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Enzymatic degradation of RNA causes widespread
protein aggregation in cell and tissue lysates
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Abstract

Most proteins in cell and tissue lysates are soluble. We show here
that in lysate from human neurons, more than 1,300 proteins are
maintained in a soluble and functional state by association with
endogenous RNA, as degradation of RNA invariably leads to protein
aggregation. The majority of these proteins lack conventional RNA-
binding domains. Using synthetic oligonucleotides, we identify the
importance of nucleic acid structure, with single-stranded
pyrimidine-rich bulges or loops surrounded by double-stranded
regions being particularly efficient in the maintenance of protein
solubility. These experiments also identify an apparent one-to-one
protein-nucleic acid stoichiometry. Furthermore, we show that
protein aggregates isolated from brain tissue from Amyotrophic
Lateral Sclerosis patients can be rendered soluble after refolding by
both RNA and synthetic oligonucleotides. Together, these findings
open new avenues for understanding themechanism behind protein
aggregation and shed light on how certain proteins remain soluble.
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Introduction

Under physiological conditions, the majority of cellular proteins

exist as soluble and folded entities. After protein synthesis, a

complex machinery of cellular chaperones facilitates correct

protein folding. Misfolded proteins are then identified and either

corrected or, if the correction has failed, removed through autop-

hagy or by the proteasome (Rubinsztein, 2006; Buchberger et al,

2010). Failure to resolve the misfolded state of proteins can lead

to pathological accumulation and deposition of insoluble protein

aggregates, as seen in many neurodegenerative diseases. However,

aggregation per se is not necessarily a pathological phenomenon

as various aspects of this process are also part of normal cellular

physiology (Kaganovich et al, 2008; David et al, 2010; Wallace

et al, 2015; Walther et al, 2015). For example, several proteins, in

particular RNA-binding proteins, are recruited into semi-soluble,

non-membrane encapsulated organelles such as stress granules

and p-bodies through the process of liquid–liquid phase separation

(Brangwynne, 2011). These, and similar structures, are not known

to form pathological aggregates as the individual components are

normally dynamically exchanged with the surrounding environ-

ment (Andersen et al, 2005; Kedersha et al, 2005; Spector &

Lamond, 2011; Decker & Parker, 2012). However, there are

several in vitro examples that liquid–liquid phase separation of

proteins can form stable aggregates reminiscent of structures

found in disease (Lin et al, 2015; Babinchak et al, 2019;

Narayanan et al, 2019; preprint: Ray et al, 2019). Some of the key

factors in liquid–liquid phase separations are just beginning to

emerge and include, for example, the presence of low-complexity

regions and/or unstructured regions in participating proteins (Kato

et al, 2012; Aguzzi & Altmeyer, 2016; Bergeron-Sandoval et al,

2016; Wu & Fuxreiter, 2016). RNA also appears to play an impor-

tant role in the formation of these structures. Indeed, RNA itself

undergoes phase transition (Jain & Vale, 2017) and has been

shown to promote phase transitions of several proteins (Lin et al,

2015; Molliex et al, 2015; Zhang et al, 2015), including Tau

(Zhang et al, 2017), and also to inhibit protein aggregation, most

notably of Fused in Sarcoma, FUS and TDP-43 (Shelkovnikova

et al, 2014; Burke et al, 2015; Mann et al, 2019). Recently, Maha-

rana et al (2018) showed that for several prion-like proteins,

including FUS, these disparate effects can be explained by the

ratio of protein to RNA, where excess of RNA promotes solubility

and decreased amount of RNA induces phase transition. Similar

results have also been observed for p53 and the prion protein

(Kovachev et al, 2017, 2019).

Most neurodegenerative diseases are associated with aggregation

of several proteins (Xia et al, 2008; Bai et al, 2013) and, curiously,

the same proteins are frequently found aggregated across multiple

diseases. For example, aggregated alpha-synuclein, a hallmark of
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Parkinson’s disease, can also be found in Alzheimer’s disease

(Hamilton, 2000; Mandal et al, 2006), and aggregated TDP-43, a

hallmark of Amyotrophic Lateral Sclerosis (ALS), can also be found

in both Alzheimer’s disease and Parkinson’s disease (Higashi et al,

2007; Nakashima-Yasuda et al, 2007). This indicates that a common

factor might control the soluble state of these proteins. Altered RNA

metabolism is a recurring theme in several neurodegenerative disor-

ders (e.g. Ramaswami et al, 2013; Conlon & Manley, 2017; Liu et al,

2017). In ALS and Frontotemporal Dementia, this is supported by

disease-causing genetic mutations in several RNA-binding proteins

as well as by the generation of potentially toxic RNA species (Sreed-

haran et al, 2008; Kwiatkowski et al, 2009; Vance et al, 2009; Fratta

et al, 2012; Kim et al, 2013; Haeusler et al, 2014). However, the link

between altered RNA metabolism and protein aggregation per se is

largely unexplored. Here, we show that RNA itself is critical in

maintaining solubility of several disease-associated and other aggre-

gation-prone proteins in cell and tissue lysates. These findings

expand on previous studies by indicating a more general role for

RNA, beyond its effect on RNA-binding proteins, in maintaining

solubility of certain proteins.

Results

Enzymatic degradation of RNA causes protein aggregation

Within a few minutes after adding RNase to a clear cell lysate, it

becomes opaque (Movie EV1), suggesting precipitation of material.

To investigate if the precipitate contained proteins, we treated lysates

prepared from human neurons and mouse brain cortex with a

mixture of RNase A and RNase T1 (A/T1) and identified any aggre-

gated proteins by gel electrophoresis (the experimental outline is

shown in Fig 1A). RNase treatment caused a concentration-depen-

dent aggregation of proteins from both samples (Figs 1A and EV1A)

and was accompanied by a decrease in both the amount and size

distribution of RNA in the lysate (Fig EV1B). RNase A/T1 treatment

for one hour at 37°C consistently precipitated 10% � 1% (n = 4) of

the amount of input proteins from both human neurons and mouse

brain, a fraction that did not increase by prolonged RNase treatment.

The specificity of the ribonuclease was not important for the over-

all efficiency, as the single-stranded ribonucleases RNase A, T1 and 1f

showed similar efficiency to the RNase A/T1 mixture (Fig 1C). RNase

V1, which is specific for double-stranded RNA, also caused protein

aggregation but only if EDTA was omitted from the buffer and

replaced with Mg2+, (Fig 1C). RNase V requires Mg2+ for its activity.

However, DNase I failed to cause protein aggregation in the presence

of either EDTA or Mg2+ (Fig 1C). No proteins above background (i.e.

in samples without added nucleases) were aggregated when increas-

ing amounts of a ribonuclease inhibitor were added to the lysate

together with RNase A (Fig EV1C), or when enzymatically or chemi-

cally (NaOH) degraded RNAwas added to the lysate (Fig EV1D).

Mass spectrometry identification of aggregated proteins

We used liquid chromatography tandem mass spectrometry (LC-

MS/MS) to identify the proteins which are aggregated by degrada-

tion of RNA in human neuronal cell lysates. More than 1,300 aggre-

gated proteins were found to be common to two biological

replicates (Dataset EV1). Gene ontology analysis of the data set

against a total proteome (approximately 6,600 proteins) from

human neurons (Song et al, 2019) using PANTHER indicates an

over-representation of protein-containing complexes (FDR

q = 1.22 × 10�18), proteins involved in translation (FDR

q = 7.59 × 10�12), RNA binding (FDR q = 1.97 × 10�13) and hetero-

cyclic compound binding (FDR q = 5.93 × 10�18; Fig EV2A–C and

Dataset EV1). Since mass spectrometry analysis of complex protein

mixtures is more likely to identify more abundant proteins than

proteins present in low quantities, we reanalysed our data set using

the proteins with higher than average relative abundance in Song

et al (2019) as background. Similar enrichment of GO terms was

A B C

Figure 1. Enzymatic degradation of RNA causes protein aggregation.

A Diagram showing the experimental design.
B SDS–PAGE analysis of soluble (Supernatant) and insoluble proteins (Pellet) from human neurons after treatment for one hour with a mixture of RNase A and RNase

T1 (A/T1), or vehicle (Ve-).
C Protein aggregation (Pellet) after incubation with different ribonucleases or DNase I in the presence of either EDTA or Mg2+. Ribonucleases used were RNase A (A),

RNase T1 (T1), a mixture of RNase A and RNase T1 (A/T1), RNase 1f (1f) and RNase V1 (V1).
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observed (Dataset EV1), suggesting that the proteins that aggregate

upon RNase treatment are not random. Recently, unstructured, low-

complexity regions in several RNA-binding proteins have been

shown to mediate protein phase transition (Kato et al, 2012).

However, both low-complexity (LC) and unstructured (US) regions

are significantly under-represented in our data set (Fig EV2D

and E).

The aggregated proteins include several proteins that are associ-

ated with neurodegenerative disease or other proteinopathies, such

as huntingtin (HTT), TDP-43, Gelsolin, Lysozyme, the heteroge-

neous nuclear ribonucleoproteins A2B1 (HNRNPA2B1), HNRNPA1,

and in one of the LC-MS/MS replicates, the valosin-containing

protein, VCP (Haltia et al, 1990; Pepys et al, 1993; DiFiglia et al,

1997; Hirabayashi et al, 2001; Watts et al, 2004; Neumann et al,

2006; Kimonis et al, 2008; Kim et al, 2013). We used Western blot

to validate the mass spectrometry data and to investigate the solu-

bility of other aggregation-prone proteins associated with proteino-

pathies. HTT, neurofilament heavy chain (NF-H), Tau (MAPT),

FUS, TDP-43, HNRNPA1, HNRNPD, RPL7 and actin (ACTB, found

aggregated in Hirano bodies in several neurodegenerative diseases;

Hirano, 1994), were selectively aggregated upon RNase A/T1 treat-

ment of human neuronal lysates (Fig 2A). However, the solubility

of poly A binding protein, PABP, an abundant RNA-binding

protein not identified in aggregates by mass spectrometry, was

unaffected by RNase treatment (Fig 2A). Similar results were

obtained using tissue lysate prepared from mouse cortex

(Fig EV3). We also detected an approximately 40 kDa Amyloid

beta (Ab)�immunoreactive band in the pellet of RNase-treated

lysate (Fig 2A), possibly representing Ab oligomers (Walsh et al,

1997; McLean et al, 1999) formed from Ab generated in intracellu-

lar vesicles (Rajendran et al, 2006). Since the molecular weight of

this band is larger than expected, we also examined the aggrega-

tion of Ab in cell lysates prepared from HEK293T cells expressing

Ab fused to GFP. This fusion protein aggregated upon degradation

of RNA, while no aggregation was observed for GFP itself

(Fig 2B).

Inhibiting the added RNase activity with an RNase inhibitor abol-

ished the aggregation of HTT, NF-H and TDP-43 (Fig 2C).

RNA is required for maintaining the non-aggregated state of
renatured proteins

We next denatured proteins aggregated by enzymatic degradation

of RNA in 6M guanidine hydrochloride (GuHCl) and then

attempted to renature them in the presence or absence of total

RNA without any prior size fractionation (experimental outline

in Fig 3A). We hereafter refer to this process, i.e. GuHCl denatu-

ration of RNase-aggregated proteins followed by refolding in the

presence of various additives, as renaturation. After removal of

GuHCl, proteins remained soluble in the presence of RNA in an

RNA concentration-dependent manner, while the majority of

proteins without RNA re-aggregated (Fig 3B and C). Remarkably,

enzymatic degradation of RNA from the soluble fraction (Sup 1)

after renaturing in the presence of RNA caused the proteins to

re-aggregate (Fig 3C, Pel 2). The same principles were also

observed for individual proteins (Fig 3D).

Other nucleic acids, including total E. coli RNA and human

genomic DNA, efficiently prevented protein aggregation while

neither yeast tRNA nor heparin at the same amounts, did

(Fig EV4A). The effect of DNA is surprising since our data show that

proteins in cell lysate are maintained in a soluble state by intact

RNA and not by DNA (Fig 1C).

It is possible that the degradation of RNA causes the aggregation

of a few proteins that then co-sequester and aggregate with many

other proteins. To investigate this hypothesis, we therefore purified

recombinant TDP-43, which forms inclusion bodies in E. coli (Furu-

kawa et al, 2011; Capitini et al, 2014), under denaturing conditions

(6 M guanidine hydrochloride) and assessed the proportions of

soluble and insoluble TDP-43 when renatured in the presence or

absence of RNA. If co-sequestering did occur, then the presence or

absence of RNA should not affect the solubility of TDP-43. However,

we only obtained soluble TDP-43 when renatured with RNA

(Fig EV4B). Therefore, at least for TDP-43, the aggregation depends

solely on the availability of RNA, confirming previous studies that

TDP-43 aggregation is enhanced by lack of RNA interactions (Elden

et al, 2010; Pesiridis et al, 2011).

RNA is required for protein activity

Correct folding is required for the proper function of proteins. To

investigate whether the renatured proteins were functional and not

just solubilised, we assessed the ATP-hydrolysing activity of ATP-

binding proteins, which represent a large proportion of the aggre-

gated proteins (18%, 240/1312). As the ability to bind ATP depends

on the presence of conserved structural motifs (Walker et al, 1982),

we first investigated if the ability to bind ATP was restored in the

presence or absence of RNA. Proteins from human neurons bound

to ATP only in the presence of RNA (Fig EV4C), and LC-MS/MS

A B

C

Figure 2. Enzymatic degradation of RNA induces aggregation of proteins
associated with neurodegenerative diseases.

A, B Western blot analysis of soluble and aggregated proteins after RNase
treatment of lysate from human neurons (A), or HEK293T cells expressing
GFP-Ab or GFP (B).

C Effect of an RNase A inhibitor (RNasin) on RNase A mediated protein
aggregation in neuronal cell lysate.
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characterisation of these showed a clear enrichment of ATP-binding

proteins (58/143, Dataset EV2). RNA-renatured proteins hydrolysed

100-times more ATP than proteins without RNA (Fig 3E), and

concomitant degradation of RNA by the addition of RNase A/T1

hampered this activity (Fig 3E). Similar results were obtained with

aggregated proteins from Jurkat cells (Fig EV4D).

Identification of RNA sequences that are associated with
soluble proteins

To identify transcripts associated with soluble proteins in human

neuronal lysates, we performed native RNA immunoprecipitation

(RNA-IP) for Ab and NF-H, followed by sequencing. The majority of

associated transcripts were derived from protein-coding genes. 471

different transcripts associated with Ab and 123 with NF-H, respec-

tively (Dataset EV3). This RNA-IP experiment indicates which tran-

scripts are associated with the proteins in cell lysate but give little

information as to which regions, e.g. UTRs or coding regions, are

involved in the interactions. To increase the mapping resolution, we

therefore performed RNA immunoprecipitation for Ab and NF-H, as

well as Tau, on proteins renatured with pre-fragmented total Jurkat

RNA (~100 nucleotides).

For all three proteins, binding peaks were mainly observed in

exons (33–53% of all binding sites), in introns (15–21%) and in 30-
UTRs (6–10%), respectively (Fig 4A, GEO GSE99127). As in the

native RNA-IP experiments on Ab and NF-H, the vast majority of

the binding sites derived from exons and introns came from protein-

coding transcripts (Fig 4A). Between a fifth (NF-H 25/123) and a

third (Ab 180/471) of all coding transcripts in the native RNA-IP

experiments for A and NF-H were also represented by binding peaks

in the renatured samples (Dataset EV3). These experiments indicate

that soluble Ab, NF-H and Tau are associated with a variety of tran-

scripts, particularly with the coding regions of these. To further

deduce the principles governing this phenomenon, we next turned

to DNA, which, because of the similar renaturation capacity to RNA

(Fig EV4A), represents a convenient and easily manipulated model

system.

First, to identify DNA sequences capable of renaturing aggre-

gated proteins, we performed two sets of isolation and sequencing

experiments using proteins renatured with pre-fragmented genomic

A

C D E

B

Figure 3. RNA is required for renaturation and function of proteins aggregated by enzymatic degradation of RNA in human neuronal lysates.

A Diagram showing the renaturing assay.
B Effect of RNA/protein ratio on protein aggregation after renaturing.
C Coomassie-stained gel of soluble (Sup 1/2) and aggregated (Pel 1/2) proteins after removal of GuHCl in the presence (+) or absence (�) of total RNA. Asterisk (*)

denotes added RNase A.
D As in (C) but analysed by Western blot.
E ATP-hydrolysing activity of proteins renatured with total RNA or buffer (Ve�) after removal of GuHCl.

Data information: All experiments were performed with total RNA. Data in (B and E) are expressed in arbitrary units (AU) and represent the mean � s.d of two (B) or
three (E) independent experiments. **P < 0.01, *P < 0.05 by post hoc ANOVA.
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DNA (approximately 300 bp). In the first set, we aimed to isolate all

soluble proteins (~1,300) and their associated DNA fragments by

capturing them on nitrocellulose membranes. These samples are

hereafter referred to as “Total”. In the second set of experiments,

we isolated Ab and its associated DNA fragments by immunoprecip-

itation. For both samples, the majority (Ab ~86%, Total ~90%) of

protein-associated fragments were from repetitive DNA regions, in

particular Short INterspersed Elements (SINEs) (including Alu

repeats, 63 and 49%, respectively) and from regions containing

simple repeats (11 and 33%, Fig 4B, GEO GSE99127).

We next tried to identify common sequence motifs in these data

sets. We found a pyrimidine-rich motif (Motif 1, M1, Figs 4C and

EV5A) in the “Total” DNA data set that was similar to motifs found

in both the RNA and the DNA samples associated with renatured

and immunoprecipitated Ab (Fig EV5B).

Complementary strands are required for efficient
protein renaturation

We tested the M1 motif in a 4-repeat form, i.e. M1 × 4, and a

control oligonucleotide, Motif 2, M2, randomly generated to have a

similar proportion of G/C (Fig EV5A), for their capacity to renature

the aggregated proteins.

As single-stranded (ss) DNA sequences, none of the oligonu-

cleotides supported overall renaturation (Fig 5A). However, when

both the forward and the reverse (For/Rev) oligonucleotides were

used together they efficiently supported renaturation in a concentra-

tion-dependent manner (Figs 5A and EV5C), with a theoretical stoi-

chiometry of ~1:1 (based on the assumption that the average

molecular weight of a protein is 50 kDa). The M1 × 4 oligonu-

cleotide was twice as potent in renaturing the proteins than the M2

control, indicating a sequence preference but not a strict sequence

requirement. Similar results were observed for Actin, HTT, TDP-43

and RPL7 (Fig 5B). Nucleolin (NCL), however, was equally rena-

tured by all configurations (Fig 5B). Thus, although the majority of

the tested proteins in our mixture have a preference for complemen-

tary oligonucleotides, individual differences do exist.

Both single- and double-stranded regions are needed for
efficient protein renaturation

We next investigated how the size of the DNA oligonucleotides

affects their renaturation capacity by decreasing the number of motif

repeats. We found that only oligonucleotides with at least three

motif repeats (e.g. Mx3) could efficiently renature the proteins

(Fig 5C), indicating that there could be a size requirement.

However, experiments on single-stranded segments formed after our

standard nucleic acid heat denaturation and rapid cooling step (see

Materials and Methods) suggested that there might also be a struc-

tural requirement.

A

C

B

Figure 4. Features of solubilising nucleic acids.

A Genomic attributes of RNA associated with renatured NF-H, Tau or Ab. Inset shows which fractions of the peaks that derive from exons or introns have their origin in
coding or non-coding transcripts, respectively.

B Characterisation of DNA associated with soluble, renatured Ab or all proteins (Total), captured either by immunoprecipitation (Ab) or absorption to membranes
(Total).

C Sequence logo of the computationally identified motif (M1) in the solubilising genomic DNA of the Total samples.
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To test this possibility, we performed a pre-annealing step in the

presence of 100 mM NaCl, which promotes the normal double-

stranded form. Only oligonucleotides prepared without NaCl (non-

annealed) were able to renature the proteins (Fig 5D). The amount

of NaCl used in the pre-annealing reaction had no effect on protein

solubility.

Efficient nucleic acid-mediated protein renaturation requires
looped, pyrimidine-rich single-stranded regions

Since the M1 oligonucleotide is pyrimidine-rich, we next tested

whether there is a preference for pyrimidines in the ss region by

examining the renaturing efficiency of oligonucleotides where the ss

regions were either composed of 28 consecutive pyrimidines or puri-

nes (Fig 6A). When assessed for their renaturing capacity, oligonu-

cleotides with a ss region of pyrimidines were superior to the same

oligonucleotides containing a ss region of purines (Fig 6B).

We then examined a series of oligonucleotides, all containing

similar double (ds) and single-stranded regions but positioned at dif-

ferent locations along the DNA (see second panel of Fig 6C for their

theoretical structures). Of these, the most efficient configuration

was the ds/ss/ds forms, in particular the 3x-loop or 3x-bulge

oligonucleotides (Fig 6C).

Synthetic DNA oligonucleotides can replicate the effect of
endogenous RNA in cell lysates

We next examined whether these oligonucleotides could prevent

protein aggregation caused by enzymatic RNA degradation in cell

lysates. Both single-stranded and, in particular, complementary

DNA oligonucleotides almost completely prevented protein aggrega-

tion following RNase A/T1 treatment (Figs 6D and EV5D).

The unexpected finding that the single-stranded oligonucleotides

were also capable of preventing protein aggregation, albeit less than

complementary DNA oligonucleotides (Fig 6D), indicates that they

may complement with endogenous RNA in the lysate, forming struc-

tural RNA/DNA hybrids. However, RNase H treatment of the lysate

had little or no effect (Fig EV5D), suggesting that any hybrids

present are protected.

Renaturation of protein aggregates from Amyotrophic Lateral
Sclerosis patient brain

Finally, we isolated aggregated proteins from brain tissue samples

of two patients with ALS and investigated whether NF-H within

these proteins could be renatured (after denaturation with GuHCl)

using nucleic acids. We examined neurofilament (NF) as it is

found in protein aggregates of several neurodegenerative diseases

(reviewed in Didonna & Opal, 2019), including ALS (Mendonça

et al, 2005) and was readily detected by Western blot in the

A B

C D

Figure 5. Renaturing characteristics of selected motifs.

A Proportion of aggregated proteins after renaturation with either
single-stranded (Forward or Reverse) or complementary strands (For/Rev)
of the selected M1x4 or the control oligonucleotide, M2x4.

B Western blot analysis of proteins renatured with either single-stranded or
double-stranded M1x4 or M2x4 DNA oligonucleotides.

C The effect on protein re-aggregation from varying the number of DNA motif
repeats when complementary oligonucleotides are given together.

D Protein aggregation after renaturation with the M1x4 DNA oligonucleotides
pre-annealed with 100 mM NaCl or vehicle (None).

Data information: Data are expressed as a fraction of vehicle (Ve�) and
represent the mean � s.d of three to four independent experiments.
**P < 0.01, *P < 0.05 by post hoc ANOVA.

▸Figure 6. Structural characteristics of protein-solubilising oligonucleotides and renaturation of ALS brain-derived protein aggregates.

A Cartoons of ds/ss/ds oligonucleotides having either pyrimidines (T or C) or purines (A) in the ss region.
B Proportion of protein aggregation following renaturing with the ds/ss/ds oligonucleotides shown in (A).
C Renaturing capacity of structurally different oligonucleotides. The diagrams on the right show a theoretical structure of each oligonucleotide. All oligonucleotides,

except the 3x-loop and 3x-bulges, contain a stretch of 30 Ts in the single-stranded regions and the same sequences (15 nucleotides each) in the double-stranded
regions. The 3x-loops and 3x-bulges oligonucleotides have 3 stretches of 9 Ts and the same sequence in the ds-regions.

D Proportion of protein aggregation in Jurkat cell lysate supplemented with various amounts and configurations of the M1x4 or M2x4 DNA oligonucleotides.
E Insoluble proteins from two ALS brain tissues were chemically denatured in guanidine hydrochloride and treated with either buffer (Vehicle), total RNA from Jurkat

cells or the complementary strands of the M1x4 DNA oligonucleotides (M1 F/R) (Pellet 1, top panel). After removal of GuHCl, the soluble fraction from these samples
was treated with RNase and any aggregated proteins (Pellet 2) analysed by Western blot (middle panel). Remaining supernatants were then treated with Benzonase
to degrade any remaining nucleic acids and aggregated proteins collected by centrifugation and analysed by Western blot (bottom panel). Proteins aggregated by
enzymatic RNA degradation in Jurkat cell lysates, which do not contain NF-H, were used as a control.

Data information: Data in (B and C) are expressed as a fraction of vehicle (Ve�), while data in (D) are expressed as the amount of aggregation observed without any
oligonucleotides present (A/T1). All bars represent the mean � s.d of two to four independent experiments. **P < 0.01 by post hoc ANOVA.
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starting brain lysates while we could not detect TDP-43 in the

same, possibly due to low amount. Total RNA and the M1x4

oligonucleotides efficiently renatured NF-H from the ALS samples,

while samples treated with vehicle show pronounced re-aggrega-

tion (Fig 6E, top and second panel). No NF-H signal was observed

in the Jurkat cell samples (used as control) as these cells do not

express NFs. These were instead positive for Actin (Fig 6E).

Ribonuclease treatment of the soluble fractions (Sup 1) of proteins

renatured with RNA caused re-aggregation of NF-H and Actin, but

had no effect on the proteins renatured with the M1x4 DNA

oligonucleotides, which remained soluble even after 16 hour at

37°C (Fig. 6E, middle panel). However, NF-H and actin in these

A C

B

E

D

Figure 6.
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DNA-containing fractions were efficiently re-aggregated after a

further treatment step with the non-selective nuclease, Benzonase

(Fig 6E, lower panel).

Discussion

Many proteins are known to bind RNA, for example the well-charac-

terised hnRNP family of proteins involved in RNA splicing (Swan-

son & Dreyfuss, 1988). In our study, we build on previous findings

that solubility of several RNA-binding proteins can be enhanced by

RNA (Shelkovnikova et al, 2014; Sun et al, 2014; Burke et al, 2015;

Kovachev et al, 2017, 2019; Maharana et al, 2018; Mann et al,

2019). We provide novel insights into how a wide range of proteins,

many of which are not known to bind to RNA, are maintained in a

soluble state in vitro. We show that this heterogeneous set of

proteins is prevented from aggregation by association with RNA

and, crucially, that the presence of intact RNA is required to main-

tain them in a soluble state in cell and tissue lysates (Figs 1–3). We

also provide evidence that RNA is required for the functionality of

some proteins, as exemplified by the pronounced difference in ATP-

hydrolysing activity between proteins renatured in the presence or

absence of RNA (Figs 3E and EV4C). Finally, we provide a tantalis-

ing link between these observations and human disease by demon-

strating the efficient renaturation of insoluble proteins isolated from

human ALS brain tissue.

Enzymatic RNA degradation causes the aggregation of a consis-

tent set of proteins from neuronal cell lysates. Although there is a

significant over-representation of RNA-binding proteins amongst

them (394 of 1,312 proteins), the vast majority lack conventional

RNA-binding domains. This raises at least two possible explanations

for the variety of aggregated proteins. First, either most of the

proteins associate with RNA through non-conventional RNA-binding

regions or, alternatively, the degradation of RNA initiates the aggre-

gation of a few RNA-associated proteins (i.e. seed proteins) which

then sequester a large number of other proteins, irrespective of their

association with RNA. While a combination of these two scenarios

is likely, and both are supported by the literature (Olzscha et al,

2011; Castello et al, 2012), our data favour the first possibility as

the major driving force of protein aggregation mediated by enzy-

matic RNA degradation. This is because in vitro renaturing of the

proteins in the presence of the correct nucleic acids efficiently main-

tains solubility of the vast majority of them after removal of guani-

dine hydrochloride (Figs 3, 5 and 6). Should, however, a small set

of RNA-binding seed proteins cause the aggregation of the majority,

only these would be expected to require RNA for renaturation, while

most of the other proteins should be unaffected (if the RNA-binding

seed proteins are not also efficient chaperones).

Fundamentally, and based on the generalisation that the average

molecular weight of a protein is 50 kDa, we find that in order to

achieve efficient refolding, the nucleic acids and the proteins need

to be present in equimolar quantities [i.e. 30 lg of proteins

(~600 pmol) is efficiently renatured by 600 pmol of oligonu-

cleotides, see e.g. Fig 5]. Such a stoichiometry suggests that each

protein needs to be associated with one oligonucleotide to maintain

solubility. These figures are in line with what has been observed for

other aggregate-prone proteins such as the prion protein and FUS

(Maharana et al, 2018; Kovachev et al, 2019). If seed-driven co-

precipitation was a major force, a much lower oligo-to-protein ratio

would be expected, as only the few seed proteins need to be associ-

ated with the nucleic acid.

The cellular proteome contains many polyanion-binding proteins

which are critical for proper function of cells and organisms (re-

viewed in ref. Jones et al, 2004). With respect to protein stability

and aggregation, the effect of polyanions varies, sometimes in

opposing ways, for different proteins, or even between different

polyanions on the same protein. As an example of these varying

and conflicting effects, aggregation and pathological conversion of

the prion protein is stimulated by the presence of RNA and possibly

by endogenous proteoglycans, but is inhibited by heparin and

exogenous forms of proteoglycans (Caughey & Raymond, 1993;

Wong et al, 2001; Deleault et al, 2003; Vieira et al, 2014). Similarly,

FUS aggregation is either inhibited or promoted by the presence of

presumably different species of RNA (Shelkovnikova et al, 2014;

Lin et al, 2015). Tau aggregation on the other hand has been

reported to be stimulated by RNA (Kampers et al, 1996; Zhang et al,

2017), while the aggregation of Ab has been reported to be inhibited

(Mathura et al, 2005; Takahashi et al, 2009), a finding also con-

firmed here. Thus, it is clear that polyanions, at least in vitro, have

diverse and sometimes paradoxical effects on protein structure and

solubility, possibly depending on the protein/polyanion concentra-

tion (Kovachev et al, 2017, 2019; Maharana et al, 2018).

Consistent with these findings and those in the accompanying

paper (Begeman et al, 2020), our data show a varying capability of

different nucleic acids to promote protein renaturation and maintain

solubility and, strikingly, this effect is not directly determined by

sequence, but primarily by structure (Figs 5 and 6). This agrees with

recent findings that highly structured RNAs have more interactions

with proteins than RNAs with low structural complexity (Sanchez de

Groot et al, 2019). In our study, the most efficient renaturing and

aggregate-preventing nucleic acids consist of pyrimidine-rich loops

or bulges interspersed by stretches of double-stranded regions, e.g.

nucleic acids with a ds/ss/ds configuration (Figs 6B and C). In addi-

tion, the M1 oligonucleotide prevents protein aggregation when both

strands are provided, while the same amount (in moles) of ss

oligonucleotides (i.e. twice the amount of the ds oligo) fails to do so

(Figs 5A and B). Similarly, when the two strands are pre-annealed,

i.e. seemingly forming a perfect ds strand, the renaturing effect is all

but lost (Fig 5D). These results also suggest that the anionic charge

provided by the nucleic acids (mainly by the phosphate backbone)

cannot be its sole contribution, as the same amount of charge is

provided by the two different configurations. This notion is further

supported by the much higher efficiency observed for oligonu-

cleotides with a high proportion of pyrimidines in the single-stranded

region as compared to their purine-rich counterparts (Fig 6). Indeed,

the preference for pyrimidines over purines suggests that the bases

themselves, and not solely the negative sugar backbone per se, are

important for the solubilising effect. Such structural dominance may

also explain some of the conflicting effects observed with polyanions

on protein solubility(Shelkovnikova et al, 2014; Lin et al, 2015).

More generally, and as also suggested by others (Zhang et al, 2015),

such disparate effects point to the intriguing possibility that some

nucleic acids may not only prevent protein aggregation but may

actually promote/induce the same.

The structure- and base-dependent principles summarised above

explain the majority of the observed effects, but we do see
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deviations from these rules for individual proteins. For example,

while nucleolin clearly requires nucleic acids for efficient renatu-

ration, similarly efficient renaturation is achieved with either

single-stranded or looped oligonucleotides (Fig 5B). Thus, it is

likely that other structures, besides the highly efficient looped/

bulge configuration described here, can efficiently renature indi-

vidual or groups of proteins. Indeed, sequences forming G-Quad-

ruplex structures efficiently prevent and enhance protein folding,

including in living E. coli cells (Begeman et al, 2020). Similarly,

bacterial 23S ribosomal RNA and nucleic acid homopolymers (e.g.

single-stranded poly Ts) have recently been shown to assist renat-

uration/refolding of a number of proteins, an effect suggested to

derive from the nucleic acids functioning as non-protein molecular

chaperones (Chattopadhyay et al, 1996; Sulijoadikusumo et al,

2001; Docter et al, 2016). Although our data support the general

conclusions of these studies, we suggest that the solubilising

nucleic acids are integral parts of these complexes with roles

beyond traditional chaperones, whose effects are usually energy-

dependent and mediated through transient interactions of impor-

tance mainly for initial folding. This view is backed by our finding

that ATP-hydrolysing proteins require the continuous presence of

RNA for activity in vitro and, similarly, enzymatic degradation of

RNA from proteins renatured in the presence of RNA causes them

to re-aggregate. Of note, all our renaturing experiments were

performed in the absence of traditional energy sources such as

ATP.

The main feature in solubilising genomic DNA is interspersed

repeat elements, in particular SINE elements and low-complexity

regions. This is true both for individual aggregation-prone proteins

(Ab) as well as for the majority of the proteins, i.e. Total (Fig 4B).

While some of these may represent true associations, it is plausible

that we are observing a pure in vitro effect. The argument for this is

that similar, but divergent, repeats are likely to readily form the

ds-ss-ds structures found here to be highly efficient in protein

renaturation.

What is the nature of the protein–RNA associations? Following

on from our arguments above, our data support a form of interac-

tion where the permissive nucleic acid (RNA) is an integral but non-

covalent part of certain proteins or protein complexes. To be biolog-

ically relevant, these arrangements are likely to be dynamic, with

proteins and RNA being changeable, i.e. the same RNA may associ-

ate with different proteins and vice versa. Indeed, such interchange-

ability is supported by our in vitro sequencing and oligonucleotide

characterisation studies as individual proteins are found associated

with different nucleic acids, and different proteins are found associ-

ated with the same nucleic acids (Fig 4). Similar promiscuity is

likely to exist also in cells (Maharana et al, 2018), as it is unlikely

that the solubility of a particular protein is maintained only by any

one particular RNA.

The protein–RNA associations are influenced by nucleic acid struc-

ture, as discussed above, but are also likely to be determined by post-

translational modifications of the proteins. Indeed, the capacity of

several RNA-binding proteins to undergo phase transition in vitro is

inhibited by arginine methylation, e.g. FUS (Hofweber et al, 2018;

Qamar et al, 2018) or serine phosphorylation, e.g. TDP-43 (Wang

et al, 2018). More specifically, certain arginine/serine rich proteins

(e.g. SRSF Protein Kinase 1) require either association with RNA or

serine phosphorylation to be soluble in cell lysate (Nikolakaki et al,

2008). However, in addition to such post-translational modification,

it is likely that associations with other proteins or macromolecules

could replace the requirement for RNA. In support of this observa-

tion, for some of the proteins we examine here, like HTT and RPL7,

RNA degradation causes substantial aggregation with little or no

soluble protein left in the supernatant (Figs 2A and C). For others,

e.g. NF-H, FUS and TDP-43, only a proportion appears to aggregate

with varying amounts still detected in the soluble fraction, even after

prolonged RNA degradation. This could also explain why we do not

see any visible enrichment of aggregated proteins compared with the

input when analysed on PAGE gels (Figs 1B and EV1A). However,

the amount of proteins, both in terms of mass and numbers,

combined with the poor resolution of PAGE gels makes direct

comparisons of different bands problematic.

It is clear that RNA has several important biological roles besides

its conventional function as a template for translation and assisting

in protein synthesis. These include acting as post-transcriptional

regulators (e.g. miRNA), as structural scaffolds (e.g. ncRNA and

rRNA), as cofactors (primers for DNA replication) and as enzymatic

entities, i.e. ribozymes. The data presented here suggest that RNA

has an additional role in maintaining proteins in cell and tissue

lysate in a soluble and presumably functional form.

Finally, our data indicate that alterations to RNA could contri-

bute to pathological protein aggregation, providing a mechanistic

rationale for the observed aggregation of the same proteins across

multiple diseases.

Materials and Methods

Cells and ALS samples

Neurons were differentiated from human neural stem cells (hNP1

cells) by withdrawal of basic FGF for 6 days, as described (Jones

et al, 2011). The majority (> 95%) of the cells differentiate into

Map2- and b III-tubulin-positive cells within 6 days (Jones et al,

2011).

Jurkat T cells and HEK 293T (CRL-3216, ATCC) were maintained

in RPMI 1640 (21875-034, Life Technologies) supplemented with

10% FCS (Life Technologies) and 1 x Penicillin-Streptomycin

(15070063, Life Technologies). All cells were maintained at 37°C in

5% CO2.

Cortices from day 16-21 C56BL mice were dissected at room temper-

ature (RT), rolled on filter paper to remove most of the meninges and

immediately frozen on dry ice and stored at �80°C until use.

The ALS brain samples were obtained from The Netherlands

Brain Bank (NBB), Netherlands Institute for Neuroscience, Amster-

dam (open access: www.brainbank.nl), under ethical permission

2009/148. All material was collected from donors from whom a

written informed consent for a brain autopsy and the use of the

material and clinical information for research purposes had been

obtained by the NBB. Samples were obtained from the precentral

gyrus of two ALS donors, both male, 62 and 71 years of age, with

an ALS diagnosis confirmed neuropathologically by the detection of

TDP-43 inclusions, particularly in the spinal cord. The study of

proteins from human ALS tissue has been granted to AM by the

London—City & East Research Ethics Committee, reference number:

09/H0703/27.
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Enzymes and reagents

RNase T1 (AM2280), RNase V1 (AM2275), RNase A/T1 cocktail

(EN0551), DNase I (2222) and Yeast tRNA (15401-011) were from

Thermo Fisher Scientific. RNase A (R4642), Sodium acetate (S7899)

and EtOH were from Sigma. RNase 1f (M0243) was from New

England Biolabs (NEB). Heparin (07980) was from Stemcell Tech-

nologies. Guanidine hydrochloride (BP178-1) was from Fisher

Scientific.

Preparation of cell-free lysates from neurons and mouse cortex

Differentiated neural stem cells were detached by trypsin (0.5%,

Life Technologies) and collected in RPMI 1640 medium with 10%

FCS (Life Technologies). Cells were pelleted by centrifugation and

washed twice in ice-cold PBS (14190-094) before being lysed in four

cell-pellet volumes of either Lysis Buffer 1 [20 mM Tris–HCl pH 7.5,

150 mM NaCl, 3 mM EDTA, 1% Triton X-100, 0.5% Na-Deoxycho-

late, 1X protease inhibitors cocktail (Roche), 1 mM DTT] or Lysis

Buffer 2 [20 mM Tris–HCl pH 7.5, 150 mM NaCl, 1.5 mM MgCl2,

1% Triton X-100, 0.5% Na-Deoxycholate, 1X EDTA-free protease

inhibitors cocktail (Roche), 1 mM DTT]. Most experiments were

performed in Lysis Buffer 1, except when DNase I or RNase V1 treat-

ment was performed (Fig 1D), in which case Lysis Buffer 2 was

used. Lysed cells were sonicated (Bioruptor, Diagenode) at maxi-

mum setting for 5 s on ice and centrifuged at 21,000 g for 30 min at

4°C. The supernatant was filtered through a 0.1 lm syringe filter

(Santa Cruz, sc-358809) into new tubes and the protein concentra-

tion determined with the BCA kit (Thermo Fisher) according to the

manufacturer’s instructions. Lysates were diluted in Lysis Buffer-1

or Lysis buffer-2 to 2–4 lg/ll, and treated as described below.

Mouse cortical tissue was thawed on ice and disrupted in cold

PBS using a 1-ml pipette tip. Disrupted tissue was washed 3 times in

PBS before being lysed in Lysis Buffer 1 and prepared as described

above for human neurons.

Ribonuclease treatment and isolation of aggregated proteins

Typically, 150–400 lg cell lysates at 2–4 lg/ll were mixed with

indicated amounts of ribonucleases, DNase I or Vehicle (50% Glyc-

erol in 20 mM Tris–HCl pH 7.5) and incubated at 37°C for one hour,

shaking at 1,200 rpm for 5 s every two minutes. Samples were then

centrifuged at 21,000 g for 15 min at +4°C and the supernatants

removed and saved for analysis. The pellets were washed twice in

500 ll RIPA buffer (50 mM Tris–HCl pH 8.0, 150 mM NaCl, 0.5%

Na-deoxycholate, 0.1% SDS, 1% Triton X-100) at RT and dissolved

in 20 mM Tris–HCl pH 7.5, 2% SDS, 8M Urea, by sonication

(Bioruptor, Diagenode) at maximum setting for 5 min at RT.

Samples for SDS–PAGE analysis were mixed with 4X LDS Loading

Buffer (Life Technologies) supplemented with DTT (Sigma) to 100

mM final concentration and heated for 10 min at 70°C before being

loaded on SDS–PAGE gels (Life Technologies).

Video recording of RNase-treated cell lysate

Jurkat T-cell lysate at 10 mg/ml, prepared as described above, was

divided into two quartz cuvettes at RT with or without 5 ll RNase
A/T1 or Vehicle and mixed. Recording was done with a Canon

digital camera and started immediately (time 0) taking 60 frames/

second for a total of 30 min.

Immobilisation of RNase A

100 lg RNase A at 1 lg/ll was coupled to Tosyl activated magnetic

beads (Life Technologies) for 20 h at 37°C according to the manufac-

turer’s instructions. After quenching and washing, the coupled RNase

A was re-suspended in 0.1% BSA in PBS and kept at +4°C until use.

Approximately 50% activity remained after coupling, as determined

on yeast tRNA using the RiboGreen kit (Life Technologies).

Inhibition of RNase A and addition of pre-hydrolysed RNA

RNase A inhibition: 200 lg lysate was mixed with 0.1 ll RNase A

(~3 mg/ml) and increasing concentrations of RNasin (Promega), as

indicated. Hydrolysis of RNA: 40 lg of total RNA in TE buffer

(10 mM Tris–HCl pH 8.0, 1 mM EDTA) was incubated with 10 ll
immobilised RNase A for 1 h at 37°C. RNase A was removed by

magnetic separation and the hydrolysed RNA mixed with 120 U

RNasin and kept on ice until used. Alternatively, 40 lg total RNA in

0.1 M NaOH was incubated at 85°C for 1 h and then adjusted to pH

7.5 with 1 M Tris–HCl pH 7.0. RNase A digested and NaOH hydrol-

ysed RNA was then added to 200 lg of neuronal lysate, prepared as

outlined above, and incubated at 37°C for 1 h. Aggregated and

soluble proteins were collected as before and analysed by SDS–

PAGE.

Cloning and use of TDP-43 and Ab

All PCRs were performed with Q5 polymerase (NEB) according to

the manufacturer’s instructions. Human Ab 1-40 was PCR-amplified

from full length APP (Origen, #RC209575) using Abeta_XhoI_F and

Abeta_BamHI_R primers (Table EV1), purified and then cleaved

with Xho I and Bam HI (both NEB). After further purification, the

fragments were ligated into the Xho I and Bam HI sites of pEGFP-N3

(Clontech), creating Ab fused in frame to the N-terminus of GFP.

HEK293T cells, plated at a density of 0.2 × 106 cells/well in a 24-

well plate, were transfected with Ab-GFP or empty vector using

FuGENE HD (Promega). For each well, we used 0.6 lg DNA and

2 ll FuGENE HD in a total volume of 30 ll OptiMEM (Life Tech-

nologies). Cells were harvested 48 hours after transfection and

washed in PBS and then either stored at �80°C or used directly.

Thawed or fresh cells were lysed in 80 ll Lysis Buffer 1 as described

above and treated with RNase A/T1 for one hour at 37°C. Aggre-

gated proteins were collected by centrifugation and samples

processed and analysed by SDS–PAGE as described above.

Human TDP-43 was PCR-amplified with TARDBP BspHI and

TARDBP Not I primers (Table EV1) from cDNA, prepared from

Jurkat RNA using Superscript II (Thermo Fisher Scientific) accord-

ing to the manufacturer’s instructions. Purified product was cleaved

with Nco I and Not I and cloned into pA4D5-8mRFP (Markiv et al,

2011), creating TDP-43 with a C-terminal His tag. Ligated plasmids

were transformed into BL21 (DE3) cells (C2527, NEB) and correct

clones verified by Sanger sequencing. A single colony was grown

overnight at 37°C in Luria-Bertani Broth (LB) in the presence of

2.5% glucose and ampicillin (50 lg/ml). We found that the pres-

ence of glucose, which further suppresses the T7 promoter in
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pA4D5-8mRFP, was critical to allow the expression of TDP-43. The

overnight culture was diluted 20 times in fresh LB medium with

glucose (2.5%) and ampicillin (50 lg/ml) and grown at 37°C until

an OD600 of approximately 0.8. The bacteria were then pelleted by

centrifugation and re-suspended in fresh LB supplemented with 1

mM IPTG (GEN-S-02122-5, Generon) to induce expression, and left

shaking at 250 rpm at RT for 2 hours. Recombinant TDP-43 was

purified using the Ni-NTA Spin Column purification kit (31014,

Qiagen), essentially according to the manufacturer’s instructions.

Briefly, bacteria were lysed in Buffer 1 (6 M GuHCl, 0.1 M Na Phos-

phate, 10 mM Tris–HCl pH 8.0) by sonication and insoluble debris

cleared by centrifugation (21,000 g, 30 min). Spin column-captured

proteins were washed twice in Buffer 1 adjusted to pH 6.3 and thrice

in Buffer 1 adjusted to pH 4.5 and then eluted in 6 M GuHCl, pH

2.0. Purity was determined by separating a TCA-precipitated (to

remove GuHCl) sample on an SDS–PAGE gel followed by analysis

on a Bioanalyzer Protein-230 chip and was judged to be more than

80% (Appendix Fig S1). 5 lg recombinant TDP-43 was used for

renaturation, in the presence or absence of various amounts of total

Jurkat RNA, using the procedure for “renaturation through dialysis”

described below. To quench released Ni2+ in the protein samples

before renaturation, EDTA was added to a final concentration of 10

mM before the addition of DTT (see procedure below).

Nucleic acid-mediated renaturation by dialysis

Proteins were isolated from neuronal or Jurkat cell lysate by RNase

A/T1 treatment and centrifugation. Pelleted proteins were dissolved

in 50 ll of denaturation buffer (20 mM Tris–HCl pH 7.5, 6 M Guani-

dine hydrochloride, 1% Triton X-100, 20 mM DTT) and sonicated

for 5 min at RT. The protein concentration was determined with the

BCA kit (Thermo Fisher) and diluted to 0.4 lg/ll in denaturation

buffer. 30–100 lg of solubilised proteins was mixed with 0.5X, in

lg, of RNA, DNA or heparin (all in TE buffer). All nucleic acids

were heat-denatured at 96°C for 3 min and then rapidly cooled on

ice before addition to the denatured proteins. The nucleic acid/

protein mixture was transferred to dialysis tubes (see below)

equipped with a 6–8.000 kDa cut-off membrane (Spectrum Lab).

Dialysis was performed against 600 ml PBS buffer at 4°C overnight,

after which the PBS was replaced with fresh PBS (400 ml) and the

container placed in a water bath and kept at 37°C for 1 h. The dial-

ysed samples were transferred to 1.5-ml tubes and the volume

adjusted to 100-200 ll with PBS. 7.5–10% of this was taken as

Input. Aggregated proteins (Pel 1) were pelleted by centrifugation at

21,000 g for 10 min at +4°C, washed twice in RIPA buffer and

processed for SDS–PAGE as before. 7.5–10% of the supernatant was

saved (Sup 1) and the remaining supernatant was either divided

into two new tubes supplemented with 0.5 ll vehicle or 0.5 ll
RNase A/T1 or the whole sample placed in one tube and treated

with 0.5 ll RNase A/T1. All samples were incubated at 37°C for one

hour and centrifuged as before. Pelleted proteins (Pel 2) were

washed as before and dissolved in SDS/Urea and sonicated. Equal

volumes of each fraction were separated on SDS–PAGE gels and

then either stained with coomassie or transferred to membranes for

Western blot analysis.

Dialysis tubes were prepared by drilling a 3-mm hole in the lid of

a 1.5-ml microcentrifuge tube (Crystal Clear, StarLab). The tube was

then cut 1 cm from the top and a new intact lid inserted at the

bottom. After sample addition, the tube was sealed with a dialysis

membrane and capped with the drilled lid. This creates a dialysis

tube where one end is in contact with the surrounding solution,

separated by the membrane. Tubes were placed in the dialysis solu-

tion with the holed side facing down.

Nucleic acid-mediated renaturation through two-step dilution

Proteins aggregated by enzymatic RNA degradation were isolated

and denatured in denaturation buffer (20 mM Tris–HCl pH 7.5, 6 M

Guanidine hydrochloride, 1% Triton X-100, 20 mM DTT) as

described above. The protein concentration was determined with

the BCA kit (Thermo Fisher) and diluted to 5.55 lg/ll in denatura-

tion buffer. Typically, 30 lg of denatured proteins, on ice, was

mixed (by vortexing) with indicated amounts of nucleic acids,

prepared in 1 X TE buffer, to achieve a 1:10 dilution, e.g. 5 ll of
denatured proteins + 45 ll of diluted nucleic acids. All nucleic acids

were heat-denatured (96°C, 3 min) and cooled on ice before use,

except when pre-annealed oligonucleotides were used. Pre-annealed

oligonucleotides were prepared in TE buffer supplemented with

100 mM NaCl and placed in a PCR machine at 96°C for 3 min

followed by cooling to RT for approximately 45 min. All protein/

nucleic acid mixtures were incubated for 5 min on ice and then

diluted 10× with cold Renaturing buffer (10 mM Tris–HCl pH 7.4,

30 mM NaCl), e.g. 50 ll original mixture + 450 ll of Renaturing

buffer. After incubation for 10 min on ice, samples were placed at

37°C for 1 h, shaking at 1,200 rpm for 3 s every second minute.

Aggregated and soluble proteins were separated by centrifugation,

21,000 g for 30 min. Aggregated proteins were solubilised in 20 mM

Tris–HCl pH 7.5, 2% SDS, 8M Urea by sonication (Bioruptor,

Diagenode) at maximum setting for 5 min at RT and either used for

SDS–PAGE or the amount of protein determined using the BCA

assay. When determining the amount of protein, the whole pellet

was used in a typical 225 ll reaction, e.g. 25 ll sample + 200 ll
BCA reagent. In the figures, the amount of aggregation is usually

expressed as a percentage of the amount of aggregation observed in

the vehicle control, i.e. in samples treated with TE buffer only.

SDS–PAGE and Western blot analysis

Heated samples were separated on 4–12% Bis-Tris gels (Life Tech-

nologies) in MOPS or MES buffer and either transferred to 0.2 lm
nitrocellulose or 0.45 lm PVDF membranes (both GE Healthcare)

for 2 h at 45V on ice or, alternatively, used directly for coomassie

staining (ProtoBlue, National Diagnostics) according to the manu-

facturer’s protocol. In figures with Input and Supernatants, these

represent 10%, typically 30 lg of protein, while for the Pellets the

full amount was loaded. After transfer, membranes for Western blot

were blocked for one hour at RT in 5% milk in TBS-T (50 mM Tris–

HCl pH 7.5, 150 mM NaCl, 0.05% Tween-20) and incubated with

primary antibodies in the same solution or TBS-T/5% BSA over-

night at +4°C. Membranes were then washed 4 × 5 min in TBS-T

and incubated for 1 h at RT with HRP-conjugated secondary anti-

bodies diluted in 5% milk/TBS-T. Membranes were then washed as

before and incubated for 5 min in ECL Prime (GE Healthcare) before

being exposed to films (Thermo Fisher). Primary antibodies used

were: TDP-43 (NEB, #G400), HTT (NEB, #D7F7), FUS (Santa Cruz,

#sc-47711), MAPT (NEB, #Tau46), NF-H (mouse, Covance, #SMI-
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32R), NF-H (rabbit, Sigma, # N4142), Ab 6E10 (Covance, #SIG-

39320), ACTB (Sigma, #A2228), RPL7 (Abcam, #ab72550), PABP

(Abcam, #ab21060), GFP (Abcam, #ab1218), HNRNPA1 (Protein-

Tech, #11176-1-AP) and HNRNPD (ProteinTech, #12770-1-AP). All

primary antibodies were used at 1:1,000 dilution, except ACTB

(1:4,000), NF-H (1:4,000), GFP (1:2,000), FUS (1:100) and RPL7

(1:2,000). As secondary antibodies, we used Donkey anti-Rabbit

HRP (#NA934V) or Sheep anti-Mouse HRP (#NXA931), both from

GE Healthcare, diluted 1:50,000 in 5% milk-TBS-T.

Isolation and renaturation of brain protein aggregates

Brain tissues (~200 mg frozen) were homogenised for approximately

30 s in 2 ml 0.8 M NaCl, 1% Triton X-100, 0.1 M EDTA, 0.01 M Tris–

HCl pH 7.4, 1 mM DTT using a TissueRuptor (Qiagen). The homoge-

nate was then centrifuged for 5 min at 2,500 g at 4°C and the super-

natant transferred to a new tube on ice followed by further

homogenisation using a 27-G needle and syringe. The samples were

then centrifuged at 21,000 g at 4°C for 30 min and the supernatant

collected. SDS and Na-deoxycholate were added to the supernatant to

0.1 and 0.5% final concentrations, respectively, and incubated for

10 min at RT. 500 ll of each sample was overlaid on 800 ll of

sucrose cushion (1 M sucrose, 0.8 M NaCl, 1% TX-100, 0.5% Na-

deoxycholate, 0.2% SDS, 50 mM Tris–HCl pH 7.8) and centrifuged at

167,000 g for 2 h at 4°C. The supernatants were decanted and

discarded and the pellet re-suspended in PBS supplemented with NaCl

to 500 mM and transferred to new tubes. Pellets were washed twice

in PBS/0.5 M NaCl by centrifugation at 21,000 g for 30 min and then

dissolved in 6 M GuHCl, 1% Triton X-100 and 20 mM Tris–HCl by

sonication. Brain and Jurkat samples were diluted to 2 lg/ll, and

30 lg used for renaturation through dilution as described above, using

total Jurkat RNA or the DNA versions of the M1 × 4 oligonucleotides

(Table EV1). Renatured samples were incubated for 1 hour at 37°C,

shaking at 1,200 rpm every 5th second. Aggregated proteins (Pellet 1)

were collected by centrifugation (21,000 g, 1 h, 4°C) and saved for

analysis. The supernatants were supplemented with RNase A/T1 and

incubated with shaking at 1,200 rpm at 37°C overnight. Aggregated

proteins (Pellet 2) were collected by centrifugation as above and the

supernatant supplemented with MgCl2, 1 mM final concentration, and

Benzonase (sc-391121B, Santa Cruz) and incubated at 37°C for 1 h,

shaking as above. Aggregated proteins (Pellet 3) were collected as

above. All pellets (1–3) were dissolved in 2% SDS/8M Urea by sonica-

tion and analysed by Western blot as described.

ATP-binding and hydrolysis

100 lg proteins aggregated by enzymatic degradation of RNA in

human neuronal or Jurkat cell lysates were renatured with 50 lg of

total RNA or Ve (TE buffer) as described above. After dialysis, the

samples were adjusted to 250 ll with PBS and centrifuged at

2,000 g for 15 min, to remove protein aggregates that would later

co-sediment with the agarose beads. Capturing of ATP-binding

proteins was performed on 75 ll of this mixture using 30 ll of

Aminophenyl-ATP- or naked-agarose beads (Jena Bioscience)

according to the manufacturer’s protocol. Elution was performed by

two sequential 10-min incubations in 20 ll 1X LDS loading buffer

(Life Technologies) supplemented with DTT (100 mM final concen-

tration). One fourth of the eluted samples was separated on 4–12%

NuPage gels (Life Technologies) and the gels stained with

coomassie blue (ProtoBlue, National Diagnostics). The remaining

eluate from two independent replicates was electrophoresed approx-

imately 1 cm into a 4–12% NuPage gel and the top piece of the gel

excised and prepared for mass spectrometry analysis as described

below. To measure ATP hydrolysis, we used the ADP-GloTM Kinase

Assay (Promega) according to the manufacturer’s instructions.

Briefly, 5 ll of renatured proteins were mixed in a white 96-well plate

(Santa Cruz Biotechnology) with ATP (100 lM final concentration)

and 0.1 ll RNase A/T1 mixture or vehicle (50% Glycerol in 20 mM

Tris–HCl pH 7.5), all diluted in 1X PBS, 5 mM MgCl2, 2 mM DTT, in

a total volume of 15 ll and incubated at RT for 1.5 h. Non-hydro-

lysed ATP was removed by the addition of 15 ll of ADP-Glo reagent

followed by incubation for 1 h at RT. ADP was converted back to

ATP by the addition of 30 ll Kinase Detection Reagent and the emit-

ted light quantified after 1.5 h incubation at RT using a Victor 2

Multilabel plate-reader (Wallac). All samples were run in duplicate

and data presented as the mean of three independent replicates.

RNA and DNA isolation and analysis

RNA and DNA were isolated from cells or cell lysates with TRIzol

LS or Isol-RNA Lysis Reagent (Life Technologies and 5 PRIME,

respectively), according to the manufacturer’s instructions. All RNA

and DNA samples was dissolved in either 0.1X (for RNA fragmenta-

tion, see below) or 1X TE buffer. RNA was analysed by 1.5%

agarose gel electrophoresis and visualised with ethidium bromide.

Mass spectrometry analysis

30 lg of aggregated proteins in 1 × LDS loading buffer (Life Tech-

nologies) supplemented with 100 mM DTT were separated on 4–

12% Bis-Tris gels in MOPS running buffer. After coomassie staining,

each gel lane was divided into 10 equal gel slices and cut into 1mm

cubes. Gel bands were destained and reduced with 5 mM TCEP

(Pierce) and alkylated with 50 mM chloroacetamide (Sigma) and

then digested with trypsin (Promega) for 16 hours. Samples were

desalted using homemade C18 columns and then analysed using a

Q Exactive Mass Spectrometer (Thermo) at the Central Proteomics

Facility (University of Oxford, UK). Data were analysed using

Mascot (Matrix Science) with searches performed against the

UniProt Human database. Proteins with a Mascot score greater than

or equal to 60 and with two unique peptide sequences were consid-

ered to be confidently identified. Keratin hits derived from hair (cu-

ticular) were removed from the list of ATP-precipitated proteins as

they likely represent contamination introduced during handling.

Computational analysis of proteins aggregated by enzymatic
RNA degradation

Proteins common to both LC-MS/MS samples were compiled into a

list and used for further analysis. Gene ontology analysis was

performed with PANTHER (Mi et al, 2018) using the proteome of

differentiated neural stem cells (Song et al, 2019) as reference. The

proteins with a relative abundance of more than nine in the refer-

ence set (Song et al, 2019) were used as background to re-analyse

the set of RNase-aggregated proteins using the same tool

(PANTHER). Low-complexity regions of 30 or more consecutive
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amino acids were identified with SEG (Wootton & Federhen, 1993)

using the following parameters: [30 amino acid length][3.2 low-

complexity trigger][3.55 high extension complexity]. Unstructured

regions were identified with DisEMBL (Linding et al, 2003) using the

default settings with the following changes: amino acid window of

30, join 2 and threshold 1.75. For statistical evaluation, the results

were compared with those obtained by permutation analyses. 1,000

permutations per analysis were performed. The permutations

consisted of random sets of proteins (n = 1,603), drawn from the

complete set of human proteins (http://www.uniprot.org/download

s, accessed on 07/2013) and analysed using SEG and DisEMBL with

the same settings as above. The cumulative distributions of the

proportion of low-complexity and unstructured regions were

compared with the results obtained from the proteins aggregated by

enzymatic degradation of RNA. Statistical analysis for each data set

was done using the two-sample Kolmogorov–Smirnov test (Conover,

1999) and corrected for multiple testing using Bonferroni correction.

Nucleic acid immunoprecipitation and sequencing

RNA and DNA fragmentation
Nucleic acids were isolated as described above. Total RNA (~400 lg),
prepared in 0.1X TE buffer, at 0.5 lg/ll, were chemically fragmented

in 50 mM Tris-acetate pH 8.1, 100 mM CH3CO2K and 30 mM Mg

(CH3COO)2 by incubating the samples at 96°C for 12 min. The reac-

tion was stopped by transferring the samples to ice and the addition of

0.5 M EDTA to final concentration of 45 mM. Fragmented RNA

samples were then mixed with 1/10 volume of Na-acetate (3M, pH 5,

Sigma) and 2.5 volumes of EtOH and incubated for 1 h at �80°C.

Precipitated RNA was collected by centrifugation: 30 min at 12,000 g

at +4°C and washed once in 75% EtOH before being air-dried and

dissolved in TE. Recovered RNA was spectrophotometrically quanti-

fied (NanoDrop, Thermo Fisher Scientific) and kept on ice until used.

The average size of fragmented RNA was estimated from an aliquot

analysed on a Bioanalyzer chip (RNA9000, Agilent Technologies),

according to the manufacturer’s instructions. Approximately 70% of

the initial amount of RNA was recovered after fragmentation.

Genomic DNA, in TE buffer at 3 lg/ll, was fragmented by

several rounds of sonication (Bioruptor, Diagenode) at RT until an

average fragment length of approximately 200 bp was achieved.

Nucleic acid-mediated renaturation
Proteins aggregated by enzymatic degradation of RNA in human

neuronal lysates were renatured with fragmented RNA or DNA

using the dialysis procedure described above. To achieve efficient

renaturation, the amount of fragmented RNA had to be increased

from the normal 0.5 times to 1.5 times the amount of protein

(weight/weight). After dialysis, samples were transferred to 1.5-ml

tubes and incubated at 37°C for 1 h, shaking at 1,200 rpm for 3 s

every 1.5 min. Aggregated and soluble proteins were separated by

centrifugation (21,000 g, 30 min, +4°C). The soluble fraction was

collected and divided into several tubes for immunoprecipitation or

capturing onto nitrocellulose membranes, see below.

Native RNA Immunoprecipitation
Human neuronal cell lysates were prepared as described above

under “Preparation of cell free lysates from neurons and mouse

cortex”. 200 lg of lysate was incubated with 3 lg anti-NF-H (N4142,

Sigma), 3 lg anti-Ab (4G8, SIG-39220, Covance) or 3 lg mouse IgG

(Sigma) and incubated rotating for 2 h at +4°C. Antibodies were

captured by the addition of 15 ll Protein A magnetic beads (10002D,

Thermo Fisher Scientific) pre-blocked in 5% BSA, 30 lg M1 × 4 R

oligo in PBS/0.1% Triton X-100 for 1 h at RT and incubated for

30 min at RT. Magnetic beads were collected using a magnet and

washed twice in PBS, 0.5% Triton X-100, twice in PBS, 500 mM

NaCl, 0.5% Triton X-100, and once in PBS, 1,000 mM NaCl, 0.5%

Triton X-100 and once in TE. RNA was isolated with the GeneJET

PCR Purification Kit according to the manufacturer’s instructions

with the following alterations: RNA was eluted from the magnetic

beads by the addition of 50 ll 6 M guanidine hydrochloride. The

supernatants were collected and mixed with 100 ll Binding Buffer,

100 ll water and 300 ll 2-propanol and loaded onto the column. Co-

purified DNA was removed by on-column digestion, using the

RNase-Free DNase Set (Qiagen) reagents and protocol. Eluted RNA

was then precipitated with Na-Acetate and EtOH, using glycogen

(R0561, Thermo Fisher Scientific) as a carrier. DNase-treated

samples were dissolved in 10 ll water and used for library prepara-

tion using the NEBNext Ultra II Directional RNA Library Prep Kit and

Indexing primers (E7760 and E7335, respectively, both NEB) accord-

ing to the manufacturer’s instructions. Libraries were pooled and

paired-end sequenced (2 × 75 bp) on the NextSeq 500 platform (Illu-

mina). Two biological replicates of each immunoprecipitation were

analysed, except for 4G8 where only one sample was analysed. Data

can be accessed at GEO GSE99127.

RNA Immunoprecipitation of renatured proteins
RNA-renatured proteins (~40 lg) were supplemented with 1 lg
anti-NF-H (N4142, Sigma), 1 lg anti-Tau (T9450, Sigma), 1 lg
anti-Ab (4G8, SIG-39220, Covance) or 1 lg anti GFP (11122,

Thermo Fisher Scientific) and incubated while rotating for 2 h at

+4°C. Antibodies were captured and washed as described above.

Samples were eluted with 20 ll 6 M guanidine thiocyanate at RT

and RNA-purified from the eluate with Isol (5-PRIME), according to

the manufacturer’s instructions using 1 lg glycogen (R0561,

Thermo Fisher Scientific) as co-precipitant. RNA was dissolved in

30 lg 1× DNAs I buffer and treated with 1 ll DNAase I (2222,

Thermo Fisher Scientific) for 30 min at 37°C. The sample volumes

were adjusted to 100 ll with TE and extracted with an equal

volume of phenol (77617, Sigma) and precipitated with Na-Acetate

and EtOH, using glycogen as a carrier. DNase-treated samples were

dissolved in 10 ll water and used for sequencing library prepara-

tion using the NEBNext Directional Ultra RNA kit and Indexing

primers (E7530 and E7335, respectively, both NEB) according to

the manufacturer’s instructions, except that no initial RNA frag-

mentation was performed. Libraries were pooled and paired-end

sequenced (2 × 75 bp) on the MiSeq platform (Illumina). Two

biological replicates of each immuprecipitation were analysed. Data

can be accessed at GEO GSE99127.

DNA-immunopreciptation and membrane capture of
renatured proteins
DNA-renatured samples were prepared as described above and

aliquoted for immunoprecipitation or membrane capture. For

membrane capture, approximately 40 lg renatured proteins or frag-

mented DNA alone (20 lg, negative control) were slowly passed

through a 0.2 lm nitrocellulose membrane (1060004, GE
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Healthcare) pre-blocked with 250 lg Yeast tRNA (Thermo Fisher

Scientific). The membranes were then washed three times with

10 mM Tris–HCl pH 7.5, 100 mM KCl, 0.1% Triton X-100; twice

with 10 mM Tris–HCl pH 7.5, 500 mM KCl, 0.1% Triton X-100; and

once with 1X TE. Captured proteins and nucleic acids were eluted

by the addition of 2% SDS/8M Urea and the nucleic acids extracted

with Isol (5-PRIME) as described above. Immunoprecipitation with

Ab 4G8 (1 lg) and mouse IgG (1 lg) were performed as described

for RNA immunoprecipitation of renatured proteins above using

approximately 40 lg of renatured proteins per IP. Protein A

magnetic beads were pre-blocked for 1 h at RT with 70 lg Yeast

tRNA (Thermo Fisher Scientific). Sequencing libraries were

prepared using the NEBNext DNA ultra kit (E7370, NEB), using

NEBNext Indexing primers (E7335, NEB), and the libraries pooled

and sequenced on the MiSeq system (Illumina) using paired-end

reads of 300 bp. Data can be accessed at GEO GSE99127.

Computational nucleic acid sequence analysis

Reads from both the DNA and RNA-seq experiments were

trimmed using Trim Galore with default settings for paired-end

reads. RNA reads were aligned to the human reference genome

(hg19), using STAR (Dobin et al, 2013) using default settings.

Potential PCR artefacts in the aligned RNA-seq files were removed

by the MarkDuplicates tool in Picard-tools, using default settings.

DNA sequences were aligned to the unmasked human reference

genome (hg19) using Bowtie2. To identify enriched regions, we

employed MACS (Zhang et al, 2008), using the GFP (RNA), IgG

(Native RNA-IP and DNA-IP) or DNA-only (membrane) samples

as negative controls. We used the reads from both biological repli-

cates as input files, except for the Native RNA-IP sample of 4G8,

where only one sample passed the quality check. MACS were run

with the following settings: band width = 150 for RNA or 188 for

DNA, Broad region calling = off (RNA), Searching for subpeak

summits = on (RNA) and call-summit = on for DNA. The anno-

tatePeaks package in the HOMER software package (Heinz et al,

2010), run with default settings, was used to annotate the peak

files generated by MACS. For motif discovery, we extracted a

300 nt fragment, centred at the peak detected by MACS. We used

the MEME suite of programs (MEME-Chip, (Machanick & Bailey,

2011)) with the following settings: -meme-mod anr -meme-minw 5

-meme-maxw 50 -meme-nmotifs 6 -dreme-e 0.05 -centrimo-local -

centrimo-score 5.0 -centrimo-ethresh 10.0. Motif similarities were

evaluated with Tomtom (in the MEME suite) using default

settings.

Quantification and statistical analysis

Statistical analyses in Figs 3B and E, and 5A, C, D and 6B–D, and

EV4C and EV5D were performed by one-way ANOVA followed by post

hoc analysis with Bonferroni correction for multiple testing using the

online tool at: http://astatsa.com/OneWay_Anova_with_TukeyHSD/.

Statistical analysis for Figs. EV2D and E was performed using the two-

sample Kolmogorov–Smirnov test (Conover, 1999) and corrected for

multiple testing using Bonferroni correction. When mentioned, the

term “independent samples” refers to biological repeats of the same

experiments but using different starting material, e.g. cell lysate.

Oligonucleotides

All oligonucleotides investigated in this study were purchased from

IDT in a desalted form and used without any further purification.

Sequences of oligonucleotides are listed in Table EV1.

Data availability

The DNA and RNA immunoprecipitation data from this publication

have been deposited in the Gene Expression Omnibus (GEO) data-

base and assigned the identifier GSE99127 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE99127).

Expanded View for this article is available online.
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