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Abstract
Although	it	is	well	known	that	metabolic	control	plays	a	crucial	role	in	regulating	the	
health	span	and	life	span	of	various	organisms,	little	is	known	for	the	systems	met-
abolic	profile	of	 centenarians,	 the	paradigm	of	human	healthy	aging	and	 longevity.	
Meanwhile,	how	to	well	characterize	the	system-	level	metabolic	states	in	an	organ-
ism of interest remains to be a major challenge in systems metabolism research. To 
address this challenge and better understand the metabolic mechanisms of healthy 
aging,	we	developed	a	method	of	genome-	wide	precision	metabolic	modeling	(GPMM)	
which	is	able	to	quantitatively	integrate	transcriptome,	proteome	and	kinetome	data	
in	predictive	modeling	of	metabolic	networks.	Benchmarking	 analysis	 showed	 that	
GPMM	successfully	characterized	metabolic	reprogramming	in	the	NCI-	60	cancer	cell	
lines; it dramatically improved the performance of the modeling with an R2	of	0.86	be-
tween	the	predicted	and	experimental	measurements	over	the	performance	of	exist-
ing	methods.	Using	this	approach,	we	examined	the	metabolic	networks	of	a	Chinese	
centenarian	cohort	and	identified	the	elevated	fatty	acid	oxidation	(FAO)	as	the	most	
significant	metabolic	feature	in	these	long-	lived	individuals.	Evidence	from	serum	me-
tabolomics	supports	this	observation.	Given	that	FAO	declines	with	normal	aging	and	
is	impaired	in	many	age-	related	diseases,	our	study	suggests	that	the	elevated	FAO	
has potential to be a novel signature of healthy aging of humans.
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1  |  INTRODUC TION

Population	 aging	 is	 an	 increasingly	 urgent	 issue	 confronting	many	
countries	worldwide	 (Chang	 et	 al.,	 2019).	 As	most	 disabilities	 and	
fatal	human	diseases	are	age-	related	(DALYs	&	Collaborators,	2018),	
understanding the mechanisms of aging will help with the develop-
ment	of	 therapeutics	 for	aging-	related	diseases.	Metabolic	control	
plays a crucial role in regulating the health span and life span of vari-
ous	organisms,	for	example,	worms	(Leiser	et	al.,	2015)	and	primates	
(Mattison	 et	 al.,	 2012).	 Dysregulated	 metabolism	 often	 leads	 to	
premature	aging	and	certain	diseases	in	humans	(López-	Otín	et	al.,	
2016).	 In	 contrast,	 long-	lived	people,	 such	as	 centenarians	 (CENs),	
may have “healthy” metabolic profiles that support them in resisting 
age-		and	metabolic-	related	diseases,	although	the	exact	mechanism	
remains	elusive	(López-	Otín	et	al.,	2016).

Human	metabolism	 is	 a	 complex	 network	 that	 contains	 thou-
sands	of	reactions	and	metabolites,	and	systematic	identification	of	
metabolic	changes	in	health	and	diseases	remains	challenging	(Brunk	
et	al.,	2018).	Constraint-	based	reconstruction	and	analysis	(COBRA)	
is	based	on	flux	balance	analysis	theory	(Orth	et	al.,	2010)	and	uses	
different	types	of	constraints,	including	metabolite	availability,	nutri-
ent	limits,	and	the	most	widely	available	data,	gene	expression	from	
either	 microarray	 or	 RNA-	seq,	 to	 build	 tissue-	specific	 metabolic	
models	 (Blazier	&	Papin,	 2012;	O’Brien	 et	 al.,	 2015;	Vlassis	 et	 al.,	
2014;	Wang	et	al.,	2012)	and	perform	metabolic	modeling	(Bordbar	
et	 al.,	 2014;	 Le	 Novere,	 2015;	 Mardinoglu	 et	 al.,	 2014a,2014b;	
Yizhak	et	 al.,	2015).	Many	COBRA	methods	have	been	developed	
to	perform	the	metabolic	modeling,	and	most	of	them	were	merged	
into	 the	COBRA	 toolbox,	 a	 desktop	 software	 suite	 of	 interopera-
ble	 COBRA	 methods	 (Becker	 et	 al.,	 2007;	 Heirendt	 et	 al.,	 2019;	
Schellenberger	et	al.,	2011).	COBRA	methods	have	been	widely	used	
for	 modeling	 cellular	 metabolism	 (Bintener	 et	 al.,	 2020;	 Heirendt	
et	al.,	2019;	Nam	et	al.,	2012),	and	discovering	disease	mechanisms	
(Lewis	et	al.,	2010;	Mardinoglu	et	al.,	2018),	targets	(Larsson	et	al.,	
2020;	Mardinoglu	 et	 al.,	 2014),	 and	drug	 candidates	 (Agren	 et	 al.,	
2014;	Bintener	et	al.,	2020).

A	major	challenge	in	previous	metabolic	modeling	studies	is	the	
“low	accuracy”	in	predicting	metabolic	fluxes	in	human	cells,	largely	
due	to	the	fact	that	they	considered	merely	qualitative	data,	rather	
than quantitative information. In the most commonly used meth-
ods	(Agren	et	al.,	2012;	Blazier	&	Papin,	2012;	Pacheco	et	al.,	2019;	
Shlomi	et	al.,	2008;	Vlassis	et	al.,	2014;	Wang	et	al.,	2012),	quantita-
tive	gene	expression	or	proteomics	data	need	to	be	translated	into	
qualitative	values	(O’Brien	et	al.,	2015).	Such	kind	of	doing	inevitably	
leads to the loss of most of the quantitative information and thus 
introduces	biases	in	predicting	metabolic	fluxes	in	human	cells.

In	 this	work,	we	present	 a	 systems	biology	approach	 to	quan-
titatively	 integrate	 omics	 (i.e.,	 transcriptome	 and	 proteome)	 data	

and	 kinetome	 information	 into	 genome-	wide	 precision	 metabolic	
modeling	(GPMM),	aiming	to	accurately	identify	metabolic	changes	
in	human	health	 and	diseases.	To	benchmark	 its	 performance,	we	
applied	GPMM	 and	 other	methods	 commonly	 used	 for	metabolic	
modeling	on	the	same	transcriptome	data	from	the	NCI-	60	cell	lines	
(Reinhold	 et	 al.,	 2012)	 to	 compare	 the	 predicted	metabolic	 fluxes	
with	the	experimentally	measured	values.	GPMM	robustly	and	reli-
ably	predicted	the	experimentally	measured	fluxes	and	significantly	
outperformed	 the	 existing	 methods.	 We	 then	 applied	 GPMM	 to	
study the metabolism of a Chinese centenarian cohort to under-
stand	why	CENs	can	delay	or	 avoid	many	 serious	 age-	related	dis-
eases.	We	found	that	elevated	fatty	acid	oxidation	(FAO)	is	the	most	
significant	metabolic	feature	in	the	CENs.	Further	serum	metabolo-
mic data showed that the decreased serum fatty acid concentration 
was	the	most	significant	feature	in	the	CENs,	supporting	our	obser-
vations from metabolic modeling results. Our study suggested a new 
signature	in	exceptional	longevity.

2  |  RESULTS

2.1  |  Developing genome- wide precision metabolic 
modeling method

In	the	present	study,	we	developed	a	genome-	wide	precision	met-
abolic	 modeling	 (GPMM)	 method	 to	 address	 the	 “low	 accuracy”	
challenge. The method quantitatively integrates the enzyme kinet-
ics information from knowledge bases and the enzyme levels from 
transcriptome	and	proteome	data	 into	metabolic	models	 (Figure	1	
and	Figures	S1–	S3).	Specifically,	we	first	curated	the	generic	human	
metabolic	model	 (Recon	3D;	Brunk	et	al.,	2018)	 (Table	S1)	and	set	
the upper bounds for the main nutrient uptake rates in blood using 
information from the literature. To reduce noise from reactions with-
out	enzyme	kinetics	 information	 (the	 turnover	number,	Kcats),	we	
then	constructed	a	reduced	Recon	3D	model	to	maximize	the	num-
ber of reactions with Kcats and minimize the number of reactions 
without	Kcats	(Table	S1).	We	next	quantitatively	integrated	the	en-
zyme	kinetic	parameters	and	gene	expression	levels	to	constrain	the	
upper	and	lower	bounds	of	each	reaction	(Figures	S1–	S3).	According	
to	Michaelis–	Menten	kinetics,	the	upper	bound	of	a	reaction	is	the	
product	of	the	concentration	and	turnover	number	(Kcat)	of	its	en-
zyme.	 Finally,	we	 used	 flux	 variability	 analysis	 (FVA)	 to	 obtain	 in-
dividual	models	by	removing	the	reactions	with	zero	flux	and	then	
performed	Markov	Chain	Monte	Carlo	(MCMC)	sampling	to	identify	
metabolic changes and key regulators.

Notably,	 GPMM	 enabled	 several	 in	 silico	 analyses	 that	were	
not	included	in	the	state-	of-	art	COBRA	methods	toolbox	(COBRA	
toolbox	v3.0),	 and	hence	 can	be	broadly	 applicable	 in	metabolic	
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engineering	and	 therapy	 (Figure	2a	and	Table	S2).	These	 include	
not	 only	 genome-	wide	 single	 and	 combinatorial	 knock-	in	 and	
knock-	out	analysis,	but	also	quantitative	inhibition	and	activation	
analysis	to	identify	key	regulators	for	target	discovery	(Figure	2a	
and	Table	S2).	In	addition,	GPMM	can	be	applied	to	conduct	per-
sonalized	 metabolic	 modeling	 for	 precision	 medicine	 (Figure	 2a	
and	Table	S2).

2.2  |  GPMM robustly and precisely captured the 
experimentally measured fluxes

Since	 the	 input	 transcriptome	 may	 carry	 out	 noise	 from	 the	 ex-
perimental	or	mapping	procedures,	we	analyzed	the	robustness	of	
GPMM	to	demonstrate	whether	GPMM	has	the	ability	 to	 tolerate	
gene	expression	noise.	We	first	constructed	a	noise-	induced	tran-
scriptome	 by	 adding	 random	 values	 (viz.	 artificial	 noise)	 into	 the	
original	expression	data	(viz.	the	genuine	expression	values)	of	each	
gene.	Specifically,	we	induced	1%,	5%,	and	10%	noise	into	the	gene	

expression	 data	 of	 NCI-	60	 cell	 lines	 to	 construct	 noise-	induced	
transcriptomes.	Then,	we	performed	the	metabolic	modeling	on	the	
genuine	and	the	noise-	induced	expression	datasets,	and	then	com-
pared	the	obtained	flux	results	between	both	datasets.	If	a	method	
is	robust,	this	method	should	be	able	to	tolerate	a	certain	extent	of	
noise	on	quantified	gene	expression;	then,	the	correlation	(measured	
by R2 or R-	squared)	between	 the	genuine	and	noise-	induced	sam-
ples should approach 1. The results showed that the R-	squared	 in	
each	cell	line	is	larger	than	0.98	under	either	1%,	5%,	or	10%	noise	
(Figure	2b).	To	further	investigate	the	robustness	of	GPMM,	we	next	
performed	multiple	random	sampling	to	investigate	whether	GPMM	
is	 still	 robust	 at	 different	 sampling	 times	 (Figure	 2c).	We	 induced	
5%	gene	expression	noise	to	the	H460	(one	of	NCI-	60	cell	lines)	for	
100	times	and	performed	metabolic	modeling	using	GPMM.	We	ob-
tained an average R2	of	0.984	(Figure	2c)	between	the	genuine	and	
the	noise-	induced	samples.	Some	 important	 fluxes	 in	 cancer	cells,	
such	as	ATP	production	and	lactate	secretion,	were	also	consistent	
among	 these	 100	 simulations	 (Figure	 2d).	 These	 results	 indicated	
that	GPMM	is	a	robust	method.

F I G U R E  1 Flowchart	of	genome-	wide	
precision	metabolic	modeling.	A	generic	
human	metabolism	model	(Recon	3D)	
was	first	curated	from	the	literature,	
and transcriptome data were then used 
to estimate enzyme abundance using a 
steady-	state	mathematical	model.	Next,	
a	reducing	model	was	constructed,	and	
the upper bound of each reaction was 
calculated using the product of the 
concentration and turnover number 
(Kcat)	of	its	enzyme.	Finally,	flux	
variability	analysis	(FVA)	was	performed	
to	reconstruct	individual	models,	and	
Markov	Chain	Monte	Carlo	(MCMC)	
sampling was used to detect metabolic 
differences and key regulators
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To	benchmark	 the	performance	of	GPMM,	we	chose	 to	utilize	
the	transcriptome	and	metabolic	flux	(uptake	and	secretion)	data	of	
the	NCI-	60	cell	lines	(Table	S3;	Jain	et	al.,	2012).	Four	other	methods	
commonly	 used	 for	metabolic	modeling,	GIMME	 (Blazier	&	Papin,	
2012),	Fastcore	(Vlassis	et	al.,	2014),	rFASTCORMICS	(Pacheco	et	al.,	
2019),	and	ecModel	(Robinson	et	al.,	2020;	Sánchez	et	al.,	2017),	were	
chosen	as	comparisons.	We	applied	each	of	the	four	methods	to	the	
transcriptome	data	of	the	NCI-	60	cells	and	compared	the	computa-
tionally	calculated	metabolic	fluxes	with	the	reported	experimental	

measurements.	The	results	showed	that	the	GPMM	method	had	a	
much	 higher	 correlation	 between	 the	 predicted	 and	 experimental	
values	 (Figure	 S4a,	R2 =	 0.72,	p =	 2.3e-	106)	 than	GIMME	 (Figure	
S4b,	R2 =	0.011),	Fastcore	(Figure	S4c,	R2 =	0.31),	rFASTCORMICS	
(Figure	S4d,	R2 =	0.49),	and	ecModel	(Figure	S4e,	R2 =	0.27).

The	Warburg	effect,	 indicated	by	an	 increase	 in	 lactate	 secre-
tion,	is	one	of	the	most	important	cancer	hallmarks	in	NCI-	60	cells	
(Jain	et	al.,	2012).	We	 thus	compared	 the	predicted	 lactate	secre-
tion	 fluxes	 with	 the	 experimental	 values,	 and	 found	 that	 GPMM	

F I G U R E  2 Benchmark	analysis	of	GPMM.	(a)	Main	applications	of	the	GPMM	toolbox	and	comparison	with	COBRA	Toolbox	3.0.	(b)	
Pearson	correlation	of	fluxes	between	the	noise-	induced	gene	expression	and	the	genuine	samples	using	GPMM	in	NCI-	60	cell	lines.	(c)	
The	Pearson	correlation	between	5%	noise-	induced	gene	expression	and	genuine	samples	in	the	H460	cell	line	100	times.	(d)	Variations	
in	two	important	fluxes	(ATP	production	and	lactate	secretion)	in	cancer	cells	after	inducing	5%	gene	expression	noise	using	GPMM.	(e–	i)	
Comparisons	between	predicted	metabolic	fluxes	and	experimentally	measured	lactate	fluxes	in	NCI-	60	cells	using	GPMM	(e),	GIMME	(f),	
Fastcore	(g),	rFASTCORMICS	(h)	and	ecModel	(i).	GPMM,	Fastcore,	and	rFASTCORMICS	had	R2	values	of	0.86,	0.088	and	0.33,	respectively,	
whereas	GIMME	failed	to	predict	lactate	secretion.	ecModel	has	the	ability	to	predict	lactate	secretion,	but	the	magnitude	of	the	predicted	
fluxes	is	different	from	the	experimental	values.	Note:	the	ecModel	reconstruction	and	the	flux	detection	were	derived	from	Zenodo	
(https://doi.org/10.5281/zenodo.3577466),	and	only	11	ecModels	are	available

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

https://doi.org/10.5281/zenodo.3577466
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well-	predicted	 the	 secretion	of	 lactate	 in	NCI-	60	 cells	 (R2 =	 0.86,	
p =	2.2e-	24)	(Figure	2e).	For	other	four	methods,	neither	GIMME	nor	
Fastcore	could	predict	lactate	secretion	(Figure	2f,g).	One	of	the	up-	
to-	date	methods,	rFASTCORMICS,	returned	reasonable	results	with	
the R2	of	0.33	(Figure	2h).	However,	the	other	up-	to-	date	method,	
ecModel,	fails	to	quantitatively	predict	lactate	secretion	(Figure	2i),	
although	 its	 overall	 prediction	 performance	 is	 reasonable	 (Figure	
S4e).	These	 results	 showed	 that	GPMM	can	precisely	capture	 the	
experimentally	measured	fluxes	and	significantly	outperformed	the	
existing	methods.

2.3  |  Metabolic modeling reveals elevated fatty 
acid oxidation as the most significant metabolic 
feature in centenarians

To shed light on the metabolic characteristics of the CENs to better 
understand why these individuals are able to delay or avoid many 
serious	age-	related	diseases	that	afflict	the	normal	population	(Evert	
et	 al.,	 2003),	we	 aimed	 to	 study	 the	metabolism	of	 longevity	 in	 a	
CEN	cohort	 sampled	 from	Hainan	Province,	China.	The	cohort	 in-
cluded	76	CENs,	54	centenarian-	children	 (F1s),	 and	41	 spouses	of	
centenarian-		children	(F1SPs;	Table	1),	whose	RNA-	sequencing	data	
were	reported	in	our	previous	study	(Xiao	et	al.,	2018).

We	next	applied	GPMM	to	study	the	metabolic	features	of	lon-
gevity	in	this	cohort.	In	total,	we	developed	171	individual	GPMM	
metabolic models based on white blood cell transcriptome infor-
mation.	 Each	 model	 contained	 3977	 reactions,	 which	 could	 be	
classified	into	four	functional	components	(Brunk	et	al.,	2018):	nu-
trient	uptake	(22	reactions),	metabolite	transport	(2478	reactions),	
enzyme-	catalyzed	 reaction	 (1103	 reactions),	 and	 secretion	 and	
demand	reaction	(374	reactions)	(Figure	3a	and	Tables	S4–	S6).	By	
comparing the differences in metabolic characteristics between 
the	CENs	and	younger	controls	 (viz.	F1SPs)	and	adjusted	 for	age	

and	 gender	 effect,	 we	 obtained	 343	 upregulated	 and	 90	 down-
regulated	fluxes.	We	observed	that	the	overall	CEN	flux	signature	
was slightly negatively correlated with the aging effect (r =	−0.15,	
p =	7.1e-	12)	(Figure	S5a,b),	suggesting	that	the	CENs	contain	some	
signatures that are different from the ones associated with age. 
The most striking signature in all four metabolic processes con-
sistently	indicated	that	long-	chain	fatty	acid	beta-	oxidation	(FAO)	
was	elevated	 in	the	CENs.	For	 illustration,	 in	the	nutrient	uptake	
component,	 long-	chain	 fatty	 acids	 (viz.	 octadecanoate	 and	octa-
decenoate)	and	oxygen	uptake	were	significantly	elevated	 in	 the	
CENs	 (Figure	3b);	 in	 the	metabolite	 transport	 component,	 trans-
port	 in	 the	 subcellular	 organelles	 for	 long-	chain	 fatty	 acid	 oxi-
dation	 (viz.	 peroxisome	 and	mitochondria)	 were	 also	 elevated	 in	
those	 long-	lived	 individuals	 (Figure	 3d).	 Similarly,	 the	 enzymatic	
catalyzing component showed that cellular fatty acid storage 
(viz.	 triacylglycerol	synthesis),	FAO,	pyruvate	metabolism,	branch	
amino	 acid	 metabolism,	 tricarboxylic	 acid	 (TCA)	 cycle,	 and	 oxi-
dative	phosphorylation	were	all	elevated	in	the	CENs	(Figure	3c).	
Consistently,	in	the	secretory	and	demand	components,	we	found	
that	the	CENs	released	more	carbon	dioxide	and	fewer	TCA	inter-
mediate	metabolites	(Figure	3e).

Given	the	crucial	role	of	FAO	in	carbon	catabolism	(Brunk	et	al.,	
2018),	we	explored	the	upstream	and	downstream	reactions	of	this	
process to determine whether the observed elevation was restricted 
to	FAO	or	existed	in	other	carbon	catabolism	pathways.	Surprisingly,	
we	found	that	the	upstream	reactions	of	FAO,	 including	fatty	acid	
uptake,	 activation,	 and	 transport,	 were	 all	 elevated	 in	 the	 CENs	
(Figure	 3f).	 Downstream	 reactions	 of	 FAO,	 half	 of	 the	 tricarbox-
ylic	acid	cycle	(TCA	cycle)	fluxes	(4	out	of	8	reactions)	and	over	half	
of	 the	oxidative	phosphorylation	 complexes	 (3	out	of	5	 reactions)	
were	significantly	increased	in	the	CENs	(Figure	3f	and	Figure	S6a).	
Consistent	with	 these	 observations,	 total	 cellular	 ATP	 production	
capacity was also significantly enhanced (p =	 0.032)	 in	 the	 CENs	
(Figure	S6b).

TA B L E  1 Overall	population	attributes	of	the	Hainan	centenarian	cohort

Category CEN F1 F1SP
p1(CEN vs. 
F1SP)

p2(CEN vs. 
F1)

p3(F1 vs. 
F1SP)

Sample size 76 54 41 NA NA NA

Age 102.2 ± 2.4 63.2 ±	7.7 60.0 ± 6.6 <0.001 <0.001 0.04

Gender:	Female	(male) 58	(18) 3	(51) 40	(1) 0.003 <0.001 <0.001

Live	independence:	yes	(no) 73	(3) 53	(1) 41	(0) 0.55 0.64 0.99

Diastolic	blood	pressure	(mmHg) 146.0 ± 20.1 138.3	± 19.2 137.9	±	18.0 0.03 0.03 0.92

Systolic	blood	pressure	(mmHg) 83.2	±	11.8 80.8	± 21.4 86.1	± 11.3 0.19 0.46 0.12

Blood	glucose	(mmol/L) 5.98	± 1.26 6.43 ±	1.28 6.70	± 2.96 0.15 0.06 0.6

TC 4.68	± 0.93 5.02 ± 1.25 5.49 ± 1.60 0.005 0.09 0.13

TG 3.73	± 1.92 3.96 ± 2.13 4.44 ± 2.56 0.14 0.53 0.35

HDL 1.47	± 0.36 1.51 ± 0.51 1.65 ±	0.27 0.004 0.37 0.19

LDL 2.45 ±	0.87 2.76	±	1.08 3.02 ± 1.43 0.03 0.1 0.35

Notes: The p-	values	of	gender	and	live	independence	were	calculated	using	Fisher's	test.	Other	p-	values	were	calculated	using	t-	test.	Significant	p-	
values	are	highlighted	by	bold	font.	The	unit	of	TC,	TG,	HDL,	and	LDL	is	μmol/L.
Abbreviations:	HDL,	High-	density	lipoprotein	cholesterol;	LDL,	Low-	density	lipoprotein	cholesterol;	TC,	Total	cholesterol;	TG,	Total	triglyceride.
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2.4  |  Serum metabolomics supports the metabolic 
modeling observations

Because	 a	 higher	 systemic	 FAO	 leads	 to	 higher	 uptake	 and	 con-
sumption	 of	 fatty	 acids	 in	 tissues	 (Jang	 et	 al.,	 2016),	 we	 hypoth-
esized	 that	 the	 serum	 long-	chain	 fatty	 acid	 concentration	 should	
be	decreased	 in	the	CENs.	By	generating	and	analyzing	the	serum	

metabolomics	data	of	the	same	longevity	cohort,	we	obtained	505	
metabolites.	After	removing	the	metabolites	associated	either	with	
aging	or	with	gender	effect,	we	identified	83	downregulated	and	53	
upregulated	metabolites	in	the	CENs	(Figure	4a).	Among	the	down-
regulated	metabolites,	80.7%	(67/83)	were	fatty	acid-	like	(FAL)	me-
tabolites	 (Figure	4b).	This	value	 remained	stable	after	upregulated	
FAL	metabolites	were	considered	as	well	(82.7%,	67/81)	(Figure	4b).	

F I G U R E  3 Genome-	wide	metabolic	modeling	of	white	blood	cells	from	centenarians	(CENs)	using	GPMM.	(a)	Schematic	of	four	functional	
components	of	metabolic	modeling.	(b)	Volcano	plot	of	uptake	reactions.	The	X-	axis	and	Y-	axis	are	beta	and	p-	values	of	CEN	signatures	
using	a	linear	model.	(c)	Differential	abundance	(DA)	score	plot	of	significantly	changed	enzymatic	reaction	component.	(d)	DA	score	plot	of	
transport components. Note:	transport	in	endoplasmic	reticular	was	the	most	significant	subsystem	in	the	CENs.	(e)	Volcano	plot	of	secretion	
reactions.	(f)	Metabolic	map	of	core	carbon	metabolic	fluxes.	Red	and	blue	represent	up-		and	down-	regulated	metabolic	fluxes	in	the	CENs,	
respectively

(a)

(d)

(f)

(e)

(b) (c)
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Interestingly,	 differential	 abundance	 score	 (DA)	 analysis	 (Hakimi	
et	al.,	2016)	showed	that	71%	(5/7)	of	FAL	families	were	significantly	
downregulated	in	the	CENs,	including	phosphatidic	acids	(PAs),	phos-
phatidylethanolamines	 (PEs),	phosphatidylcholines	 (PCs),	and	 long-	
chain	 fatty	acid	sphingomyelin	 (SM)	 (Figure	4c).	Specifically,	100%	

(3/3)	of	PAs,	100%	(15/15)	of	PEs,	81.2%	(26/32)	of	PCs,	and	100%	
(1/1)	of	SMs	were	significantly	decreased	in	the	CENs	(Figure	4d).	In	
addition	to	FAL	metabolites,	free	long-	chain	fatty	acids	(e.g.,	trans-	
vaccenic	and	palmitic	acids)	were	also	significantly	decreased	in	the	
CENs (p =	0.002	and	3.9e-	4,	respectively)	(Figure	4e,f).	Notably,	we	

F I G U R E  4 Metabolism	profile	in	the	CEN	serum.	(a)	Volcano	plot	of	changes	in	plasma	metabolites	(N =	505)	in	the	CENs.	(b)	Relative	
ratio	of	fatty	acid-	like	(FAL)	upregulated	and	downregulated	metabolites	in	CENs.	(c)	Represents	the	metabolite	class	enrichment	analysis	
using	the	DAscore	method.	(d)	Abundance	profile	of	significantly	changed	fatty	acid-	like	(FAL)	metabolites,	including	phosphatidic	acids	
(PAs),	phosphatidylethanolamines	(PEs),	phosphatidylcholines	(PCs),	phosphatidylinositol	(PIs),	and	long-	chain	fatty	acid	sphingomyelin	
(SM)	in	the	CENs.	(e	and	f)	Abundance	of	trans-	vaccenic	and	palmitic	acids	among	the	CENs,	centenarian	offspring	(F1),	and	spouses	of	
centenarians’	offspring	(F1SPs)

(a) (b) (c)

(d) (e)

(f)
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also	observed	that	F1s	had	significantly	lower	trans-	vaccenic	levels	
(Figure	 4e,	 p =	 0.004)	 and	 significantly	 lower	 palmitic	 acid	 levels	
(Figure	4f,	p =	0.05)	than	F1SP.	These	results	suggested	that	several	
fatty	acid	 features	 from	CENs,	such	as	decreased	free	 fatty	acids,	
are	likely	heritable.	Intriguingly,	among	the	upregulated	metabolites,	
the	most	 significant	 ones	were	 bile	 acids,	 a	 group	 of	metabolites	
for	fatty	acid	absorption	(Figure	4c).	These	results	suggest	that	the	
decreased serum fatty acid concentration was the most significant 
feature in our centenarian metabolomics data. This observation also 
explains	our	previous	epidemiological	survey,	which	found	that	total	
cholesterol	is	decreased	in	the	CENs	compared	with	F1SPs	(He	et	al.,	
2014).	 A	 similar	 result	was	 also	 obtained	 by	 analyzing	 the	 clinical	
data	of	the	same	longevity	cohort	studied	here	(Figure	S7).

3  |  DISCUSSION

Identifying metabolic signatures in centenarians is important 
for	 healthy	 aging.	 Constraint-	based	 reconstruction	 and	 analysis	
(COBRA)	 is	a	promising	method	that	can	capture	metabolic	signa-
tures	in	health	and	diseases,	but	has	been	a	long-	standing	challenge	
to	quantitatively	predict	molecular	phenotypes	(Lewis	et	al.,	2010;	
O’Brien	et	al.,	2015).	In	this	study,	we	present	a	solution	to	this	criti-
cal problem by incorporating quantitative restraints on each reaction 
in	genome-	scale	modeling.	Here,	the	maximum	rate	of	each	reaction	
is set at Kcat*[E],	where	Kcat	is	mined	from	enzyme	databases	and	
the concentration of the enzyme is either measured by proteomics 
or	estimated	from	transcriptomics	(under	the	steady-	state	approxi-
mation).	In	a	large	benchmark	study,	this	method	(GPMM)	success-
fully	characterized	metabolic	reprogramming	in	NCI-	60	cancer	cell	
lines	(Jain	et	al.,	2012);	it	dramatically	improved	the	performance	of	
the modeling with an R2	of	0.86	between	the	predicted	and	experi-
mental	 measurements	 over	 the	 performance	 of	 existing	 methods	
(Figure	2	and	Figure	S4).	As	most	parameters	and	datasets	are	pre-
calculated,	GPMM	is	easy	to	use,	and	the	only	required	input	is	the	
transcriptome	(RNA-	sequencing	or	microarray).	Therefore,	GPMM	is	
able to systematically analyze cellular metabolic profiles using only 
the transcriptome and enables broad computational studies on dis-
covering disease mechanisms.

Previous	studies	indicated	that	the	existing	continued	methods,	
such	 as	PRIME	 (Yizhak	 et	 al.,	 2014)	 and	RegrEX	 (Robaina	Estévez	
&	 Nikoloski,	 2015),	 are	 less	 robust	 than	 the	 methods	 that	 utilize	
discretization	workflows,	 such	 as	 rFASTCORMICS	 (Pacheco	 et	 al.,	
2016,	2019).	However,	the	results	showed	that	our	developed	quan-
titative	method	can	robustly	and	well	predict	experimentally	mea-
sured	fluxes.	The	reason	may	be	because	we	not	only	translated	the	
transcripts	to	proteome	data	using	a	simple	but	efficient	model,	but	
also	used	enzymatic	parameters	 to	 restrain	 the	maximum	 rate	 for	
each	reaction.	In	addition,	to	avoid	the	effect	of	the	unconstrained	
reactions	on	the	metabolic	simulation,	we	also	reduced	the	generic	
models	 (i.e.,	 Recon3D)	 to	maximize	 the	 number	 of	 reactions	with	
Kcats and minimize the number of reactions without Kcats. Similar 
to	rFASTCORMICS,	GPMM	can	also	use	the	secretion	information	

to improve the model performance by adding the secretion reac-
tion	 information	 in	 the	 exchange	 input	 file.	 These	 improvements	
thus largely overcome the performance and robustness issues of the 
existing	methods.	Therefore,	the	dramatic	 improvement	of	GPMM	
will enable many computational studies to discover biomedical 
mechanisms.

Utilizing	this	method,	we	studied	the	metabolic	profiles	of	CENs	
and	 identified	 the	 elevated	 fatty	 acid	 oxidation	 as	 the	 most	 sig-
nificant	metabolic	 feature	 in	 the	CENs.	 As	 the	 input	 of	GPMM	 is	
the	 transcriptome,	we	 investigated	 the	main	beta-	oxidation	genes	
from	Recon	3D	(Brunk	et	al.,	2018)	and	found	that	11	of	14	(78.6%)	
FAO-	related	 genes	 were	 slightly	 upregulated	 in	 the	 CENs	 (Figure	
S8a),	 including	 four	 essential	 peroxisomal	 beta-	oxidation	 genes	
(EHHADH,	HSD17B4,	ACAA1,	and ACOX1)	and	five	key	mitochondrial	
beta-	oxidation	genes	(HADHB,	ACAA2,	ECHS1,	ACADL,	and ACADVL)	
(Figure	 S8a).	We	 also	 observed	 that	 9	 of	 14	 (64.3%)	 FAO-	related	
genes	 were	 slightly	 downregulated	 with	 aging	 in	 F1SP	 samples	
(Figure	 S8b).	 These	 results	 support	 our	 findings	 that	 the	 elevated	
fatty	acid	oxidation	as	a	metabolic	signature	in	the	CENs.

Furthermore,	we	also	obtained	additional	evidence	on	the	CENs’	
serum	metabolomic	data	that	most	FAL	metabolites,	including	phos-
phatidic	acids	(PAs),	phosphatidylethanolamines	(PEs),	phosphatidyl-
cholines	 (PCs),	and	 long-	chain	fatty	acid	sphingomyelin	 (SM),	were	
significantly	 downregulated	 in	 the	 CENs	 (Figure	 4d).	 Consistent	
with previous metabolomic studies that a larger percentage of de-
tected	FAL	metabolites	 (17/22,	77.2%)	was	decreased	 in	the	CENs	
(Collino	 et	 al.,	 2013),	we	 also	 found	 that	most	 of	 the	 FAL	metab-
olites	 (67/83,	80.7%)	were	decreased	 in	our	CEN	cohort.	Similarly,	
Pradas	et	al.	(2019)	reported	that	the	PEs	displayed	reduced	levels	in	
CENs,	a	result	also	replicated	in	our	study.	Interestingly,	contrast	to	
the previous observations that l-	carnitine,	an	essential	transport	of	
long-	chain	fatty	acids	from	the	cytosol	to	the	mitochondrial	matrix,	
exhibited	a	significantly	decreased	level	with	aging	(Calabrese	et	al.,	
2010;	Noland	et	al.,	2009),	we	also	investigated	but	found	that	the	
level of l-	carnitine	was	not	decreased	in	CENs,	suggesting	that	the	
aging-	related	decrease	in	FAO	did	not	occur	in	the	CENs.	Taken	to-
gether,	these	findings	support	that	an	increased	FAO	activity	exists	
in the CENs.

Previous	studies	have	shown	that	the	offspring	of	centenarians	
inherit	part	of	survival	advantages	from	their	 long-	lived	parents,	
and	are	also	used	to	explore	the	health-	protective	mechanism	of	
human	aging	(Brooks-	Wilson,	2013;	Xiao	et	al.,	2018).	Therefore,	
we	 compared	 the	 estimated	 metabolic	 signatures	 between	 F1s	
and	F1SPs.	The	 result	 showed	 that	 the	overall	CEN-	specific	 flux	
signatures	 were	 significantly	 positively	 correlated	with	 the	 Flux	
signatures	in	F1s	(r =	0.45,	p =	1.8e-	185;	Figure	S9a).	Specifically,	
most	of	significantly	upregulated	FAO-	related	reactions	observed	
in	the	CENs,	including	fatty	acid	beta-	oxidation,	perisomal	trans-
port,	 citric	 acid	 oxidation,	 oxidative	 phosphorylation,	 and	 ATP	
production,	 are	 also	 upregulated	 in	 F1s	 (20	 of	 27,	 74%,	 Figure	
S9b).	 Consistently,	 serum	 metabolism	 results	 also	 showed	 that	
most	of	down-	regulated	metabolites	in	serum	are	FALs	(12	of	20,	
60%);	and	most	of	FALs	with	significant	differences	between	the	
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two	groups	are	downregulated	(12	of	19,	63%)	in	F1s	(Figure	S9c).	
Interestingly,	we	also	observed	that	F1s	has	lower	free	fatty	acid	
levels	 (i.e.,	 trans-	vaccenic	 and	 trans-	vaccenic	 levels)	 than	 F1SP	
(Figure	 4e,f).	 Given	 that	 F1s	 might	 have	 a	 higher	 probability	 of	
long	 lifespan	than	F1SPs,	these	results	added	further	support	to	
our	conclusion	that	the	elevated	fatty	acid	oxidation	is	a	signature	
involved to healthy human aging and longevity.

There are many studies in both model organisms and humans 
showing	associations	between	FAO	decline	and	aging	(Gong	et	al.,	
2017;	Levadoux	et	al.,	2001;	Short	et	al.,	2005).	However,	whether	
FAO	 also	 declines	 in	 the	 CENs,	 the	 paradigm	 of	 healthy	 human	
aging,	 remains	 unclear.	 Interestingly,	 multiple	 lines	 of	 evidence	
from	our	study	argues	for	an	enhanced	FAO	in	the	CENs,	which	well	
explains	the	previous	observations	that	decreased	fatty	acid	lev-
els,	especially	the	PEs,	were	found	in	centenarians’	serum	(Pradas	
et	al.,	2019).	 In	addition,	 impaired	FAO	is	frequently	observed	 in	
many	 age-	related	 diseases,	 including	 atherosclerosis	 (Freigang	
et	al.,	2013)	and	diabetes	(Wei	et	al.,	2016).	Importantly,	elevated	
FAO	is	reported	to	be	causally	associated	with	metformin-	induced	
longevity in Caenorhabditis elegans	 (Pryor	 et	 al.,	 2019).	 Elevated	
fatty	 acid	 beta-	oxidation	 related	 genes	 extend	 the	 lifespan	 of	
worms	 (Lee	et	 al.,	2012).	Collectively,	 these	 results	 suggest	 that	
the	elevated	long-	chain	FAO	function	in	the	CENs,	at	least	in	fe-
male	CENs,	represents	a	“healthy”	metabolic	profile	of	longevity,	
which	 may	 convey	 survival	 advantages	 to	 long-	lived	 individuals	
by reducing lipid accumulation and lowering the risks of common 
age-	related	diseases,	especially	 those	 involved	 in	 lipid	metabolic	
disorders.

In	 summary,	 we	 have	 developed	 a	 novel	 systems	 biology	 ap-
proach to effectively integrate omics data in the modeling of met-
abolic mechanisms in human health and disease. This approach 
dramatically	improved	the	performance	over	the	existing	methods.	
Our method thus immediately enables many computational stud-
ies	on	discovering	disease	mechanisms	and	candidate	drug	targets,	
as	well	as	further	developments	of	the	algorithms.	We	applied	this	
method	to	investigate	the	metabolic	profiles	of	CENs,	and	suggested	
the	enhanced	fatty	acid	oxidation	as	a	novel	metabolic	signature	of	
healthy	aging	in	exceptional	longevity.

Nevertheless,	there	are	some	limitations	that	need	to	be	over-
come	 in	 the	 future.	 (i)	 In	GPMM	method,	 the	 reduced	model	by	
maximizing	 the	number	of	 reactions	with	known	Kcats	 could	 in-
troduce	potential	biases,	as	 less	well	 studied	enzyme-	related	re-
actions and pathways are less likely to be included in the reduced 
model.	 (ii)	Although	the	GPMM	model	displays	much	better	per-
formance	 in	 predicting	metabolic	 flux,	 its	 ability	 in	 dealing	with	
the	low	flux	levels	(i.e.,	<0.1	mmol/min/L)	is	still	limited.	Fixing	this	
limitation	will	be	the	major	objective	of	the	next	version	of	GPMM,	
which would definitely be of help in improving the performance of 
the	method	in	metabolic	modeling.	(iii)	Although	we	used	a	series	
of	 analyses,	 including	 two	 linear	models,	 to	 evaluate	 the	 poten-
tial	effect	of	age	and	remove	any	signals	associated	with	age,	it	is	
still	 possible	 that	 some	age	effect	persists	 in	our	 results,	 simply	
owing	to	the	fact	that	some	age	signal	within	the	F1SP	population	

might	not	be	associated	with	age	in	the	CEN	group.	(iv)	Although	
our results suggest that the CENs likely display increased lipid 
metabolism,	which	gets	further	support	from	serum	metabolome,	
whether this signature can represent the whole body of these 
long-	lived	 individuals	awaits	 further	 investigation,	 largely	due	 to	
the fact that our transcriptome data are obtained from the periph-
eral white blood cells.

4  |  MATERIAL S AND METHODS

4.1  |  Genome- wide precision modeling of the 
metabolism

4.1.1  |  The	flowchart	of	GPMM

The	 GPMM	method	 was	 designed	 to	 integrate	 enzyme	 kinetics	
into	 constraint-	based	 genome-	wide	metabolic	 modeling.	 It	 inte-
grated	 the	 knowledge-	based	 human	 metabolic	 reconstruction	
model	(Recon	3D)	(Brunk	et	al.,	2018)	with	enzyme	kinetics,	tran-
scriptomics,	proteomics,	and	metabolomics	data	to	perform	meta-
bolic modeling.

The	GPMM	flowchart	is	shown	in	Figure	1.	The	generic	human	
metabolism	model	(Recon	3D)	was	first	curated	from	published	liter-
ature,	with	the	uptake	upper	bounds	of	exchange	reactions	in	blood	
obtained	from	the	literature.	Second,	transcriptome	data	were	used	
to	estimate	enzyme	abundance	with	a	mathematical	model.	Third,	
the	 Gene	 Inactivity	 Moderated	 by	 Metabolism	 and	 Expression	
(GIMME)	method	(Blazier	&	Papin,	2012)	was	used	to	reduce	Recon	
3D	to	the	maximal	usage	of	the	quantitative	upper	bounds	of	the	re-
actions.	Fourth,	FVA	was	performed	to	remove	reactions	with	zero	
flux	and	reconstruct	 the	tissue-	specific	GPMM.	Finally,	 the	recon-
structed	model	was	simulated	using	in	silico	knock-	in	and	knock-	out	
and	MCMC	sampling	methods	to	detect	metabolic	differences	and	
key regulators.

4.1.2  |  Knowledgebase	curations

To	 reconstruct	 genome-	wide	 metabolic	 models	 (GEMs)	 by	 the	
GPMM	approach,	we	 collected	 several	 relevant	 knowledge	bases.	
The	knowledge-	based	human	metabolic	model	was	obtained	 from	
Recon	3D	(Brunk	et	al.,	2018).	The	enzyme	Kcat	values	were	down-
loaded	from	BRENDA	(Placzek	et	al.,	2017).	Serum	metabolite	con-
centrations	were	obtained	from	the	Human	Metabolome	Database	
(HMDB)	(Wishart	et	al.,	2018).

Next,	we	manually	curated	the	global	human	metabolic	network	
of	Recon	3D	using	 thermodynamic	analysis	 (Martinez	et	al.,	2014)	
and	the	precured	Recon	2	model	(Quek	et	al.,	2014).	Because	ade-
nosine	monophosphate	(AMP)	cannot	be	directly	changed	into	ade-
nosine	triphosphate	(ATP)	in	any	reaction,	some	reversible	reactions,	
such	 as	 FACOAL150	 and	 RE1514M,	 were	 curated	 as	 irreversible.	
The curated Recon 3D model is shown in Table S1.
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4.1.3  |  Setting	quantitative	upper	and	lower	
bounds of biochemical reactions

For	each	biochemical	reaction,	the	flux	of	any	reaction	has	the	fol-
lowing equation:

where V	is	the	flux	of	a	reaction,	Vmax	is	the	maximum	reaction	rate	ac-
cording	to	Michaelis–	Menten	kinetics,	[E]	is	the	enzyme	concentration,	
and Kcat is the turnover number of the enzyme. The Kcat values of 
human	enzymes	were	obtained	from	the	BRENDA	database	(Placzek	
et	al.,	2017).	If	an	enzyme	had	multiple	Kcat	records,	their	median	was	
used.	Where	 experimental	 data	 were	 missing,	 we	 used	 Kcats	 from	
other species.

We	obtained	2602	Kcat	records	in	the	4352	reactions	with	an	EC	
number	in	Recon	3D	(Table	S1).	Although	42%	reactions	with	an	EC	
number	lacked	Kcat	records,	the	enzyme	abundance	percentage	was	
smaller	than	10%	(Figure	S1).

A	previously	published	method,	named	GIMME	(Blazier	&	Papin,	
2012),	 was	 used	 to	 reduce	 the	 Recon	 3D	model	 to	maximize	 the	
number of reactions with Kcats and minimize the number of reac-
tions	without	 Kcats.	 The	GIMME	 objective	 functions	were	 set	 to	
ATP	production	and	biomass	reaction,	as	described	in	previous	stud-
ies	(Blazier	&	Papin,	2012;	Nam	et	al.,	2014).	Finally,	we	obtained	a	
reduced	Recon	3D	model,	with	5134	metabolites,	7871	reactions	(in-
cluding	3750	transport,	1787	exchange/demand,	and	3168	enzyme-	
related	reactions),	and	2248	genes.	This	retained	88%	(5134/5835)	
metabolites	and	74%	reactions	(7871/10,608)	in	the	original	model	
(Recon	3D).	Only	566	of	the	3168	(17.8%)	enzyme-	related	reactions	
in reduced model lacked Kcat records.

4.1.4  |  Predicting	enzyme	abundance	using	gene	
expression	data

Recently,	a	simple	but	efficient	mathematical	model	was	proposed	
to	predict	protein	abundance	using	gene	expression	data	(Wilhelm	
et	al.,	2014).	Changes	in	enzyme	abundance	can	be	determined	by	
the	 number	 of	 proteins	 synthesized	 from	mRNA	minus	 the	 num-
ber	 of	 proteins	 degraded.	 In	 the	 steady-	state,	 we	 have	 following	
equation:

where E and M	are	the	enzyme	and	corresponding	mRNA	abundances,	
respectively; α	is	the	enzyme	synthesis	rate	from	mRNA;	and	γ is the 
enzyme degradation rate.

Thus,	in	the	steady-	state,	we	can	predict	enzyme	abundance	as	
follows:

To estimate the �∕�	 ratio,	 we	 downloaded	microarray	 data	 of	
12	 normal	 tissues	 with	 GSE7307	 (http://www.ncbi.nlm.nih.gov/
geo/query/ acc.cgi?acc=GSE7307)	and	RNA-	seq	data	of	15	normal	
tissues	from	the	Human	Protein	Atlas	Dataset	(Uhlen	et	al.,	2015).	
We	also	obtained	the	corresponding	protein	abundance	data	from	
the	MOPED	database	(Montague	et	al.,	2014)	with	the	unit	of	nmo-
l/L.	MOPED	uses	the	human	body	map	dataset	and	estimates	pro-
tein	concentration	from	protein	abundance	(Montague	et	al.,	2014).	
Thus,	the	�∕� ratio was estimated using the median ratio of protein/
mRNA	across	multiple	tissues.

The correlation between the transcriptome and proteome is usu-
ally	quite	 low	 (Pearson	correlation	of	0.4–	0.5,	Figure	S2).	Notably,	
using	the	steady-	state	kinetic	method,	the	Pearson	correlation	be-
tween	 the	 predicted	 proteome	 and	 experimental	 measurements	
reached	0.8–	0.9	(Figure	S3),	indicating	that	protein	abundance	could	
be correctly estimated using transcriptome data.

4.1.5  |  Steps	of	the	metabolic	modeling

First,	 enzyme	 abundance	 was	 predicted	 using	 the	 above	 men-
tioned	mathematical	model.	Second,	the	upper	bound	activity	of	
enzyme-	related	reactions	was	calculated	by	multiplying	the	Kcat	
value	by	the	enzyme	concentration.	For	the	gene-	protein-	reaction	
(GPR)	relationships	 in	Recon	3D,	some	reactions	have	more	than	
one	 enzyme.	 Thus,	 we	 calculated	 the	 upper	 bound	 activities	 of	
these	 reactions	 as	 follows:	 (a)	 summed	 enzyme	 activity	 when	
the	GPR	had	a	Boolean	 logic	of	 “OR”,	and	 (b)	minimized	enzyme	
activity	when	 the	GPR	had	 a	Boolean	 logic	 of	 “AND.”	Oxidative	
phosphorylation	is	essential	for	ATP	production,	and	all	eight	es-
sential	 oxidative	 phosphorylation	 reactions	 (including	 ATPS4mi,	
CYOOm2i,	 CYOR_u10mi,	 NADH2_u10mi,	 r0205,	 CYOOm3i,	
FADH2ETC,	GLYC3PFADm)	require	more	than	20	enzymes	to	cat-
alyze	(Brunk	et	al.,	2018).	Any	missing	data	will	result	in	inactivity	
of	these	reactions.	Thus,	we	did	not	apply	the	quantitative	upper	
bounds	 to	 these	 eight	 essential	 oxidative	 phosphorylation	 reac-
tions,	and	instead	set	them	to	unlimited.

Second,	after	 setting	 the	quantitative	upper	bounds	of	 the	 re-
actions	and	the	uptake	values,	we	performed	flux	variation	analysis	
(FVA)	to	obtain	the	maximum	and	minimum	fluxes	for	each	reaction.	
Some	reactions	have	both	the	maximum	and	minimum	fluxes	of	zero,	
thus	 cannot	 carry	 a	 flux.	 The	 individual	models	were	 then	 recon-
structed	by	removing	the	reactions	that	could	not	carry	flux	in	the	
FVA.	Large-	scale	FVA	was	performed	using	our	recently	published	
efficient	 constraint-	based	metabolic	modeling	 toolbox	FastMM	 (Li	
et	al.,	2020)	(https://github.com/Gongh	uaLi/FastMM).

Third,	 hit-	and-	run	 Monte	 Carlo	 simulation	 was	 performed	
to	 obtain	 the	 distribution	 of	 each	 flux	 in	 each	 model	 via	 the	
“ACHRSampler”	 function	 in	 the	 Cobra	 toolbox	 3.0	 (Heirendt	
et	 al.,	 2019).	 To	 compare	 flux	 in	 different	metabolic	models,	we	
averaged	 and	 summarized	 the	MCMC	 sampling	 fluxes	 using	 the	
“summarize_PQMM_result”	 function	 in	 our	 developed	 GPMM	
toolbox.	We	 finally	 obtained	 an	 average	 flux	matrix,	where	 row	

(1)V ≤ Vmax = [E] × Kcat

(2)dE

dt
= �M − �E

(3)E =
�

�
M

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7307
https://github.com/GonghuaLi/FastMM
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and column names represent reaction names and sample identi-
ties,	respectively.

The	 GPMM	 toolbox	 is	 available	 at	 https://github.com/Gongh	
uaLi/GPMM.

4.2  |  Benchmark study of GPMM

4.2.1  |  Collection	of	experimental	fluxes

The	experimental	flux	dataset	of	NCI-	60	cells	was	derived	from	Jain	
et	al.	(2012).	The	dataset	contained	59	cell	line	flux	data,	with	each	
cell	 line	containing	119	Recon	3D	exchange	 reaction	 fluxes	 (Table	
S3),	where	the	unit	of	fmol/cell/h	was	converted	to	mmol/L/min.	To	
obtain	 fluxes	with	high	experimental	 confidence,	we	 removed	 the	
outliers	and	those	reactions	with	the	median	fluxes	among	different	
cell lines <1e-	3	mmol/L/min	and	 finally	 retained	1128	uptake	and	
381	secretion	fluxes	from	this	database.

4.2.2  |  Predicting	fluxes	of	NCI-	60	cells	
using	GPMM

The	gene	expression	dataset	 (RNA-	seq)	was	downloaded	from	the	
CellMiner	 website	 (https://disco	ver.nci.nih.gov/cellm	iner/loadD	
ownlo	ad.do),	and	the	uptake	rate	for	each	cell	was	obtained	from	the	
above	experimental	fluxes	(Jain	et	al.,	2012).	Using	the	GPMM	tool-
box	mentioned	above,	and	setting	ATP	production	and	biomass	re-
action	as	the	optimized	functions,	genome-	wide	precision	metabolic	
modeling	of	NCI-	60	cells	was	performed	to	obtain	the	flux	matrix.	
The	predicted	secretion	fluxes	were	then	compared	with	the	experi-
mental	dataset	to	evaluate	the	overall	performance	of	the	GPMM.

4.2.3  |  Predicting	fluxes	of	NCI-	60	cells	
using	GIMME

The	 quantitative	 gene	 expression	 of	 NCI-	60	 was	 the	 first	 trans-
formed into qualitative present/absent logical values using a 
Fragments	 Per	 Kilobase	 of	 transcript	 per	 Million	 mapped	 reads	
(FPKM)	 cutoff	=	 3.0.	 Metabolic	 models	 were	 then	 reconstructed	
using	 the	 “GIMME”	 function	 in	 the	 Cobra	 toolbox	 3.0	 (Heirendt	
et	al.,	2019).	Next,	MCMC	sampling	was	conducted	to	obtain	the	dis-
tribution	of	fluxes,	and	the	average	flux	for	each	reaction	was	then	
calculated	to	obtain	the	GIMME-	based	flux	matrix.

4.2.4  |  Predicting	fluxes	of	NCI-	60	cells	
using	Fastcore

The consistent Recon 3D model was first constructed using the 
“fastcc”	function	 in	the	Fastcore	toolbox	 (Vlassis	et	al.,	2014)	with	
an	epsilon	of	1e-	4	using	the	linear	solver	of	cplex	(https://www.ibm.

com/analy	tics/cplex	-	optim	izer).	 The	 metabolic	 models	 were	 then	
reconstructed	 using	 the	 “fastcore”	 function	 in	 the	 Fastcore	 tool-
box,	and	MCMC	sampling	was	conducted	using	the	“ACHRSampler”	
function	in	the	Cobra	toolbox	3.0	(Heirendt	et	al.,	2019).

4.2.5  |  Predicting	fluxes	of	NCI-	60	cells	using	
rFASTCORMICS

rFASTCORMICS	 is	 an	 updated	 version	 of	 Fastcore	 that	 uses	 dis-
cretization workflows instead of the heuristic thresholds method 
(Pacheco	 et	 al.,	 2019).	 The	 consistent	 Recon	 3D	 model	 was	 also	
first	constructed	using	the	“fastcc”	function	in	the	Fastcore	toolbox	
(Vlassis	et	al.,	2014)	with	an	epsilon	of	1e-	4	using	the	linear	solver	
of	 cplex	 (https://www.ibm.com/analy	tics/cplex	-	optim	izer).	 The	
metabolic	models	were	 then	 reconstructed	using	 rFASTCORMICS	
(Pacheco	et	al.,	2019),	and	MCMC	sampling	was	conducted	using	the	
“ACHRSampler”	function	 in	the	Cobra	toolbox	3.0	(Heirendt	et	al.,	
2019).

4.2.6  |  Predicting	fluxes	of	NCI-	60	cells	
using	ecModel

The	 model	 reconstruction	 and	 flux	 detection	 of	 11	 NCI-	60	 cell	
lines	 were	 derived	 from	 Zenodo	 (https://doi.org/10.5281/ze-
nodo.3577466).	 Note:	 as	 each	 constructed	 ecModel	 has	 over	
20,000	 reactions	 and	 has	 a	 different	 model	 framework	 from	 the	
COBRA	toolbox,	performing	MCMC	sampling	is	difficult.	Therefore,	
the	 fluxes	 for	 each	 ecModel	were	 estimated	 using	 the	 suggested	
method	“minProSimulation”	from	Human	1	(Robinson	et	al.,	2020).

4.2.7  |  Comparisons	of	the	predicted	and	
experimentally	measured	fluxes

The	 predicted	 secretion	 fluxes	 using	 different	 methods,	 that	 is,	
GPMM,	GIMME,	and	Fastcore,	were	compared	with	the	experimen-
tal	 flux	datasets	as	mentioned	above.	To	avoid	 linear	optimization	
precision	error,	we	removed	the	fluxes	with	absolute	values	smaller	
than	 1e-	6	 mmol/L/min.	 Pearson	 correlations	 between	 predicted	
fluxes	and	experimental	measurements	were	calculated	to	compare	
the performance of the different methods.

4.2.8  |  Robustness	analysis	of	GPMM

We	first	constructed	noise-	induced	transcriptomes	by	adding	random	
numbers	(viz.	artificial	noise)	to	the	original	expression	data	(or	the	gen-
uine	transcriptome)	of	each	gene.	Specifically,	1%,	5%,	and	10%	noise	
was	induced	in	each	NCI-	60	cell	line	transcriptome.	In	these	processes,	
the	noise	 inducing	 is	produced	 from	a	uniform	distribution	of	 [0.99,	
1.01]	for	1%	noise,	[0.95,	1.05]	for	5%	noise	and	[0.90,	1.10]	for	10%	

https://github.com/GonghuaLi/GPMM
https://github.com/GonghuaLi/GPMM
https://discover.nci.nih.gov/cellminer/loadDownload.do
https://discover.nci.nih.gov/cellminer/loadDownload.do
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.5281/zenodo.3577466
https://doi.org/10.5281/zenodo.3577466


12 of 16  |     LI et aL.

noise.	For	example,	in	the	5%	noise	translation	procedure,	if	a	gene	in	
a	cell	line	has	a	gene	expression	(e.g.,	fpkm)	of	1.0,	the	adding	random	
number	of	this	gene	is	ranged	from	−0.05	to	0.05,	such	as	0.03;	then,	
the	noised-	induced	gene	expression	is	a	number	ranged	from	0.95	to	
1.05,	such	as	1.03.	Second,	we	performed	the	metabolic	modeling	on	
the	genuine	and	the	noise-	induced	transcriptomes	and	compared	the	
obtained	 flux	 results	 to	 evaluate	GPMM	 robustness.	 In	 addition,	 to	
further	test	whether	multiple	sampling	affects	robustness,	we	also	in-
duced	5%	noise	to	the	gene	expression	of	H460	cell	line	100	times	and	
performed	metabolic	modeling	to	determine	the	stability	of	GPMM.

4.3  |  The Chinese centenarians study

A	total	of	171	 individuals	 from	 longevity	 families,	consisting	of	76	
centenarians	(CENs),	54	centenarian-	children	(F1),	and	41	spouses	of	
centenarian	children	 (F1SP),	were	 recruited	 from	Hainan	Province,	
China,	 as	part	of	 the	 study	of	 centenarians	 in	 southern	China	 (He	
et	 al.,	 2014).	 The	 research	 protocol	 was	 approved	 by	 the	 Ethics	
Committee	 at	Kunming	 Institute	 of	 Zoology,	 Chinese	Academy	of	
Sciences.	Written	informed	consent	was	obtained	from	each	of	the	
participants prior to the study.

As	 shown	 in	 Table	 1	 and	 Table	 S4,	 96%	 of	 CENs	 lived	 inde-
pendently	 (e.g.,	 eating,	walking,	 and	 talking).	Compared	with	F1SPs,	
CENs	had	significantly	higher	diastolic	blood	pressure	(146.0	vs.	137.9,	
p =	0.03),	similar	systolic	blood	pressure	(83.2	vs.	86.1	p =	0.19),	slightly	
lower	blood	glucose	(5.98	vs.	6.70,	p =	0.14,	t-	test),	 lower	total	cho-
lesterol	 (4.68	vs.	5.43	p =	0.009,	t-	test),	and	 lower	 low-	density	 lipo-
protein	cholesterol	(2.45	vs.	2.97,	p =	0.043,	t-	test).	These	results	are	
also	consistent	with	our	previous	studies,	where	levels	of	risk	factors	
for	cardiovascular	diseases,	including	blood	glucose,	triglyceride,	and	
total	cholesterol,	were	significantly	 lower	 in	the	CENs	than	those	of	
the	general	older	population	from	the	same	province,	and	the	diagno-
ses	of	type	2	diabetes	mellitus,	hypertriglyceridemia,	and	hypertension	
were	lower	in	the	CENs	than	Chinese	national	levels	(He	et	al.,	2014).	
The relatively healthy status of CENs suggests that they can serve as a 
good model for healthy aging studies.

For	 transcriptome	 analysis,	 peripheral	 blood	 samples	 were	
treated	with	red	blood	cell	 lysis	buffer	 (Tiangen	Biotech)	and	then	
centrifuged	at	1800	g	for	10	min	to	isolate	white	blood	cells.	For	me-
tabolomics	 and	 proteomics	measurements,	 peripheral	 blood	 sam-
ples were allowed to clot at room temperature for 30 min and then 
centrifuged for 10 min at 1500 g	to	extract	the	serum.

4.4  |  Genome- wide precision modeling of the 
metabolism of centenarians

4.4.1  | Metabolic	modeling

Gene	expression	(FPKM)	 levels	 in	170	individuals	from	the	Hainan	
longevity	 cohort,	 including	76	CENs,	 52	 centenarian-	children,	 and	

42	spouses	of	centenarian-	children	(F1SPs),	were	derived	from	our	
previously	published	data	 (Xiao	et	al.,	2018).	The	upper	bounds	of	
the white blood cell metabolite uptake rates were separated into 
three	categories:	nutrient	uptake	for	energy	production,	cofactors,	
and	iron/oxygen	uptake	(Table	S5).	The	nutrient	uptake	rates,	includ-
ing	those	of	glucose,	l-	glutamine,	and	fatty	acids,	were	derived	from	
published	literature	(Table	S5).	The	essential	amino	acid	uptake	rates	
were	set	to	a	small	number,	whereas	those	of	cofactors,	 iron,	oxy-
gen,	and	primers	for	glycogen	synthesis	were	set	to	unlimited	(Table	
S5).	After	preparing	the	gene	expression	and	nutrient	uptake	rates,	
genome-	wide	 precision	 metabolic	 modeling	 was	 conducted	 using	
our	developed	GPMM	toolbox.

4.4.2  |  Identification	of	metabolic	flux	profiles	of	
centenarians

As	 the	CENs	 (aged	98–	108)	were	older	 than	 the	 controls	 (45–	75),	
we used two linear models to distinguish centenarian signatures and 
aging	effects.	Model	l	was	applied	to	CEN	and	F1SP	samples	to	de-
termine unfiltered centenarian signature:

Model	2	was	applied	to	F1SP	samples	to	determine	aging	effects:

After	the	unfiltered	centenarian	signatures	and	aging	effect	were	
determined,	we	obtained	 the	actual	 centenarian	 signatures	by	ex-
cluding	 the	overlapping	 fluxes	between	 the	unfiltered	centenarian	
signature	and	the	age	effect.	Therefore,	upregulated	fluxes	in	CENs	
were	defined	as	 fluxes	with	p < 0.05 and beta >0 in model 1 but 
not significant or beta <0	 in	model	2.	Downregulated	 fluxes	were	
defined vice versa.

4.4.3  |  Identifying	significant	metabolic	subsystems	
using differential abundance scores

The	differential	 abundance	 (DA)	 score	was	 calculated	using	previ-
ously	published	methods	 (Hakimi	et	al.,	2016).	For	each	metabolic	
subsystem,	the	ith	DA	score	(DAi)	was	calculated	as	follows:

To	obtain	 the	 significance	of	DA	scores,	we	used	a	 “bootstrap	
without replacement” method to calculate p-	values.	Briefly,	we	first	
randomly	shuffled	the	sample	 labels	1000	times.	Second,	for	each	
randomly	shuffled	label,	the	corresponding	random	DA	scores	were	
calculated	using	the	above	formula.	We	thus	obtained	1000	random	

(4)Model 1: flux ∼ lm (centenarians + sex)

(5)Model 2: flux ∼ lm (age + sex)

(6)DAi =
# Upregulatedfluxes − # downregulatedfluxes

Total reactions in ith subsystem
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DA	scores	for	each	subsystem.	Third,	the	p-	value	was	calculated	as	
follows:

where DAi	 is	 the	 centenarian	 DAscore	 of	 the	 ith subsystem and 
RandomDAsi	 is	 the	 random	DAscore	 of	 the	 ith subsystem. The ad-
justed p-	value	was	calculated	using	the	false	discovery	rate	(FDR).

4.5  |  Metabolomic analysis of the centenarians

4.5.1  |  Sample	preparation

The collected serum samples were thawed on ice. Samples (100 μl)	
were	 extracted	 with	 750	 μl of methanol/acetonitrile/water solu-
tion (Vmethanol:Vacetonitrile:Vwater =	 2:2:1),	with	 30	μl of 1 mg/ml l-	2-	
chlorophenylalanineas	then	added	as	an	internal	standard,	followed	
by	vortexing	 for	10	s	and	sonicating	 for	10	min	on	 ice.	After	 that,	
the	extract	was	incubated	for	1	h	at	−20°C.	Following	centrifugation	
at	16,000	g	for	15	min,	350	μl of supernatant was transferred into 
LC–	MS	vials	and	dried	with	a	vacuum	concentrator.	Finally,	the	vials	
were resuspended in 100 μl of methanol/acetonitrile/water solu-
tion,	and	the	above	process	was	repeated,	with	60	μl of supernatant 
transferred	into	a	new	LC/MS	vial.	To	assess	the	analytical	method,	
10 μl	of	each	sample	was	pooled	as	a	quality	control	 (QC)	sample,	
which was tested during analysis.

4.5.2  |  LC-	MS/MS

LC-	MS/MS	 analyses	 were	 performed	 with	 an	 ultra-	high-	
performance	 liquid	 chromatography	 (UHPLC)	 system	 (1290,	
Agilent	 Technologies)	 equipped	 with	 a	 Triple-	TOF	 6600	 mass	
spectrometer	 (MS)	 (Q-	TOF,	 AB	 Sciex).	 Chromatographic	 separa-
tion	was	 carried	 out	 on	 an	ACQUITY	UPLC	BEH	Amide	 column	
(1.7	μm,	2.1	×	 100	mm,	Waters).	 The	mobile	 phase	 consisted	of	
25	mM	NH4OAc	and	25	mM	NH4OH in water (pH =	9.75)	(A)	and	
acetonitrile	 (B).	 The	 optimized	UPLC	 elution	 conditions	were	 as	
follows:	 0–	2.0	 min,	 85.0%–	75.0%	 B;	 2.0–	9.0	 min,	 75.0%–	0%	 B;	
9.0–	14.0	min,	0%	B;	14.0–	15.0	min,	0–	85.0%	B;	and	15.0–	20.0	min,	
85%	B.	The	flow	rate	was	0.3	ml/min.	Sample	solution	(2	μl)	was	
injected	 for	 each	 run.	 Mass	 spectrometry	 was	 performed	 on	 a	
Triple-	TOF	 MS	 in	 positive	 and	 negative	 mode	 and	 operated	 in	
information-	dependent	basis	(IDA)	mode.	In	each	cycle,	six	precur-
sor ions (intensity >100)	were	chosen	for	fragmentation	with	35	V	
collision	energy	(CE)	(15	MS/MS	events	with	a	product	ion	accu-
mulation	time	of	50	ms	each).	Ion	source	gas	1	was	60,	ion	source	
gas	2	was	60,	curtain	gas	was	set	to	30	L/h,	source	temperature	
was	set	to	550°C,	and	ion	spray	voltage	floating	(ISVF)	was	set	to	
5500	V	or	−4500	V	in	positive	or	negative	modes,	respectively.

4.5.3  |  Data	preprocessing	and	annotation

UPLC-	MS	 raw	 data	 (.wiff)	 were	 converted	 to	 mzXML,	 with	
ProteoWizard	Peak	exaction,	 identification,	 integration,	alignment,	
and	 retention	 time	 correction	 processed	 with	 XCMS	 (R	 package,	
v3.2).	The	preprocessing	results	generated	a	data	matrix	that	con-
sisted	of	retention	time	(RT),	mass-	to-	charge	ratio	(m/z)	values,	and	
peak	intensity.	The	R	package	CAMERA	was	used	for	peak	annota-
tion	after	XCMS	data	processing.	The	 in-	house	MS2	database	was	
applied	for	metabolite	identification,	and	only	the	metabolites	with	
MS2	>0.8	remained.

4.5.4  |  Identification	of	metabolomic	profiles	of	
centenarians

Using	equations	to	those	shown	in	flux	analysis,	we	also	used	two	
linear models to distinguish centenarian signatures and aging effects 
in	the	metabolomic	data.	Model	l	was	applied	to	CEN	and	F1SP	sam-
ples to determine unfiltered centenarian signatures:

Model	2	was	applied	to	F1SP	samples	to	determine	aging	effects:

Then,	the	actual	centenarian	signature	was	calculated	by	exclud-
ing the overlapping metabolites between the unfiltered centenarian 
signature	and	the	age	effect.	Therefore,	upregulated	metabolites	in	
CENs were defined as the log2 transformed metabolic abundance 
with p < 0.05 and beta >0 in model 1 but not significant or beta <0 in 
model 2. Downregulated metabolites were defined vice versa.

4.5.5  |  Identifying	significant	metabolic	classes	in	
metabolomic data

Similar	to	the	flux	subsystem	analysis	 in	Equations	 (6)	and	(7).	The	
significance of the metabolic class was also analyzed using the dif-
ferential	abundance	 (DA)	score	 (for	Figure	4c).	For	each	metabolic	
class,	 the	DA	 score	was	 calculated	 as	 the	 number	 of	 upregulated	
metabolites minus the downregulated metabolites and then divided 
by	the	 total	number	of	metabolites	 in	 the	given	class.	Similarly,	as	
presented	in	flux	subsystem	analysis,	we	used	a	“bootstrap	without	
replacement” method to calculate p-	values	and	then	adjusted	these	
p-	values	using	the	false	discovery	rate	(FDR).
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