, branch 
amino acid metabolism, tricarboxylic acid (TCA) cycle, and oxi-
dative phosphorylation were all elevated in the CENs (Figure 3c). 
Consistently, in the secretory and demand components, we found 
that the CENs released more carbon dioxide and fewer TCA inter-
mediate metabolites (Figure 3e).

Given the crucial role of FAO in carbon catabolism (Brunk et al., 
2018), we explored the upstream and downstream reactions of this 
process to determine whether the observed elevation was restricted 
to FAO or existed in other carbon catabolism pathways. Surprisingly, 
we found that the upstream reactions of FAO, including fatty acid 
uptake, activation, and transport, were all elevated in the CENs 
(Figure 3f). Downstream reactions of FAO, half of the tricarbox-
ylic acid cycle (TCA cycle) fluxes (4 out of 8 reactions) and over half 
of the oxidative phosphorylation complexes (3 out of 5 reactions) 
were significantly increased in the CENs (Figure 3f and Figure S6a). 
Consistent with these observations, total cellular ATP production 
capacity was also significantly enhanced (p  =  0.032) in the CENs 
(Figure S6b).

TA B L E  1 Overall population attributes of the Hainan centenarian cohort

Category CEN F1 F1SP
p1(CEN vs. 
F1SP)

p2(CEN vs. 
F1)

p3(F1 vs. 
F1SP)

Sample size 76 54 41 NA NA NA

Age 102.2 ± 2.4 63.2 ± 7.7 60.0 ± 6.6 <0.001 <0.001 0.04

Gender: Female (male) 58 (18) 3 (51) 40 (1) 0.003 <0.001 <0.001

Live independence: yes (no) 73 (3) 53 (1) 41 (0) 0.55 0.64 0.99

Diastolic blood pressure (mmHg) 146.0 ± 20.1 138.3 ± 19.2 137.9 ± 18.0 0.03 0.03 0.92

Systolic blood pressure (mmHg) 83.2 ± 11.8 80.8 ± 21.4 86.1 ± 11.3 0.19 0.46 0.12

Blood glucose (mmol/L) 5.98 ± 1.26 6.43 ± 1.28 6.70 ± 2.96 0.15 0.06 0.6

TC 4.68 ± 0.93 5.02 ± 1.25 5.49 ± 1.60 0.005 0.09 0.13

TG 3.73 ± 1.92 3.96 ± 2.13 4.44 ± 2.56 0.14 0.53 0.35

HDL 1.47 ± 0.36 1.51 ± 0.51 1.65 ± 0.27 0.004 0.37 0.19

LDL 2.45 ± 0.87 2.76 ± 1.08 3.02 ± 1.43 0.03 0.1 0.35

Notes: The p-values of gender and live independence were calculated using Fisher's test. Other p-values were calculated using t-test. Significant p-
values are highlighted by bold font. The unit of TC, TG, HDL, and LDL is μmol/L.
Abbreviations: HDL, High-density lipoprotein cholesterol; LDL, Low-density lipoprotein cholesterol; TC, Total cholesterol; TG, Total triglyceride.
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2.4  |  Serum metabolomics supports the metabolic 
modeling observations

Because a higher systemic FAO leads to higher uptake and con-
sumption of fatty acids in tissues (Jang et al., 2016), we hypoth-
esized that the serum long-chain fatty acid concentration should 
be decreased in the CENs. By generating and analyzing the serum 

metabolomics data of the same longevity cohort, we obtained 505 
metabolites. After removing the metabolites associated either with 
aging or with gender effect, we identified 83 downregulated and 53 
upregulated metabolites in the CENs (Figure 4a). Among the down-
regulated metabolites, 80.7% (67/83) were fatty acid-like (FAL) me-
tabolites (Figure 4b). This value remained stable after upregulated 
FAL metabolites were considered as well (82.7%, 67/81) (Figure 4b). 

F I G U R E  3 Genome-wide metabolic modeling of white blood cells from centenarians (CENs) using GPMM. (a) Schematic of four functional 
components of metabolic modeling. (b) Volcano plot of uptake reactions. The X-axis and Y-axis are beta and p-values of CEN signatures 
using a linear model. (c) Differential abundance (DA) score plot of significantly changed enzymatic reaction component. (d) DA score plot of 
transport components. Note: transport in endoplasmic reticular was the most significant subsystem in the CENs. (e) Volcano plot of secretion 
reactions. (f) Metabolic map of core carbon metabolic fluxes. Red and blue represent up- and down-regulated metabolic fluxes in the CENs, 
respectively

(a)

(d)

(f)

(e)

(b) (c)
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Interestingly, differential abundance score (DA) analysis (Hakimi 
et al., 2016) showed that 71% (5/7) of FAL families were significantly 
downregulated in the CENs, including phosphatidic acids (PAs), phos-
phatidylethanolamines (PEs), phosphatidylcholines (PCs), and long-
chain fatty acid sphingomyelin (SM) (Figure 4c). Specifically, 100% 

(3/3) of PAs, 100% (15/15) of PEs, 81.2% (26/32) of PCs, and 100% 
(1/1) of SMs were significantly decreased in the CENs (Figure 4d). In 
addition to FAL metabolites, free long-chain fatty acids (e.g., trans-
vaccenic and palmitic acids) were also significantly decreased in the 
CENs (p = 0.002 and 3.9e-4, respectively) (Figure 4e,f). Notably, we 

F I G U R E  4 Metabolism profile in the CEN serum. (a) Volcano plot of changes in plasma metabolites (N = 505) in the CENs. (b) Relative 
ratio of fatty acid-like (FAL) upregulated and downregulated metabolites in CENs. (c) Represents the metabolite class enrichment analysis 
using the DAscore method. (d) Abundance profile of significantly changed fatty acid-like (FAL) metabolites, including phosphatidic acids 
(PAs), phosphatidylethanolamines (PEs), phosphatidylcholines (PCs), phosphatidylinositol (PIs), and long-chain fatty acid sphingomyelin 
(SM) in the CENs. (e and f) Abundance of trans-vaccenic and palmitic acids among the CENs, centenarian offspring (F1), and spouses of 
centenarians’ offspring (F1SPs)

(a) (b) (c)

(d) (e)

(f)



8 of 16  |     LI et al.

also observed that F1s had significantly lower trans-vaccenic levels 
(Figure 4e, p  =  0.004) and significantly lower palmitic acid levels 
(Figure 4f, p = 0.05) than F1SP. These results suggested that several 
fatty acid features from CENs, such as decreased free fatty acids, 
are likely heritable. Intriguingly, among the upregulated metabolites, 
the most significant ones were bile acids, a group of metabolites 
for fatty acid absorption (Figure 4c). These results suggest that the 
decreased serum fatty acid concentration was the most significant 
feature in our centenarian metabolomics data. This observation also 
explains our previous epidemiological survey, which found that total 
cholesterol is decreased in the CENs compared with F1SPs (He et al., 
2014). A similar result was also obtained by analyzing the clinical 
data of the same longevity cohort studied here (Figure S7).

3  |  DISCUSSION

Identifying metabolic signatures in centenarians is important 
for healthy aging. Constraint-based reconstruction and analysis 
(COBRA) is a promising method that can capture metabolic signa-
tures in health and diseases, but has been a long-standing challenge 
to quantitatively predict molecular phenotypes (Lewis et al., 2010; 
O’Brien et al., 2015). In this study, we present a solution to this criti-
cal problem by incorporating quantitative restraints on each reaction 
in genome-scale modeling. Here, the maximum rate of each reaction 
is set at Kcat*[E], where Kcat is mined from enzyme databases and 
the concentration of the enzyme is either measured by proteomics 
or estimated from transcriptomics (under the steady-state approxi-
mation). In a large benchmark study, this method (GPMM) success-
fully characterized metabolic reprogramming in NCI-60 cancer cell 
lines (Jain et al., 2012); it dramatically improved the performance of 
the modeling with an R2 of 0.86 between the predicted and experi-
mental measurements over the performance of existing methods 
(Figure 2 and Figure S4). As most parameters and datasets are pre-
calculated, GPMM is easy to use, and the only required input is the 
transcriptome (RNA-sequencing or microarray). Therefore, GPMM is 
able to systematically analyze cellular metabolic profiles using only 
the transcriptome and enables broad computational studies on dis-
covering disease mechanisms.

Previous studies indicated that the existing continued methods, 
such as PRIME (Yizhak et al., 2014) and RegrEX (Robaina Estévez 
& Nikoloski, 2015), are less robust than the methods that utilize 
discretization workflows, such as rFASTCORMICS (Pacheco et al., 
2016, 2019). However, the results showed that our developed quan-
titative method can robustly and well predict experimentally mea-
sured fluxes. The reason may be because we not only translated the 
transcripts to proteome data using a simple but efficient model, but 
also used enzymatic parameters to restrain the maximum rate for 
each reaction. In addition, to avoid the effect of the unconstrained 
reactions on the metabolic simulation, we also reduced the generic 
models (i.e., Recon3D) to maximize the number of reactions with 
Kcats and minimize the number of reactions without Kcats. Similar 
to rFASTCORMICS, GPMM can also use the secretion information 

to improve the model performance by adding the secretion reac-
tion information in the exchange input file. These improvements 
thus largely overcome the performance and robustness issues of the 
existing methods. Therefore, the dramatic improvement of GPMM 
will enable many computational studies to discover biomedical 
mechanisms.

Utilizing this method, we studied the metabolic profiles of CENs 
and identified the elevated fatty acid oxidation as the most sig-
nificant metabolic feature in the CENs. As the input of GPMM is 
the transcriptome, we investigated the main beta-oxidation genes 
from Recon 3D (Brunk et al., 2018) and found that 11 of 14 (78.6%) 
FAO-related genes were slightly upregulated in the CENs (Figure 
S8a), including four essential peroxisomal beta-oxidation genes 
(EHHADH, HSD17B4, ACAA1, and ACOX1) and five key mitochondrial 
beta-oxidation genes (HADHB, ACAA2, ECHS1, ACADL, and ACADVL) 
(Figure S8a). We also observed that 9 of 14 (64.3%) FAO-related 
genes were slightly downregulated with aging in F1SP samples 
(Figure S8b). These results support our findings that the elevated 
fatty acid oxidation as a metabolic signature in the CENs.

Furthermore, we also obtained additional evidence on the CENs’ 
serum metabolomic data that most FAL metabolites, including phos-
phatidic acids (PAs), phosphatidylethanolamines (PEs), phosphatidyl-
cholines (PCs), and long-chain fatty acid sphingomyelin (SM), were 
significantly downregulated in the CENs (Figure 4d). Consistent 
with previous metabolomic studies that a larger percentage of de-
tected FAL metabolites (17/22, 77.2%) was decreased in the CENs 
(Collino et al., 2013), we also found that most of the FAL metab-
olites (67/83, 80.7%) were decreased in our CEN cohort. Similarly, 
Pradas et al. (2019) reported that the PEs displayed reduced levels in 
CENs, a result also replicated in our study. Interestingly, contrast to 
the previous observations that l-carnitine, an essential transport of 
long-chain fatty acids from the cytosol to the mitochondrial matrix, 
exhibited a significantly decreased level with aging (Calabrese et al., 
2010; Noland et al., 2009), we also investigated but found that the 
level of l-carnitine was not decreased in CENs, suggesting that the 
aging-related decrease in FAO did not occur in the CENs. Taken to-
gether, these findings support that an increased FAO activity exists 
in the CENs.

Previous studies have shown that the offspring of centenarians 
inherit part of survival advantages from their long-lived parents, 
and are also used to explore the health-protective mechanism of 
human aging (Brooks-Wilson, 2013; Xiao et al., 2018). Therefore, 
we compared the estimated metabolic signatures between F1s 
and F1SPs. The result showed that the overall CEN-specific flux 
signatures were significantly positively correlated with the Flux 
signatures in F1s (r = 0.45, p = 1.8e-185; Figure S9a). Specifically, 
most of significantly upregulated FAO-related reactions observed 
in the CENs, including fatty acid beta-oxidation, perisomal trans-
port, citric acid oxidation, oxidative phosphorylation, and ATP 
production, are also upregulated in F1s (20 of 27, 74%, Figure 
S9b). Consistently, serum metabolism results also showed that 
most of down-regulated metabolites in serum are FALs (12 of 20, 
60%); and most of FALs with significant differences between the 
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two groups are downregulated (12 of 19, 63%) in F1s (Figure S9c). 
Interestingly, we also observed that F1s has lower free fatty acid 
levels (i.e., trans-vaccenic and trans-vaccenic levels) than F1SP 
(Figure 4e,f). Given that F1s might have a higher probability of 
long lifespan than F1SPs, these results added further support to 
our conclusion that the elevated fatty acid oxidation is a signature 
involved to healthy human aging and longevity.

There are many studies in both model organisms and humans 
showing associations between FAO decline and aging (Gong et al., 
2017; Levadoux et al., 2001; Short et al., 2005). However, whether 
FAO also declines in the CENs, the paradigm of healthy human 
aging, remains unclear. Interestingly, multiple lines of evidence 
from our study argues for an enhanced FAO in the CENs, which well 
explains the previous observations that decreased fatty acid lev-
els, especially the PEs, were found in centenarians’ serum (Pradas 
et al., 2019). In addition, impaired FAO is frequently observed in 
many age-related diseases, including atherosclerosis (Freigang 
et al., 2013) and diabetes (Wei et al., 2016). Importantly, elevated 
FAO is reported to be causally associated with metformin-induced 
longevity in Caenorhabditis elegans (Pryor et al., 2019). Elevated 
fatty acid beta-oxidation related genes extend the lifespan of 
worms (Lee et al., 2012). Collectively, these results suggest that 
the elevated long-chain FAO function in the CENs, at least in fe-
male CENs, represents a “healthy” metabolic profile of longevity, 
which may convey survival advantages to long-lived individuals 
by reducing lipid accumulation and lowering the risks of common 
age-related diseases, especially those involved in lipid metabolic 
disorders.

In summary, we have developed a novel systems biology ap-
proach to effectively integrate omics data in the modeling of met-
abolic mechanisms in human health and disease. This approach 
dramatically improved the performance over the existing methods. 
Our method thus immediately enables many computational stud-
ies on discovering disease mechanisms and candidate drug targets, 
as well as further developments of the algorithms. We applied this 
method to investigate the metabolic profiles of CENs, and suggested 
the enhanced fatty acid oxidation as a novel metabolic signature of 
healthy aging in exceptional longevity.

Nevertheless, there are some limitations that need to be over-
come in the future. (i) In GPMM method, the reduced model by 
maximizing the number of reactions with known Kcats could in-
troduce potential biases, as less well studied enzyme-related re-
actions and pathways are less likely to be included in the reduced 
model. (ii) Although the GPMM model displays much better per-
formance in predicting metabolic flux, its ability in dealing with 
the low flux levels (i.e., <0.1 mmol/min/L) is still limited. Fixing this 
limitation will be the major objective of the next version of GPMM, 
which would definitely be of help in improving the performance of 
the method in metabolic modeling. (iii) Although we used a series 
of analyses, including two linear models, to evaluate the poten-
tial effect of age and remove any signals associated with age, it is 
still possible that some age effect persists in our results, simply 
owing to the fact that some age signal within the F1SP population 

might not be associated with age in the CEN group. (iv) Although 
our results suggest that the CENs likely display increased lipid 
metabolism, which gets further support from serum metabolome, 
whether this signature can represent the whole body of these 
long-lived individuals awaits further investigation, largely due to 
the fact that our transcriptome data are obtained from the periph-
eral white blood cells.

4  |  MATERIAL S AND METHODS

4.1  |  Genome-wide precision modeling of the 
metabolism

4.1.1  |  The flowchart of GPMM

The GPMM method was designed to integrate enzyme kinetics 
into constraint-based genome-wide metabolic modeling. It inte-
grated the knowledge-based human metabolic reconstruction 
model (Recon 3D) (Brunk et al., 2018) with enzyme kinetics, tran-
scriptomics, proteomics, and metabolomics data to perform meta-
bolic modeling.

The GPMM flowchart is shown in Figure 1. The generic human 
metabolism model (Recon 3D) was first curated from published liter-
ature, with the uptake upper bounds of exchange reactions in blood 
obtained from the literature. Second, transcriptome data were used 
to estimate enzyme abundance with a mathematical model. Third, 
the Gene Inactivity Moderated by Metabolism and Expression 
(GIMME) method (Blazier & Papin, 2012) was used to reduce Recon 
3D to the maximal usage of the quantitative upper bounds of the re-
actions. Fourth, FVA was performed to remove reactions with zero 
flux and reconstruct the tissue-specific GPMM. Finally, the recon-
structed model was simulated using in silico knock-in and knock-out 
and MCMC sampling methods to detect metabolic differences and 
key regulators.

4.1.2  |  Knowledgebase curations

To reconstruct genome-wide metabolic models (GEMs) by the 
GPMM approach, we collected several relevant knowledge bases. 
The knowledge-based human metabolic model was obtained from 
Recon 3D (Brunk et al., 2018). The enzyme Kcat values were down-
loaded from BRENDA (Placzek et al., 2017). Serum metabolite con-
centrations were obtained from the Human Metabolome Database 
(HMDB) (Wishart et al., 2018).

Next, we manually curated the global human metabolic network 
of Recon 3D using thermodynamic analysis (Martinez et al., 2014) 
and the precured Recon 2 model (Quek et al., 2014). Because ade-
nosine monophosphate (AMP) cannot be directly changed into ade-
nosine triphosphate (ATP) in any reaction, some reversible reactions, 
such as FACOAL150 and RE1514M, were curated as irreversible. 
The curated Recon 3D model is shown in Table S1.
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4.1.3  |  Setting quantitative upper and lower 
bounds of biochemical reactions

For each biochemical reaction, the flux of any reaction has the fol-
lowing equation:

where V is the flux of a reaction, Vmax is the maximum reaction rate ac-
cording to Michaelis–Menten kinetics, [E] is the enzyme concentration, 
and Kcat is the turnover number of the enzyme. The Kcat values of 
human enzymes were obtained from the BRENDA database (Placzek 
et al., 2017). If an enzyme had multiple Kcat records, their median was 
used. Where experimental data were missing, we used Kcats from 
other species.

We obtained 2602 Kcat records in the 4352 reactions with an EC 
number in Recon 3D (Table S1). Although 42% reactions with an EC 
number lacked Kcat records, the enzyme abundance percentage was 
smaller than 10% (Figure S1).

A previously published method, named GIMME (Blazier & Papin, 
2012), was used to reduce the Recon 3D model to maximize the 
number of reactions with Kcats and minimize the number of reac-
tions without Kcats. The GIMME objective functions were set to 
ATP production and biomass reaction, as described in previous stud-
ies (Blazier & Papin, 2012; Nam et al., 2014). Finally, we obtained a 
reduced Recon 3D model, with 5134 metabolites, 7871 reactions (in-
cluding 3750 transport, 1787 exchange/demand, and 3168 enzyme-
related reactions), and 2248 genes. This retained 88% (5134/5835) 
metabolites and 74% reactions (7871/10,608) in the original model 
(Recon 3D). Only 566 of the 3168 (17.8%) enzyme-related reactions 
in reduced model lacked Kcat records.

4.1.4  |  Predicting enzyme abundance using gene 
expression data

Recently, a simple but efficient mathematical model was proposed 
to predict protein abundance using gene expression data (Wilhelm 
et al., 2014). Changes in enzyme abundance can be determined by 
the number of proteins synthesized from mRNA minus the num-
ber of proteins degraded. In the steady-state, we have following 
equation:

where E and M are the enzyme and corresponding mRNA abundances, 
respectively; α is the enzyme synthesis rate from mRNA; and γ is the 
enzyme degradation rate.

Thus, in the steady-state, we can predict enzyme abundance as 
follows:

To estimate the �∕� ratio, we downloaded microarray data of 
12 normal tissues with GSE7307 (http://www.ncbi.nlm.nih.gov/
geo/query/​acc.cgi?acc=GSE7307) and RNA-seq data of 15 normal 
tissues from the Human Protein Atlas Dataset (Uhlen et al., 2015). 
We also obtained the corresponding protein abundance data from 
the MOPED database (Montague et al., 2014) with the unit of nmo-
l/L. MOPED uses the human body map dataset and estimates pro-
tein concentration from protein abundance (Montague et al., 2014). 
Thus, the �∕� ratio was estimated using the median ratio of protein/
mRNA across multiple tissues.

The correlation between the transcriptome and proteome is usu-
ally quite low (Pearson correlation of 0.4–0.5, Figure S2). Notably, 
using the steady-state kinetic method, the Pearson correlation be-
tween the predicted proteome and experimental measurements 
reached 0.8–0.9 (Figure S3), indicating that protein abundance could 
be correctly estimated using transcriptome data.

4.1.5  |  Steps of the metabolic modeling

First, enzyme abundance was predicted using the above men-
tioned mathematical model. Second, the upper bound activity of 
enzyme-related reactions was calculated by multiplying the Kcat 
value by the enzyme concentration. For the gene-protein-reaction 
(GPR) relationships in Recon 3D, some reactions have more than 
one enzyme. Thus, we calculated the upper bound activities of 
these reactions as follows: (a) summed enzyme activity when 
the GPR had a Boolean logic of “OR”, and (b) minimized enzyme 
activity when the GPR had a Boolean logic of “AND.” Oxidative 
phosphorylation is essential for ATP production, and all eight es-
sential oxidative phosphorylation reactions (including ATPS4mi, 
CYOOm2i, CYOR_u10mi, NADH2_u10mi, r0205, CYOOm3i, 
FADH2ETC, GLYC3PFADm) require more than 20 enzymes to cat-
alyze (Brunk et al., 2018). Any missing data will result in inactivity 
of these reactions. Thus, we did not apply the quantitative upper 
bounds to these eight essential oxidative phosphorylation reac-
tions, and instead set them to unlimited.

Second, after setting the quantitative upper bounds of the re-
actions and the uptake values, we performed flux variation analysis 
(FVA) to obtain the maximum and minimum fluxes for each reaction. 
Some reactions have both the maximum and minimum fluxes of zero, 
thus cannot carry a flux. The individual models were then recon-
structed by removing the reactions that could not carry flux in the 
FVA. Large-scale FVA was performed using our recently published 
efficient constraint-based metabolic modeling toolbox FastMM (Li 
et al., 2020) (https://github.com/Gongh​uaLi/FastMM).

Third, hit-and-run Monte Carlo simulation was performed 
to obtain the distribution of each flux in each model via the 
“ACHRSampler” function in the Cobra toolbox 3.0 (Heirendt 
et al., 2019). To compare flux in different metabolic models, we 
averaged and summarized the MCMC sampling fluxes using the 
“summarize_PQMM_result” function in our developed GPMM 
toolbox. We finally obtained an average flux matrix, where row 

(1)V ≤ Vmax = [E] × Kcat

(2)dE

dt
= �M − �E

(3)E =
�

�
M

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
https://github.com/GonghuaLi/FastMM
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and column names represent reaction names and sample identi-
ties, respectively.

The GPMM toolbox is available at https://github.com/Gongh​
uaLi/GPMM.

4.2  |  Benchmark study of GPMM

4.2.1  |  Collection of experimental fluxes

The experimental flux dataset of NCI-60 cells was derived from Jain 
et al. (2012). The dataset contained 59 cell line flux data, with each 
cell line containing 119 Recon 3D exchange reaction fluxes (Table 
S3), where the unit of fmol/cell/h was converted to mmol/L/min. To 
obtain fluxes with high experimental confidence, we removed the 
outliers and those reactions with the median fluxes among different 
cell lines <1e-3 mmol/L/min and finally retained 1128 uptake and 
381 secretion fluxes from this database.

4.2.2  |  Predicting fluxes of NCI-60 cells 
using GPMM

The gene expression dataset (RNA-seq) was downloaded from the 
CellMiner website (https://disco​ver.nci.nih.gov/cellm​iner/loadD​
ownlo​ad.do), and the uptake rate for each cell was obtained from the 
above experimental fluxes (Jain et al., 2012). Using the GPMM tool-
box mentioned above, and setting ATP production and biomass re-
action as the optimized functions, genome-wide precision metabolic 
modeling of NCI-60 cells was performed to obtain the flux matrix. 
The predicted secretion fluxes were then compared with the experi-
mental dataset to evaluate the overall performance of the GPMM.

4.2.3  |  Predicting fluxes of NCI-60 cells 
using GIMME

The quantitative gene expression of NCI-60 was the first trans-
formed into qualitative present/absent logical values using a 
Fragments Per Kilobase of transcript per Million mapped reads 
(FPKM) cutoff =  3.0. Metabolic models were then reconstructed 
using the “GIMME” function in the Cobra toolbox 3.0 (Heirendt 
et al., 2019). Next, MCMC sampling was conducted to obtain the dis-
tribution of fluxes, and the average flux for each reaction was then 
calculated to obtain the GIMME-based flux matrix.

4.2.4  |  Predicting fluxes of NCI-60 cells 
using Fastcore

The consistent Recon 3D model was first constructed using the 
“fastcc” function in the Fastcore toolbox (Vlassis et al., 2014) with 
an epsilon of 1e-4 using the linear solver of cplex (https://www.ibm.

com/analy​tics/cplex​-optim​izer). The metabolic models were then 
reconstructed using the “fastcore” function in the Fastcore tool-
box, and MCMC sampling was conducted using the “ACHRSampler” 
function in the Cobra toolbox 3.0 (Heirendt et al., 2019).

4.2.5  |  Predicting fluxes of NCI-60 cells using 
rFASTCORMICS

rFASTCORMICS is an updated version of Fastcore that uses dis-
cretization workflows instead of the heuristic thresholds method 
(Pacheco et al., 2019). The consistent Recon 3D model was also 
first constructed using the “fastcc” function in the Fastcore toolbox 
(Vlassis et al., 2014) with an epsilon of 1e-4 using the linear solver 
of cplex (https://www.ibm.com/analy​tics/cplex​-optim​izer). The 
metabolic models were then reconstructed using rFASTCORMICS 
(Pacheco et al., 2019), and MCMC sampling was conducted using the 
“ACHRSampler” function in the Cobra toolbox 3.0 (Heirendt et al., 
2019).

4.2.6  |  Predicting fluxes of NCI-60 cells 
using ecModel

The model reconstruction and flux detection of 11 NCI-60 cell 
lines were derived from Zenodo (https://doi.org/10.5281/ze-
nodo.3577466). Note: as each constructed ecModel has over 
20,000 reactions and has a different model framework from the 
COBRA toolbox, performing MCMC sampling is difficult. Therefore, 
the fluxes for each ecModel were estimated using the suggested 
method “minProSimulation” from Human 1 (Robinson et al., 2020).

4.2.7  |  Comparisons of the predicted and 
experimentally measured fluxes

The predicted secretion fluxes using different methods, that is, 
GPMM, GIMME, and Fastcore, were compared with the experimen-
tal flux datasets as mentioned above. To avoid linear optimization 
precision error, we removed the fluxes with absolute values smaller 
than 1e-6  mmol/L/min. Pearson correlations between predicted 
fluxes and experimental measurements were calculated to compare 
the performance of the different methods.

4.2.8  |  Robustness analysis of GPMM

We first constructed noise-induced transcriptomes by adding random 
numbers (viz. artificial noise) to the original expression data (or the gen-
uine transcriptome) of each gene. Specifically, 1%, 5%, and 10% noise 
was induced in each NCI-60 cell line transcriptome. In these processes, 
the noise inducing is produced from a uniform distribution of [0.99, 
1.01] for 1% noise, [0.95, 1.05] for 5% noise and [0.90, 1.10] for 10% 

https://github.com/GonghuaLi/GPMM
https://github.com/GonghuaLi/GPMM
https://discover.nci.nih.gov/cellminer/loadDownload.do
https://discover.nci.nih.gov/cellminer/loadDownload.do
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.5281/zenodo.3577466
https://doi.org/10.5281/zenodo.3577466
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noise. For example, in the 5% noise translation procedure, if a gene in 
a cell line has a gene expression (e.g., fpkm) of 1.0, the adding random 
number of this gene is ranged from −0.05 to 0.05, such as 0.03; then, 
the noised-induced gene expression is a number ranged from 0.95 to 
1.05, such as 1.03. Second, we performed the metabolic modeling on 
the genuine and the noise-induced transcriptomes and compared the 
obtained flux results to evaluate GPMM robustness. In addition, to 
further test whether multiple sampling affects robustness, we also in-
duced 5% noise to the gene expression of H460 cell line 100 times and 
performed metabolic modeling to determine the stability of GPMM.

4.3  |  The Chinese centenarians study

A total of 171 individuals from longevity families, consisting of 76 
centenarians (CENs), 54 centenarian-children (F1), and 41 spouses of 
centenarian children (F1SP), were recruited from Hainan Province, 
China, as part of the study of centenarians in southern China (He 
et al., 2014). The research protocol was approved by the Ethics 
Committee at Kunming Institute of Zoology, Chinese Academy of 
Sciences. Written informed consent was obtained from each of the 
participants prior to the study.

As shown in Table 1 and Table S4, 96% of CENs lived inde-
pendently (e.g., eating, walking, and talking). Compared with F1SPs, 
CENs had significantly higher diastolic blood pressure (146.0 vs. 137.9, 
p = 0.03), similar systolic blood pressure (83.2 vs. 86.1 p = 0.19), slightly 
lower blood glucose (5.98 vs. 6.70, p = 0.14, t-test), lower total cho-
lesterol (4.68 vs. 5.43 p = 0.009, t-test), and lower low-density lipo-
protein cholesterol (2.45 vs. 2.97, p = 0.043, t-test). These results are 
also consistent with our previous studies, where levels of risk factors 
for cardiovascular diseases, including blood glucose, triglyceride, and 
total cholesterol, were significantly lower in the CENs than those of 
the general older population from the same province, and the diagno-
ses of type 2 diabetes mellitus, hypertriglyceridemia, and hypertension 
were lower in the CENs than Chinese national levels (He et al., 2014). 
The relatively healthy status of CENs suggests that they can serve as a 
good model for healthy aging studies.

For transcriptome analysis, peripheral blood samples were 
treated with red blood cell lysis buffer (Tiangen Biotech) and then 
centrifuged at 1800 g for 10 min to isolate white blood cells. For me-
tabolomics and proteomics measurements, peripheral blood sam-
ples were allowed to clot at room temperature for 30 min and then 
centrifuged for 10 min at 1500 g to extract the serum.

4.4  |  Genome-wide precision modeling of the 
metabolism of centenarians

4.4.1  | Metabolic modeling

Gene expression (FPKM) levels in 170 individuals from the Hainan 
longevity cohort, including 76 CENs, 52 centenarian-children, and 

42 spouses of centenarian-children (F1SPs), were derived from our 
previously published data (Xiao et al., 2018). The upper bounds of 
the white blood cell metabolite uptake rates were separated into 
three categories: nutrient uptake for energy production, cofactors, 
and iron/oxygen uptake (Table S5). The nutrient uptake rates, includ-
ing those of glucose, l-glutamine, and fatty acids, were derived from 
published literature (Table S5). The essential amino acid uptake rates 
were set to a small number, whereas those of cofactors, iron, oxy-
gen, and primers for glycogen synthesis were set to unlimited (Table 
S5). After preparing the gene expression and nutrient uptake rates, 
genome-wide precision metabolic modeling was conducted using 
our developed GPMM toolbox.

4.4.2  |  Identification of metabolic flux profiles of 
centenarians

As the CENs (aged 98–108) were older than the controls (45–75), 
we used two linear models to distinguish centenarian signatures and 
aging effects. Model l was applied to CEN and F1SP samples to de-
termine unfiltered centenarian signature:

Model 2 was applied to F1SP samples to determine aging effects:

After the unfiltered centenarian signatures and aging effect were 
determined, we obtained the actual centenarian signatures by ex-
cluding the overlapping fluxes between the unfiltered centenarian 
signature and the age effect. Therefore, upregulated fluxes in CENs 
were defined as fluxes with p < 0.05 and beta >0 in model 1 but 
not significant or beta <0 in model 2. Downregulated fluxes were 
defined vice versa.

4.4.3  |  Identifying significant metabolic subsystems 
using differential abundance scores

The differential abundance (DA) score was calculated using previ-
ously published methods (Hakimi et al., 2016). For each metabolic 
subsystem, the ith DA score (DAi) was calculated as follows:

To obtain the significance of DA scores, we used a “bootstrap 
without replacement” method to calculate p-values. Briefly, we first 
randomly shuffled the sample labels 1000 times. Second, for each 
randomly shuffled label, the corresponding random DA scores were 
calculated using the above formula. We thus obtained 1000 random 

(4)Model 1: flux ∼ lm (centenarians + sex)

(5)Model 2: flux ∼ lm (age + sex)

(6)DAi =
# Upregulatedfluxes − # downregulatedfluxes

Total reactions in ith subsystem
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DA scores for each subsystem. Third, the p-value was calculated as 
follows:

where DAi is the centenarian DAscore of the ith subsystem and 
RandomDAsi is the random DAscore of the ith subsystem. The ad-
justed p-value was calculated using the false discovery rate (FDR).

4.5  |  Metabolomic analysis of the centenarians

4.5.1  |  Sample preparation

The collected serum samples were thawed on ice. Samples (100 μl) 
were extracted with 750  μl of methanol/acetonitrile/water solu-
tion (Vmethanol:Vacetonitrile:Vwater  =  2:2:1), with 30 μl of 1  mg/ml l-2-
chlorophenylalanineas then added as an internal standard, followed 
by vortexing for 10 s and sonicating for 10 min on ice. After that, 
the extract was incubated for 1 h at −20°C. Following centrifugation 
at 16,000 g for 15 min, 350 μl of supernatant was transferred into 
LC–MS vials and dried with a vacuum concentrator. Finally, the vials 
were resuspended in 100  μl of methanol/acetonitrile/water solu-
tion, and the above process was repeated, with 60 μl of supernatant 
transferred into a new LC/MS vial. To assess the analytical method, 
10 μl of each sample was pooled as a quality control (QC) sample, 
which was tested during analysis.

4.5.2  |  LC-MS/MS

LC-MS/MS analyses were performed with an ultra-high-
performance liquid chromatography (UHPLC) system (1290, 
Agilent Technologies) equipped with a Triple-TOF 6600 mass 
spectrometer (MS) (Q-TOF, AB Sciex). Chromatographic separa-
tion was carried out on an ACQUITY UPLC BEH Amide column 
(1.7 μm, 2.1 ×  100 mm, Waters). The mobile phase consisted of 
25 mM NH4OAc and 25 mM NH4OH in water (pH = 9.75) (A) and 
acetonitrile (B). The optimized UPLC elution conditions were as 
follows: 0–2.0  min, 85.0%–75.0% B; 2.0–9.0  min, 75.0%–0% B; 
9.0–14.0 min, 0% B; 14.0–15.0 min, 0–85.0% B; and 15.0–20.0 min, 
85% B. The flow rate was 0.3 ml/min. Sample solution (2 μl) was 
injected for each run. Mass spectrometry was performed on a 
Triple-TOF MS in positive and negative mode and operated in 
information-dependent basis (IDA) mode. In each cycle, six precur-
sor ions (intensity >100) were chosen for fragmentation with 35 V 
collision energy (CE) (15 MS/MS events with a product ion accu-
mulation time of 50 ms each). Ion source gas 1 was 60, ion source 
gas 2 was 60, curtain gas was set to 30 L/h, source temperature 
was set to 550°C, and ion spray voltage floating (ISVF) was set to 
5500 V or −4500 V in positive or negative modes, respectively.

4.5.3  |  Data preprocessing and annotation

UPLC-MS raw data (.wiff) were converted to mzXML, with 
ProteoWizard Peak exaction, identification, integration, alignment, 
and retention time correction processed with XCMS (R package, 
v3.2). The preprocessing results generated a data matrix that con-
sisted of retention time (RT), mass-to-charge ratio (m/z) values, and 
peak intensity. The R package CAMERA was used for peak annota-
tion after XCMS data processing. The in-house MS2 database was 
applied for metabolite identification, and only the metabolites with 
MS2 >0.8 remained.

4.5.4  |  Identification of metabolomic profiles of 
centenarians

Using equations to those shown in flux analysis, we also used two 
linear models to distinguish centenarian signatures and aging effects 
in the metabolomic data. Model l was applied to CEN and F1SP sam-
ples to determine unfiltered centenarian signatures:

Model 2 was applied to F1SP samples to determine aging effects:

Then, the actual centenarian signature was calculated by exclud-
ing the overlapping metabolites between the unfiltered centenarian 
signature and the age effect. Therefore, upregulated metabolites in 
CENs were defined as the log2 transformed metabolic abundance 
with p < 0.05 and beta >0 in model 1 but not significant or beta <0 in 
model 2. Downregulated metabolites were defined vice versa.

4.5.5  |  Identifying significant metabolic classes in 
metabolomic data

Similar to the flux subsystem analysis in Equations (6) and (7). The 
significance of the metabolic class was also analyzed using the dif-
ferential abundance (DA) score (for Figure 4c). For each metabolic 
class, the DA score was calculated as the number of upregulated 
metabolites minus the downregulated metabolites and then divided 
by the total number of metabolites in the given class. Similarly, as 
presented in flux subsystem analysis, we used a “bootstrap without 
replacement” method to calculate p-values and then adjusted these 
p-values using the false discovery rate (FDR).
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