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Aberrant, misfolded, and mislocalized proteins are often toxic to cells and result in
many human diseases. All proteins and their mRNA templates are subject to quality
control. There are several distinct mechanisms that control the quality of mRNAs and
proteins during translation at the ribosome. mRNA quality control systems, nonsense-
mediated decay, non-stop decay, and no-go decay detect premature stop codons, the
absence of a natural stop codon, and stalled ribosomes in translation, respectively, and
degrade their mRNAs. Defective truncated polypeptide nascent chains generated from
faulty mRNAs are degraded by ribosome-associated protein quality control pathways.
Regulation of aberrant protein production, a novel pathway, senses aberrant proteins
by monitoring the status of nascent chain interactions during translation and triggers
degradation of their mRNA. Here, we review the current progress in understanding of
the molecular mechanisms of mRNA and protein quality controls at the ribosome during
translation.

Keywords: RNA quality control, protein quality control, post-transcriptional regulation of gene expression, RNA
stability, RNA degradation, translation, protein targeting and folding, ribosome

INTRODUCTION

Genetic information is transferred during transcription and translation into correctly folded
active proteins that are localized at the proper places for their functioning. Despite the high
fidelity of these mechanisms, defective proteins can be produced as result of mutations,
mistakes in transcription and translation, stress, or other reasons. Cellular quality control
pathways evolved to prevent synthesis of the aberrant proteins at the ribosome or degrade
them if they are already synthesized (Figure 1).Many quality control systems are engaged
cotranslationally and conduct mRNA and protein surveillance at the ribosome. Protein synthesis
and degradation of defective proteins are energetically expensive processes and ribosome-
associated quality control can prevent futile aberrant protein synthesis. Nonsense-mediated
decay (NMD), no-go decay (NGD), and non-stop decay (NSD) recognize and eliminate
mRNAs with premature termination codons (PTCs), truncated and stalled in translation
mRNAs, and mRNAs without natural stop codons, respectively (Welch and Jacobson, 1999;
Doma and Parker, 2007; Shoemaker and Green, 2012; Popp and Maquat, 2013). Truncated
polypeptides produced at the stalled ribosomes are ubiquitinated and degraded by proteasome
(Dimitrova et al., 2009; Bengtson and Joazeiro, 2010; Brandman et al., 2012; Duttler et al.,
2013; Brandman and Hegde, 2016). The regulation of aberrant protein production (RAPP)
pathway senses aberrant proteins by scanning the status of nascent chains interactions
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during translation and triggers degradation of their mRNAs
(Karamyshev et al., 2014; Pinarbasi et al., 2018). When defective
mRNAs and proteins are missed by these quality control systems,
the aberrant proteins are degraded by proteolytic machinery in
the cytosol (Heck et al., 2010), or in the endoplasmic reticulum
(ER) by ER associated degradation (ERAD) pathway (Brodsky
and Wojcikiewicz, 2009). If aberrant proteins escape the quality
control, they may misfold, form insoluble aggregates or amyloids,
and result in many human diseases (Stefani and Dobson, 2003;
Gregersen et al., 2006; Zimmermann et al., 2006; Hebert and
Molinari, 2007; Jarjanazi et al., 2008; Hipp et al., 2014).

The interactions of a polypeptide nascent chain during
translation have a crucial role in protein biogenesis and
quality control (Gandin and Topisirovic, 2014). These
interactions determine the future localization of the proteins,
their folding and modifications (Pechmann et al., 2013).
Disruptions of these processes may serve as signals for
quality control machinery and for detection of abnormal
mRNAs/proteins. In this review, we analyze nascent chain
interactions occurring at the ribosome and the events taking
place during ribosome-associated mRNA and protein quality
controls.

NASCENT CHAIN INTERACTIONS
DURING TRANSLATION ARE
IMPORTANT FOR PROTEIN TARGETING
AND FOLDING

Protein targeting, transport, and folding occur cotranslationally
or posttranslationally (Park and Rapoport, 2012; Ellgaard
et al., 2016). In this review, we focus only on co-translational
protein interactions. During the first steps of translation,
polypeptides exposed from the ribosomal exit tunnel start
their first interactions with different factors required for
folding, modification, targeting, and transport. Loss of
these interactions leads to improper folding and protein
degradation, protein aggregation and the formation of amyloids,
or mRNA elimination (Figure 1). All living cells have different
compartments and proteins should be precisely delivered to the
proper locations in the cells. While cytosolic proteins remain in
the cytosol after completing their synthesis, other proteins are
transported to different cellular organelles or outside of the cell.

Despite very big differences between prokaryotic and
eukaryotic cells, protein targeting and transport are regulated
by similar mechanisms. Proteins possess specific localization
signals that are recognized by specialized proteins (Emanuelsson
and von Heijne, 2001). These interactions are essential for
protein targeting. The best studied localization signals so far are
signal sequences (von Heijne, 1985, 1990; Nilsson et al., 2015).
Secretory proteins are synthesized as precursors containing
N-terminal extension called signal sequence or signal peptide.
Signal sequences are responsible for directing secretory proteins
to Sec61 translocon in the ER membrane (in eukaryotes)
or to SecYEG complex in the bacterial plasma membrane
(in prokaryotes) for translocation through the membranes

(Alder and Johnson, 2004; Wild et al., 2004; Egea et al., 2005;
Rapoport, 2007; Dudek et al., 2015; Voorhees and Hegde, 2016).
Different signal sequences do not have sequence homology, but
possess similar structural features (von Heijne, 1985, 1990).

In bacteria, sorting events are determined by a balance of
interactions of a newly synthesized nascent chain with Ffh/4.5S
RNA complex, SecA protein, chaperone trigger factor, and
other proteins (Karamyshev and Johnson, 2005; Eisner et al.,
2006). Overproduction of secretory proteins leads to imbalance
of targeting/folding and accumulation of their precursors in
insoluble form in cytoplasm in bacteria (Nesmeyanova et al.,
1991; Nesmeyanova et al., 1997).

In eukaryotic cells, the interactions of nascent chains are more
complex and reflect more complicated process of cotranslational
folding and targeting to multiple organelles. Signal sequences are
recognized by signal recognition particle (SRP) (Walter et al.,
1981; Krieg et al., 1986; Kurzchalia et al., 1986). These interactions
serve as basis for cotranslational targeting of secretory proteins
to translocon. In the case of membrane proteins, their first
transmembrane spans are also recognized by SRP for targeting.

There are other localization signals for direction of
the proteins to mitochondria, nucleus, and peroxisome
(Emanuelsson and von Heijne, 2001). These signals are important
for proper recognition by specialized targeting factors. Some of
these signals are localized at the N-termini and thus probably
are recognized cotranslationally, and some are at the C-terminus
of the protein, suggesting posttranslational targeting. Examples
of N-terminal signals include specialized mitochondrial
presequences that enriched in positively charged residues and
have ability to form amphiphilic α-helices (von Heijne et al.,
1989; Emanuelsson and von Heijne, 2001), peroxisomal targeting
signals type 2 (PTS2) for some peroxisomal proteins (Williams,
2014), and others. Tail-anchored (TA) proteins as well as PTS1
peroxisomal proteins contain C-terminal signals and most likely
are targeted by posttranslational mechanisms (Stefanovic and
Hegde, 2007; Williams, 2014).

There are many specialized proteins that interact with nascent
chains during their synthesis. They include targeting factors,
chaperones assisting protein folding, and modification factors.
These proteins are organized in a group with a general name
ribosome-associated protein biogenesis factors (RPBs) (Raue
et al., 2007). Nascent chains of cytosolic and secretory proteins
interact with different partners of RPBs to achieve proper folding
and correct targeting (Figure 2). RPBs act during translation
when a short nascent chain emerges from the ribosomal
polypeptide tunnel. In yeast, RPBs consist of targeting factor SRP,
nascent polypeptide-associated complex (NAC), chaperones Ssb1
and Ssb2 (Hsp70 homologs), the ribosome-associated complex
(RAC), N-terminal acetyltransferase (NatA), and Map1 and
Map2 proteins (Raue et al., 2007).

Yeast RAC consists of two proteins, zuotin (or Zuo1, DnaJ
homolog, Hsp40 family) and Ssz1p (DnaK homolog, Hsp70
family) (Gautschi et al., 2001; Zhang et al., 2017). Mammalian
RAC includes chaperones MPP11 and HSP70L1 (Otto et al.,
2005). It was found that RAC binds ribosomes near polypeptide
tunnel exit (Peisker et al., 2008). NAC consists of two subunits, α
and β, both of them are localized in close proximity to a nascent

Frontiers in Genetics | www.frontiersin.org 2 October 2018 | Volume 9 | Article 431

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00431 October 1, 2018 Time: 14:37 # 3

Karamyshev and Karamysheva mRNA and Protein Quality Controls

FIGURE 1 | mRNA and protein quality control pathways in mammalian cells. Normal interactions of the nascent chains lead to proper protein transport/folding (1).
Loss of these interactions due to defect in the interacting factor or mutation in the polypeptide nascent chain (2) leads to protein degradation (3), misfolding,
aggregation, and amyloid formation (4), or mRNA elimination in the RAPP pathway (5). mRNA surveillance quality control systems (6), nonsense-mediated decay
(NMD), non-stop decay (NSD), and no-go decay (NGD) detect and eliminate defective mRNAs with PTCs, mRNAs without natural stop codon, and mRNAs at the
stalled in translation ribosomes, respectively. Nascent chains at the stalled ribosomes or during stress are ubiquitinated in the ribosome quality control complex (RQC)
pathway and removed by proteasome. During ER stress pre-emptive quality control (pQC) cotranslationally reroutes secretory and membrane proteins to cytoplasm
for degradation. Many proteins are misfolded during stress and they are removed by multiple cellular systems, like UPR, ERAD, and ubiquitin/proteasome system (7).

chain, as it was demonstrated by crosslinking (Wiedmann et al.,
1994; Wang et al., 1995). It binds short nascent chains when
they are just exposed from the polypeptide tunnel. In the case
of secretory proteins, NAC binds the nascent chain only when
signal sequence is not completely exposed from the ribosome
(Figure 2B). Binding of NAC is important for SRP specificity
and translocation fidelity (Wiedmann et al., 1994). In normal
conditions, NAC binds ribosomes to promote protein folding,
however in stress it moves to protein aggregates and functions
as a protein chaperone (Kirstein-Miles et al., 2013). Chaperone
Ssb binds wide variety of substrates – cytosolic, ER, nuclear,
and mitochondria nascent polypeptides (Doring et al., 2017).
Its binding accelerates translation. Ssb (Ssb1 and Ssb2), RAC,
and NAC have a dual function in folding of new proteins and
regulation of the ribosome production (Koplin et al., 2010).

It was also found that there are two major chaperone groups
or networks with discrete functions in the cells, one is for de
novo folding (named CLIPS for chaperones linked to protein
synthesis) and the other (HSPs, heat shock proteins) is for
protein refolding to rescue them in stress (Albanese et al., 2006).
Thus, translation-associated chaperones are organized in the

CLIPS network (Albanese et al., 2010; Pechmann et al., 2013).
While secretory/membrane proteins need SRP during the first
step of protein synthesis, cytosolic proteins require ribosome
bound chaperones Ssb (HSP70 family) in yeast (Willmund et al.,
2013), HSP70L1 and MPP11 in mammals (Otto et al., 2005),
chaperonin TRiC (McCallum et al., 2000; Etchells et al., 2005),
and other factors (Hartl et al., 2011; Pechmann et al., 2013).
Another chaperonin, prefoldin, also binds nascent chains and
is involved in folding of actin and tubulin (Hartl and Hayer-
Hartl, 2002). It is not completely understood how specificity
of chaperones/chaperonins to nascent chains is controlled. In
addition, large group of proteins involved in quality control and
ubiquitination of aberrant nascent chains are also found bound
to translating ribosomes (Comyn et al., 2014).

Thus, ribosome itself serves not only as a protein synthesis
machinery but it also plays a key role in arranging protein
targeting/folding and quality control. Studying the normal
interactions of nascent polypeptides during translation and their
change during engagement of mRNA and protein quality control
machineries are important for understanding of molecular
foundation of protein biogenesis and homeostasis, as well as for
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FIGURE 2 | Simplified scheme of interactions at the polypeptide exit site at the ribosome under normal conditions. Nascent chains and ribosomes interact with
different proteins during translation to achieve proper folding and correct targeting. While nascent chains of cytosolic proteins (A) are synthesized in environment of
RAC, NAC, Ssb (HSP70) and further folded with assistance of chaperones and chaperonins, the secretory proteins (B) briefly interact with NAC before full exposure
of the signal sequence, and when signal sequence is emerged from the ribosome tunnel, SRP binds it leading to temporary elongation arrest and targeting to the ER
membrane for further transport through translocon into ER lumen, then to Golgi, and finally outside of the cell. Only major interacting partners are shown, their sizes
are not to scale, and their positions on the ribosome and contacts are presented for a general understanding of the process and do not reflect very complex nature
of their interactions with the nascent chains and the ribosomes. Mammalian proteins are shown, their yeast counterparts are in square brackets.

molecular basis of human diseases associated with dysregulation
of these processes.

RIBOSOME-ASSOCIATED mRNA
QUALITY CONTROL PATHWAYS

mRNA turnover is one of the major mechanisms to control
gene expression and maintain a high level of fidelity for cell
function and viability. Cells use multiple mRNA degradation
pathways to eliminate non-functional transcripts. mRNA decay
is a highly orchestrated process controlled by distinct set
of genes. mRNA surveillance starts in the nucleus. Defective
mRNAs could be detected and subjected for degradation at
different stages of their production and maturation including
transcription, capping, splicing, and polyadenylation. Exosome
is the major machinery to degrade the faulty mRNAs in
the nucleus. Then mRNAs that passed a quality control in
the nucleus are exported to the cytoplasm as messenger
ribonucleoproteins (mRNPs) where they can be engaged in
translation. In the cytoplasm, mRNAs are subjected to additional
cotranslational mRNA surveillance quality control. Several
major mRNA degradation pathways operate to identify faulty

mRNAs and protect the cell from translation of aberrant
mRNAs and potentially toxic proteins – NMD, NGD, and NSD
(Figure 3).

NONSENSE-MEDIATED DECAY

Nonsense-mediated decay is mRNA surveillance pathway that
recognizes and targets mRNAs with PTCs for rapid degradation
to reduce translation of truncated proteins with dominant-
negative or deleterious gain-of-function activities (Welch and
Jacobson, 1999; Popp and Maquat, 2013) (Figure 3A). This
pathway exists in all eukaryotes examined so far (Culbertson,
1999). NMD was not found in bacteria. The presence of the
PTCs in bacterial genes leads to termination or reinitiation of
translation (Karamyshev et al., 2004).

Exon-exon junction complex (EJC) is a complex of proteins
that are assembled at the pre-mRNA during splicing (Gehring
et al., 2009). After mRNA export EJC is being removed from
the mRNA during pioneer round of translation and replaced
with proteins promoting translation. However, if premature
termination codon is present on the mRNA ≥ 50–55 nucleotides
upstream of the EJC the NMD is activated most likely because
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FIGURE 3 | mRNA quality control systems: Nonsense-mediated decay (NMD) (A), no-go decay (NGD) (B), non-stop decay (NSD) (C). See text for details.
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the terminating ribosome (at the PTC) is not able to remove
EJC and proceed with normal translation (Popp and Maquat,
2014).

Several proteins are conserved in NMD across species and
constitute the core of this pathway: the up-frameshift proteins
UPF1, UPF2, and UPF3. UPF1 is the master regulator of
NMD. ATPase activity of UPF1 is required for disassembly
of mRNPs during NMD (Franks et al., 2010). In mammals,
two variants of UPF3 exist: UPF3a and UPF3X (UPF3b) (Serin
et al., 2001). In multicellular organisms, additional proteins called
suppressors with morphological effects on genitalia (SMG1,
SMG5 – SMG9) contribute to the regulation of NMD (Yamashita
et al., 2001, 2009). NMD takes place in three stages including
detection of NMD substrates, tagging, and finally degradation
of PTC containing transcript. NMD activation begins with
detection of PTC during pioneer round of translation. After
detection stage the PTC is tagged by formation of SURF
complex at the terminating ribosome. SURF complex includes
the serine/threonine kinase SMG1, UPF1, and eukaryotic release
factors eRF1-eRF3 (Kashima et al., 2006; Hwang et al., 2010).
Then UPF1-SMG1 binds to EJC via interaction with UPF2.
UPF2 is bound to EJC through interaction with UPF3 or
UPF3X. SMG1 phosphorylates UPF1. Hyperphosphorylated
UPF1 induces translational repression and recruits SMG6
protein (Isken et al., 2008). SMG6 performs endonucleolitic
cleavage of mRNA. This cleavage occurs between the PTC and
EJC sites of the defective mRNA during last stage of NMD
(Huntzinger et al., 2008; Eberle et al., 2009). Activated UPF1
then recruits SMG5-SMG7 or SMG5-PNRC2 (Kervestin and
Jacobson, 2012). These proteins further recruit decapping and/or
deadenylation machinery to facilitate exonucleolytic degradation
of unprotected 5′- and 3′-mRNA fragments resulted from
endonucleolytic cleavage of PTC-containing mRNA (Lejeune
et al., 2003; Loh et al., 2013). 5′-to-3′ exonuclease XRN1 is
responsible for degradation of the 3′-cleavage product (Lejeune
et al., 2003; Unterholzner and Izaurralde, 2004; Eberle et al.,
2009). The 5′-cleavage product most likely is degraded by
exosome (Schmid and Jensen, 2008). NMD proteins can be
co-purified with components of mRNA degradation machinery
(DCP2, XRN1, and XRN2/RAT1, and several exosome subunits)
(Lejeune et al., 2003; Muhlemann and Lykke-Andersen, 2010).
Decapping and deadenylation enzymes may contribute to
faster degradation of mRNA fragments in mammalian cells
(Lejeune et al., 2003). However, more research is needed
to understand the role of decapping and deadenylation in
NMD.

While the mechanism explained above (Exon Junction
Complex model) is appealing, it cannot explain all the
details of the NMD mechanism and alternative models
including Upf1 3′-UTR sensing/potentiation and the faux 3′-
UTR models were proposed (reviewed in He and Jacobson,
2015). While the models recognize importance of 3′-UTR,
however, they propose different roles for 3′-UTR and NMD
target recognition (Amrani et al., 2004; Hogg and Goff, 2010).
According to sensing/potentiation model Upf1 senses 3′-UTR
and potentiates mRNA decay (Hogg and Goff, 2010). According
to faux model, efficient termination is inhibited when the

distance between PTC and polyA tail is large (Amrani et al.,
2004).

The major function of UPF1, the master regulator of
NMD, is to limit translation from aberrant mRNAs. Thus,
NMD is translation-dependent process and truncated protein
derived from pioneer round of translation could be toxic and
contribute to human pathology. Therefore, PTC-containing
mRNA degradation should be coupled to the protein degradation
of truncated polypeptide. While limited information is available
in this regard some studies on yeast suggest that Upf1 could
have E3 ubiquitin ligase properties promoting degradation of
truncated polypeptide through proteasome (Takahashi et al.,
2008; Kuroha et al., 2009). However, the fate of truncated proteins
produced during NMD in mammalian cells remains an open
question for further investigations.

NO-GO DECAY

No-go decay degrades mRNAs stalled in translation elongation
complexes (Figure 3B). Translational arrest could be caused
either by specific features of nascent peptides, strong secondary
structures in mRNA physically blocking the translation
machinery along the transcript, or a rare codon repeat causing
the A site to be unoccupied for a long duration (Kuroha
et al., 2010; Tsuboi et al., 2012). Insertion of stable stem-loop
RNA structure into PGK1 mRNA led to translational arrest
and endonucleolytic cleavage of mRNA stalled in translation
elongation with subsequent rapid mRNA degradation. While
NGD pathway was initially discovered in yeast, it was also
identified in fruit flies and mammals (Doma and Parker, 2006;
Passos et al., 2009; Pisareva et al., 2011).

Proteins Pelota (in mammals; Dom34 in yeast) and HBS1
are involved in regulation of NGD pathway (Doma and Parker,
2006; Pisareva et al., 2011) and are structurally related to the
termination factors eRF1 and eRF3, respectively (Atkinson et al.,
2008). They also mimic complex of elongation factor and tRNA
suggesting that they bind A site at the ribosome (van den Elzen
et al., 2010). Indeed, Dom34 and Hbs1 interact directly with A
site of the ribosome but instead of termination they promote
dissociation of aberrant translation elongation complex and
ribosome recycling (Shoemaker et al., 2010; Becker et al., 2011).
Dom34/Hbs1 can also stimulate endonucleolytic cleavage event
in NGD substrate and promote subsequent mRNA degradation,
however, these factors are not essential since cleavage of NGD
mRNA can take place even in the absence of these proteins
(Passos et al., 2009; Tsuboi et al., 2012). The data suggest
that endonucleolytic cleavage occurs upstream of the ribosome
stalling site (Tsuboi et al., 2012). It was shown recently that
NGD is triggered by the ribosome collision resulting in multiple
endonuclease cleavages (Simms et al., 2017). Efficiency of NGD
depends on the ribosome density on the substrate mRNA
suggesting that ribosome collision transmits signal to activate
endonuclease. Like in NMD pathway, generated fragments are
rapidly degraded by the exosome and XRN1 during NGD. It
still remains unknown what endonuclease is responsible for the
cleavage of NGD substrates.
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NON-STOP DECAY

Non-stop decay degrades mRNAs that lack stop codons
(Figure 3C). NSD was first discovered in yeast (van Hoof et al.,
2002) and mammals (Frischmeyer et al., 2002). Non-stop mRNAs
could arise by different mechanisms. These aberrant mRNAs
may be produced by erroneous polyadenylation within the ORF
resulting in non-stop mRNAs with poly(A) or by endonucleolytic
cleavage within the ORF generating non-stop mRNA lacking
poly(A) (Ozsolak et al., 2010; Graille and Seraphin, 2012).
Translation of poly(A) leads to formation of poly-lysine chain
at the C-terminus of the synthesized polypeptide. This positively
charged amino acid chain causes stalling of the polypeptide in the
ribosome tunnel most likely due to interaction with negatively
charged ribosomal RNA (Dimitrova et al., 2009). In case of
truncated non-stop mRNAs lacking poly(A), ribosomes stall
at the very 3′-end of the mRNA. In both cases, translational
stalling triggers rapid degradation of non-stop mRNAs by the
translation-dependent NSD pathway. Translational repression is
a prerequisite for mRNA degradation during NSD (Inada and
Aiba, 2005; Akimitsu et al., 2007) similarly to NGD and NMD.
It was shown that Ski7, a protein structurally related to Hbs1
and eRF3, is able to bind stalled ribosome and recruit exosome
to the transcript during NSD in yeast (van Hoof et al., 2002).
However, Ski7 is not present in higher eukaryotes. Organisms
lacking Ski7 rely on Hbs1 and Dom34 proteins that function
in both NSD and NGD (Tsuboi et al., 2012; Saito et al., 2013)
suggesting a substantial overlap in function of these pathways.
Recent study from Inada’s group has shown that Dom34:Hbs1
complex has a crucial role to dissociate ribosomes and stimulate
mRNA degradation in both NSD and NGD pathways (Tsuboi
et al., 2012). Endonucleolytic cleavage is a first step for mRNA
degradation in NSD. It has been found that stalled ribosomes
can induce multiple endonucleolytic cleavage events on non-
stop mRNA covered by the individual ribosomes (Tsuboi et al.,
2012). However, similar to NGD, the identity of endonuclease
implicated in NSD is not known yet.

Thus, all of these cotranslational quality control systems
share several common features: the aberrant mRNA must be
eliminated, the truncated protein products should be degraded
and the stalled ribosomes should recover from stalling and
return for translation. NMD was originally discovered as a
surveillance pathway with major function to reduce errors in gene
expression by eliminating PTC-containing mRNAs; however,
new roles of the NMD pathway have recently emerged. It
has been found that NMD pathway is also capable to target
normal and physiologically functional mRNAs in order to drive
a rapid change in gene expression (He and Jacobson, 2015).
Ribosome profiling revealed that the NMD pathway regulates
expression levels of at least 10% of human transcripts (Celik
et al., 2017). NMD contributes to regulation of germ granules
and spermatogenesis, and NMD components were found in the
composition of chromatoid body (Meikar et al., 2014; Bao et al.,
2016; MacDonald and Grozdanov, 2017). It is conceivable that
NSD and NGD pathways are also involved in regulation of gene
expression in addition to mRNA quality control in a similar
manner as NMD. Recent data suggest that NGD pathway can be

used not only to degrade faulty mRNAs but also normal histone
mRNAs from stalled degradation complexes as a part of cell cycle
regulation (Slevin et al., 2014). Chemically damaged mRNAs
(oxidized, depurinated, or alkylated) can cause translational stalls
and become NGD substrates in order to reduce burden of toxic
protein products for the cell (Shan et al., 2007; Wurtmann and
Wolin, 2009).

Deficiencies in the NMD components such as UPF3B and
SMG9 lead to an intellectual disability or multiple congenital
anomaly syndrome, respectively, due to global transcriptional
deregulation (Rebbapragada and Lykke-Andersen, 2009; Shaheen
et al., 2016). The NMD pathway has also been found to
regulate immune responses. The component of NMD, UPF1, is
involved in antiviral responses and restricts the Semliki Forest
virus (SFV) and Sindbis viral infections (Balistreri et al., 2014).
Somatic mutations in UPF1 gene are connected to pancreatic
adenosquamous carcinoma (Liu et al., 2014). Deregulation of
NMD pathway is associated with several types of cancer and
reviewed in details in the recent publication (Popp and Maquat,
2018).

REGULATION OF ABERRANT PROTEIN
PRODUCTION

Novel type of ribosome-associated protein quality control,
RAPP, was recently discovered (Karamyshev et al., 2014)
(Figures 1, 4). The first natural RAPP substrate, granulin with
disease-causing signal sequence mutations, was also recently
identified, demonstrating that RAPP activation serves as a
molecular mechanism for some types of frontotemporal lobar
degeneration (Pinarbasi et al., 2018). The RAPP pathway detects
aberrant proteins during translation and degrades their mRNA
templates to prevent synthesis of potentially hazardous products
(preventive quality control). It involves recognition of nascent
chains that lost their normal interactions with factors for
targeting and directs the aberrant protein mRNA for degradation.
Original research was conducted on the example of secretory
protein preprolactin with deletions in the signal sequence
(Karamyshev et al., 2014). The central event of the RAPP pathway
is a balance of interactions at the ribosome during translation.
Normally, during translation, secretory proteins are recognized
by SRP and targeted to the ER membrane for translocation
through a translocon into the ER lumen (Figure 4A). When
an aberrant signal sequence is not recognized by SRP due to a
mutation or when SRP is absent or defective, AGO2 protein binds
ribosome-nascent chain complex and triggers specific mRNA
degradation (Figures 4B,C). Thus, SRP has a novel function in
mRNA protection of the secretory proteins from degradation in
addition to its role in protein targeting.

Although there are no distinct sequence requirements to
trigger mRNA degradation, a mutation should take place in
the vicinity of the region responsible for a necessary protein
interaction and lead to impairment of this interaction. The AGO2
role in this process is not known yet. We hypothesize that the
positioning of AGO2 close to a mutated nascent chain regulates
its ability to direct mRNA for degradation. AGO2 is a protein
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FIGURE 4 | Model for regulation of aberrant protein production (RAPP) in mammalian cells. Normal cotranslational interactions are important for protein biogenesis.
Nascent chains of secretory proteins interact with signal recognition particle (SRP). This interaction leads to proper protein targeting to ER, folding and transport (A).
Loss of this normal interaction with SRP due to a critical mutation in the secretory protein (B) or loss of the interacting factor (C) leads to engagement of AGO2 (a
protein involved in translational silencing). This interaction directs aberrant protein mRNA for degradation initiating the RAPP process.

that is involved in miRNA and siRNA response, translational
silencing and a major component of RNA-induced silencing
complex (RISC) (Hammond et al., 2001; Martinez et al., 2002).
However, our experiments demonstrated that RAPP process
does not involve miRNAs, Drosha and Dicer proteins suggesting
a novel AGO2 function in the absence of RISC formation
(Karamyshev et al., 2014). AGO2 possesses slicer or ribonuclease
H activity (Liu et al., 2004; Song et al., 2004; Rivas et al.,
2005). However, experiments involving enzymatically inactive
AGO2 indicate that AGO2 slicer activity is not required for
mRNA degradation during RAPP (Karamyshev et al., 2014). We
have found that the mRNA degradation of the model RAPP
substrates was suppressed by AGO2 depletion and accelerated by
AGO2 overexpression. However, granulins with disease-causing
mutations were not affected (Pinarbasi et al., 2018). These
observations suggest that AGO2 functions as a sensor for some
substrates during RAPP response, and an unidentified protein
may serve that function for other substrates. Other explanation
is that the major sensor of the pathway is not determined yet
and AGO2 conducts a helper or enhancer function for some
substrates. Our data suggest that the mRNA cleavage is conducted
by other than AGO2 endonuclease. However, the nature of the
endonuclease still remains to be found. Thus, the mechanism of
the RAPP pathway is far from understanding yet.

It was found earlier that under stress conditions that lead
to accumulation of unfolded proteins in ER, a process known
as regulated Ire1-dependent decay (RIDD) is triggered (Hollien
and Weissman, 2006; Hollien et al., 2009). It reduces quantity of
secretory protein mRNAs to decrease accumulation of secretory
proteins in ER during unfolded protein response (UPR).
RIDD is an important general stress response mechanism that
senses unfolded secretory proteins that have been successfully

transported into ER, and prevents their further synthesis and
therefore transport into ER and accumulation. By contrast, RAPP
senses mutated polypeptide nascent chains that are not able
to interact with SRP and therefore are not targeted and not
translocated into ER thereby reducing accumulation of these
potentially hazardous proteins in the cytosol.

The current RAPP model is based on selection of mRNA
for degradation by a loss of cotranslational interaction between
nascent chain and targeting factor at the ribosome. If interaction
with SRP is reduced due to a mutation in the signal sequence
then AGO2 interacts with nascent chain and directs its mRNA for
degradation. If SRP interaction is intact, AGO2 cannot interact
with nascent chain. It is possible that this mechanism is general
and involved in quality control of other types of proteins that
lost their normal interactions. It could be cytosolic aberrant
proteins that lost natural interactions with some chaperones (for
instance, ribosome associated chaperones and components of
RAC, MPP11, and HSP70L1), or peroxisomal and mitochondrial
proteins, that lost their interactions with their targeting factors.
However, the understanding of these processes requires future
studies.

RIBOSOME-ASSOCIATED QUALITY
CONTROL AT A NASCENT CHAIN LEVEL

What happens to partially synthesized nascent chains after
activation of degradation of the faulty mRNAs? Recent studies on
cotranslational quality control systems induced by translational
stalls have revealed that not only faulty mRNAs but also truncated
proteins are rapidly degraded. In yeast, Ltn1, a ribosome-
associated E3 ubiquitin ligase (Bengtson and Joazeiro, 2010)
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FIGURE 5 | Protein quality control at the stalled ribosomes. Mammalian proteins are shown, their yeast counterparts are in square brackets. See text for details.

and a component of Ccr4-Not complex, Not4p (that may
act as E3 ubiquitin-protein ligase) (Panasenko et al., 2006;
Dimitrova et al., 2009; Halter et al., 2014) play important
role in aiding of truncated protein products for degradation
by proteasome. It was demonstrated that Ltn1, Tae2 (other
name Rqc2), Rqc1, and AAA-ATPase Cdc48 (other names
VCP, valosin containing protein, and p97) are involved in
removal of aberrant translational products in yeast and form
a complex on the 60S ribosome subunit (Brandman et al.,
2012; Defenouillere et al., 2013). This complex was named the
ribosome quality control complex (RQC) (Brandman et al.,
2012). Listerin, the functional mammalian homolog of Ltn1, is
involved in ubiquitination of aberrant nascent chains produced
by the stalled ribosomes (Shao et al., 2013) (Figure 5). Notably,
that the ubiquitinated nascent chains were found still attached
to tRNAs, however, the process required dissociation of the
ribosome subunits. Pelota, HBS1, ABCE1 are involved in the
ribosome subunits dissociation in mammals, while Dom34,
Hbs1, Rli1 are in yeast (Shoemaker et al., 2010; Pisareva
et al., 2011; Shoemaker and Green, 2011) (Figure 5). Ribosome
subunits dissociation leads to assembly of the RQC on the 60S
ribosome subunit (Shao et al., 2015). Binding of nuclear export
mediator factor (NEMF) in mammals (Rqc2 or Tae2 in yeast)
prevents subunits association, leads to recruitment of Listerin
and its positioning near the polypeptide exit site on the 60S
subunit (Lyumkis et al., 2014; Shao et al., 2015). The results
of several studies suggested that Cdc48, Npl4, Ufd1, and Rqc1
are involved in extraction of the ubiquitinated nascent chains
from the 60S subunit (Brandman et al., 2012; Defenouillere
et al., 2013; Verma et al., 2013). The mammalian orthologs
are VCP (p97), UFD1, NPLOC4, and TCF25 (Verma et al.,
2018). However, the detailed role of the distinct components
is not well understood. It was discovered recently that yeast
Vms1 (ANKZF1 in mammals) releases ubiquitinated nascent
chains from the stalled ribosomes by peptidyl-tRNA hydrolysis
for further degradation of polypeptides by proteasome (Verma
et al., 2018). Very little is known about truncated nascent
chain degradation during NMD pathway. It was shown that
UPF1 promotes degradation of truncated peptides generated in
NMD pathway and can potentially serve as E3 ubiquitin ligase
(Takahashi et al., 2008; Kuroha et al., 2009). However, more
research is needed to identify all key players in regulation of
cotranslational protein degradation and details of the mechanism
during NMD.

Several cotranslational protein quality controls induced by
stress were recently discovered in mammals. One of them,
pre-emptive quality control (pQC), cotranslationally reroutes
membrane and secretory proteins to cytoplasm for degradation
under acute ER stress (Kang et al., 2006; Kadowaki et al., 2015).
Derlins (degradation in ER proteins) redirect them from the
translocon to the proteasome with involvement of chaperone
Bag6 (BCL2 associated athanogene 6) and p97 (alias Cdc48
or VCP) (Kadowaki et al., 2015). pQC reduces the burden of
misfolded proteins in the ER during stress. Bag6 complex is
also involved in mislocalized protein degradation pathway (Hessa
et al., 2011). This pathway senses the presence of unprocessed
or non-inserted hydrophobic domains released into the cytosol
and directs these proteins for degradation. Other stress-induced
quality control involves recruitment of c-Jun N-terminal kinase
(JNK) to ribosomes by the receptor for activated protein C kinase
1 (RACK1), phosphorylation of elongation factor eEF1A2, and
promotion of degradation by proteasome (Gandin et al., 2013). It
implicates the complex JNK/RACK1/eEF1A2 in protein quality
control at the ribosome in response to stress.

CONCLUSION

Thus, nascent chains interact with a number of different
factors at the ribosome during translation. These interactions
are required for normal folding, transport and formation of
active proteins. The alterations of these important interactions
because of mutations or defective factors trigger protective
mechanisms to prevent accumulation of the potentially toxic
products in the cells. In addition, different aberrations in mRNAs
may lead to translational stalling that prevents new rounds
of translation and potentially may be fatal. Cells developed
protective mechanisms to recycle stalled ribosome and remove
aberrant proteins and mRNAs. Therefore, network of ribosome-
associated proteins, endo- and exo-nucleases, chaperones,
ubiquitin ligases, proteasome and other proteins, working
in concert, is maintaining protein homeostasis in the cells.
Multiple mechanisms are engaged at different stages of protein
biogenesis to get rid of aberrant mRNA templates, mutated
or uncompleted nascent chains, and misfolded or mislocalized
proteins. However,many details of these mechanisms are still not
completely understood and additional studies are needed to fill
that gaps.
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