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Abstract: Houttuynia cordata (H. cordata) has been used for diuresis and detoxification in folk medicine
as well as a herbal medicine with antiviral and antibacterial activities. H. cordata extract-loaded
solid lipid nanoparticles (H-SLNs) were prepared with various concentration of poloxamer 188
or poloxamer 407 by a hot homogenization and ultrasonication method. H-SLNs dispersion was
freeze-dried with or without trehalose as a cryoprotectant. The physicochemical characteristics
of H-SLNs were evaluated by dynamic laser scattering (DLS), differential scanning calorimetry
(DSC), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM).
Additionally, the in vitro release and in vitro cytotoxicity of H-SLNs were measured. Encapsulation
efficiencies of H-SLNs (as quercitrin) were 92.9-95.9%. The SEM images of H-SLNs showed that
H-SLNs have a spherical morphology. DSC and FT-IR showed that there were no interactions
between ingredients. The increased extent of particle size of freeze-dried H-SLNs with trehalose
was significantly lower than that of H-SLNs without trehalose. H-SLNs provided sustained release
of quercitrin from H. cordata extracts. Cell viability of Caco-2 cells was over 70% according to the
concentration of various formulation. Therefore, it was suggested that SLNs could be good carrier for
administering H. cordata extracts.
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1. Introduction

Houttuynia cordata (H. cordata) is a traditional Chinese medicine used for hundreds of years
to relieve lung-related symptoms such as lung abscesses, phlegm, coughs and dyspnea [1]. It is
well known that H. cordata is rich in essential oils, alkaloids, and flavonoids. The flavonoids such
as quercitrin, isoquercitrin, and rutin have been found to possess inhibitory effects on allergies,
leukemia, oxidation, mutagenesis, hypertension, and inflammation [2]. Recently, several studies have
provided scientific data to support its anti-inflammatory, anti-allergic, anti-oxidative, and anti-cancer
activities [3].
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There were some studies on ethanol extracts of H. cordata [4]. However, it was necessary to
prepare the proper solid formulation of H. cordata extracts because H. cordata ethanol extracts were
viscous and needed taste masking. In addition, quercitrin, an active molecule of H. cordata, is known
to be poorly water-soluble (~1.8 mg/mL), which may cause low oral bioavailability. Solid lipid
nanoparticles (SLNs) consist of an active compound dispersed in a melted solid lipid or a mixture
of solid lipids, whereby the active molecules are incorporated between fatty acid chains when the
lipid matrix was cooled down. SLNs have been known to have diverse advantages such as controlled
drug release, drug targeting, increased drug stability, improved oral bioavailability, incorporation of
lipophilic as well as hydrophilic drugs, no toxicity, avoidance of organic solvents and no problems
with respect to large-scale production and sterilization [5-9]. SLNs can be prepared by various
preparation methods such as high-pressure homogenization, high shear homogenization, ultrasound,
solvent emulsification/evaporation, microemulsion technique, solvent emulsification/diffusion,
double emulsion technique, membrane contactor technique and the supercritical fluid technique [10].

The aim of this study was to prepare and evaluate H. cordata extract-loaded SLNs (H-SLNs).
Therefore, H-SLNs were prepared by a homogenization and sonication method [11,12]. The effects of
the type and concentration of surfactants on the characteristics of H-SLNs, for example, encapsulation
efficiency, particle size, FT-IR, DSC and surface morphology were observed. In addition, in vitro release
profiles of quercitrin from H-SLNs and cytotoxicity of H-SLNs against Caco-2 cells were examined.

2. Results and Discussion

2.1. Particle Size, PDI and EE of H-SLNs

Table 1 shows the particle size, polydispersity index (PDI) and encapsulation efficiency (EE)
of H-SLNs dispersion. F1-F6 were prepared with P188, and F7-F12 were prepared with P407 as a
surfactant. It was found that the particle size of H-SLNs decreased as the concentration of surfactant
was increased. This could be due to the significant reduction in the interfacial tension between
organic and aqueous phase, which leads to a more homogenized lipid in the aqueous phase and
the reduction of the particle size of SLNs [9,13]. Also, at high surfactant concentration, surfactant
molecules sufficiently cover the lipid matrix leading to more stabilized particles.

Table 1. Formulations and the particle size, PDI and EE of H-SLNs dispersion; Data are expressed
as the mean + S.D. (n = 3). The volume of surfactant solution and H. cordata extracts is 20 mL and
0.2 mL, respectively.

Formulation Poloxamer 188 (%)  Particle Size (nm) PDI EE (%)
F1 0.5 419.1 £ 12.0 0.060 £ 0.035 913+ 14
F2 1 396.6 +14.2 0.184 £+ 0.011 892 +23
F3 1.5 221.4+13.7 0.232 + 0.011 93.1+4.6
F4 2 2029 +£1.1 0.216 £+ 0.014 912+ 44
F5 25 209.0 £ 14.8 0.206 £ 0.23 93.0 £ 2.6
Fé6 3 231.0 £ 35.6 0.223 £+ 0.27 943 +25

Formulation Poloxamer 407 (%)  Particle Size (nm) PDI EE (%)
F7 0.5 1952+ 114 0.096 £ 0.037 96.3 £2.3
F8 1 191.3 +9.6 0.154 + 0.021 93.3 + 3.6
F9 1.5 164.1+£7.7 0.169 £+ 0.012 97.0 £4.0
F10 2 159.6 +22.3 0.166 + 0.013 913+ 5.1
F11 25 160.7 + 9.7 0.087 £ 0.010 92.8 +2.0
F12 3 159.6 +22.3 0.233 £+ 0.015 95.5+22

It was observed that the prepared SLNs were less than 500 nm in size and increase in the surfactant
concentration led to decrease in particle size of all SLN formulations [14]. On the other hand, there is a
report that relatively high concentrations of surfactants are needed to prevent particle aggregation [15].
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Figure 1 shows the morphologies of the various H-SLNs. All of the formulations were observed
to be spherical in shape.

Figure 1. Scanning electronic microscopy images of various H-SLNs.

The particle size of blank-SLNs was compared with the particle size of H-SLNs (Figure 2).
The particle size of SLNs was increased with the incorporation of H. cordata extracts (Figure 2A,B).
Particularly, the particle size decreases with increasing the concentration of P188 from 0.5% to 2%,
but the particle size was increased by 2% or more, which was consistent with [16]. Also, the particle
size of H-SLNs prepared using P407 was smaller than that of H-SLNs prepared with P188, which was
consistent with [17]. It was suggested that a reduced diffusion rate of the solute molecules caused by an
increased viscosity of the outer phase might be responsible for the particle size shift. Also, poloxamer
was observed to show flocculation that may be attributed to the dehydration of the poloxamer chains
and reduced steric stabilization efficiency at the increased concentration [16].
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Figure 2. Effect of surfactant concentration in SLNs on the particle size. (A) Poloxamer 188 tailored
SLNSs; (B) Poloxamer 407 tailored SLNs. (C) Effect of the use of trehalose as a surfactant on the particle
size. Data are expressed as the mean £ S.D. (n = 3).
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Generally, trehalose was proved to be a very effective cryoprotectant for SLN [18-20]. Trehalose is
a disaccharide formed by a o, -1,1-glucoside bond between two o-glucose units. Not only does this
sugar have the advantage of protecting cells from disruption, but can also act as an antioxidant. It is
used as a cryoprotectant for nanoparticles, because of its ability to preserve their original size and
structure after freeze-drying [21].

The effect of trehalose (5%) on the H-SLNs during freeze-drying was evaluated by measuring the
particle size (Figure 2C). The particle size of freeze-dried H-SLNs was generally increased compared
with before freeze-drying. However, the extent of the particle size increase of freeze-dried H-SLNs
with trehalose was significantly lower than that of H-SLNs without trehalose. When the nanoparticle
dispersion was freeze-dried with cryoprotectant, the cryoprotectants form a glassy/vitreous coating
around the nanoparticles protecting them against stresses like the mechanical stress of ice crystals,
thereby preventing aggregation [22].

The EE of H. cordata extracts in H-SLNs was measured by analyzing the quercitrin which is the
main component of H. cordata. It was confirmed that EE of H. cordata extracts in all formulations was
over 90%, strongly indicating the great loading ability of the formulations (Table 1).

2.2. DSC Analysis of H-SLNs

Formulation development of SLNs aims at ensuring physical stability in both particle size and
the crystalline state of the lipid matrix. Therefore, it is necessary to prove the solid state of the lipid in
SLNs by DSC analysis [23]. DSC thermograms of SA, P188, P407, blank F3, blank F9, F3 and F9 are
shown in Figure 3.
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Figure 3. DSC thermograms of stearic acid (SA), poloxamer 188 (P188), poloxamer 407 (P407), trehalose,
blank F3 (BE3), F3 (Trehalose free), trehalose added F3 (TE3), blank F9 (BF9), F9 (Trehalose free) and
trehalose added F9 (TF9).

The DSC peaks showed a broad peak without a specific maximum. The thermograms of SA,
P188, and P407 showed endothermic peaks at 70.24, 55.47 and 56.79 °C, respectively. The thermogram
of F3 exhibited peaks related to SA and P188. When compared with the thermogram of blank F3,
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thermogram of F3 did not have significant changes. The thermogram of F9 displays the peaks of
SA and P407. The slight displacements of the SA and surfactant peaks in F3 and F9 indicated new
molecular arrangements produced by the chemical interactions among the ingredients [24].

2.3. FI-IR Analysis of H-SLNs

Figure 4 shows the FI-IR spectra of H-SLNs and their ingredients. The FT-IR spectrum of SA
showed strong peaks at 1698 cm~! (C=0 stretching) and 2847 cm~! (CH stretching). The long-chain
bond is seen in 720 cm~! and the CH,; and CHj bands are seen in around 1550 cm 1 and 1300 em ™1,
respectively. The FI-IR spectrum of F3 and F9 with trehalose (TF3 and TF9) shows approximately
all peaks of SA with some minor displacements for 2913 cm~! and 2849 cm~! (CH stretching) which
is related to re-arrangement of molecules in the SLN structure. Also, in the TF3 and TF9 spectra,
an additional peak at 1098 cm ! is related to the P188 and P407 and the peaks at around 3311 cm !
and 990 cm~! are related to trehalose. In the F3 and F9 without trehalose, the peaks related to the
trehalose was not observed.
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Figure 4. FT-IR spectra of H. cordata extracts, stearic acid (SA), poloxamer 188 (P188),
poloxamer 407 (P407), trehalose, blank F3 (BE3), F3 (trehalose free), trehalose added F3 (TE3),
blank F9 (BF9), F9 (trehalose free) and trehalose added F9 (TF9).

2.4. In Vitro Release Study

For observing the effect of type and concentration of surfactants on the release profile of quercitrin
from H-SLNSs, in vitro release studies using all formulations were conducted. H. cordata extracts released
100% of quercitrin within 4 h. Release patterns of quercitrin from F1-F12 with an initial burst release were
observed, followed by a sustained release of quercitrin (Figure 5). The magnitude of the burst release has
a direct relation to the amount of quercitrin existing on the surface of H-SLNs [9,25,26]. The sustained
release was due to the release of quercitrin from the lipid matrix core [27]. Also, the release rate of
quercitrin from H-SLNs with P407 (F7-F12) was more sustained according to the concentration of
P407. These results suggested that the amount of quercitrin in the lipid matrix core was increased
by increasing the concentration of P407. However, there is a discrepant publication reporting that
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formulations showed an increase in the percentage drug release with the increase in the surfactant
concentration. This can be attributed to the solubilization effect of the surfactants. The increase in the
surfactant concentration helps the drug go into solution [28].
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Figure 5. In vitro release of all formulations (1% tween 80, pH 7.4). (A) F1-F6; (B) F7-F12 and
(C) Schematic drawing of the proposed release mechanism of drug from solid lipid nanoparticles.



Molecules 2017, 22, 2215 7 of 11

Usually, three kinds of drug-incorporation model are considered for SLNSs, including the solid
solution model, drug-enriched shell model and drug-enriched core model [25,26]. The solid solution
model SLNs can be prepared by the cold homogenization method. The drug is rapidly released from
SLNs in the drug-enriched shell model. In addition, drug-enriched core model does not show the initial
burst release. Therefore, drug incorporation model of H. cordata extracts in H-SLNs can be assumed as
a combined model of drug-enriched core model and drug-enriched shell model (Figure 4C).

2.5. In Vitro Cytotoxicity Study

In terms of in vitro cell studies, the types of cells are important in understanding cellular
mechanisms related to physiological conditions in humans. In particular, the Caco-2 cells are commonly
used as representing models of the human intestinal epithelium [29,30]. Caco-2 cells are known to
mimic typical properties of the human small intestinal epithelium such as a well-developed brush
border with associated enzymes such as alkaline phosphatase and sucrose isomaltase [31]. Therefore,
we investigated the toxicity of different concentrations of H-SLNs using MTT assay as an indicator
of cytotoxic effects (Figure 6). For 24 h or 48 h incubation, cell viability of Caco-2 cells was over
70% according to the concentration of various formulation. Even the concentration of the formulations
was treated up to 1000 pg/mL, the cell viability did not drop down below 70%. It has been known that
cell viability >70% is considered as “no toxicity” [32]. Overall, the results obtained suggested that the
composition of H-SLNs did not possess severe toxicity for oral delivery purposes.
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Figure 6. Cell viability of Caco-2 cells treated with blank F6, F6, blank F12 and F12 for (A) 24 and
(B) 48 h (n =3).
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3. Materials and Methods

3.1. Materials

Stearic acid (SA) was purchased from Daejung Chemical (Cheongwon, Korea). Poloxamer 188
(P188) and poloxamer 407 (P407) were obtained from BASF (Ludwigshafen, Germany). Quercitrin was
purchased from Sigma-Aldrich (Steinheim, Switzerland). D-(+)-Trehalose dehydrate was purchased
from Acros Organics (Pittsburgh, PA, USA). All other chemicals were commercial products of analytical
or reagent grade and used without further purification.

3.2. Cell Cultures

Caco-2 cells (human colon adenocarcinoma cells) was purchased from Korean Cell Line Bank
(Seoul, Korea). Caco-2 cells were cultured with minimum essential medium (MEM) supplemented
with 10% fetal bovine serum (FBS) and 100 units/mL penicillin (GIBCO BRL, Grand Island, NY, USA),
respectively, in a humidified atmosphere of 5% CO, at 37 °C.

3.3. Extraction of H. cordata

H. cordata extract was obtained from Wissen Co. (Daejeon, Korea). Briefly, 4 L of 95% ethanol
was added to 200 g of dried H. cordata raw material. This mixture was sonicated (30 min running and
30 min stop cycle, 10 cycles). This extract was filtered with 5 um-filter paper and 1 um-filter paper,
successively. Extracts of H. cordata were stored in the refrigerator until use.

3.4. Preparation of H-SLNs

H-SLNs were prepared by homogenization and ultra-sonication method. Briefly, 200 puL of
H. cordata extracts was added to 200 mg of SA and then the mixtures were heated to 75 °C.
Separately, 0.5-3% of P188 or P407 was heated to 75 °C. The heated surfactant solution was added
to the H. cordata-lipid melted mixture. This solution was homogenized at 12,000 rpm for 3 min,
subsequently sonicated at 80 °C for 10 min in water bath. H-SLNs dispersion was formed by
cooling this pre-emulsion at 4 °C. H-SLNs dispersion was freeze-dried with or without trehalose
as a cryoprotectant. As well as, blank SLNs were prepared without H. cordata extracts as above
protocol and freeze-dried with trehalose. Table 1 shows the compositions for the preparation of
H-SLNs. Morphology of the H-SLNs was characterized by SEM. The nanoparticles were mounted
on aluminium stubs, sputter-coated with a thin layer of Au/Pd, and examined by using an SEM
(JSM-7000F, JEOL, Tokyo, Japan).

3.5. Measurement of Particle Size and Polydispersity Index (PDI) of H-SLNs

The particle size as well as PDI of H-SLNs dispersion and lyophilized H-SLNs was measured
by dynamic light scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, Malvern, UK).
For measuring the particle size, H-SLNs dispersion was diluted to 10 times with distilled water and
10 mg of lyophilized H-SLNs were dispersed in distilled water.

3.6. Encapsulation Efficiency (EE) of H. cordata Extracts in H-SLNs

Quercitrin is the main component of H. cordata. The EE of quercitrin from H-SLNs was measured
as follows. Briefly, 0.5 mL of H-SLNs dispersion was diluted with 1 mL of ethanol and heated at 75 °C
for 20 min. After cooling at room temperature, this solution was centrifuged at 3000 rpm for 5 min
to precipitate the undissolved solid lipid, filtered through a 0.45 um syringe filter and injected into
the HPLC system with following conditions; an Agilent 1100 liquid chromatography system with an
autosampler and UV detector was used with a C18 column (4.6 x 250 mm, 5 pm particle size, Agilent,
Santa Clara, CA, USA). The flow rate was 1 mL/min, and the detection wavelength was set at 254 nm.
The mobile phase A was 2% acetic acid solution in distilled water and B was acetonitrile. EE was
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calculated applying the following formula: EE (%) = (amount of quercitrin in H-SLNs/amount of the
feeding quercitrin) x 100.

3.7. Differential Scanning Calorimeter (DSC) Analysis of H-SLNs

In order to assess the change of solid state, DSC analysis was performed on freeze-dried H-SLNs
with trehalose. To figure out the thermal behavior of freeze-dried H-SLNs with trehalose, blank F3,
F3 (freeze-dried H-SLNs without trehalose), TE3 (with trehalose), blank F9, F9 (freeze-dried H-SLNs
without trehalose), and TF9 (with trehalose) were compared as well as the components such as
H. cordata extracts, SA, P188, P407 and trehalose. Accurately weighed samples of 2 mg were analyzed
in aluminium pans on a DSC (DSC S-650, Scinco, Daejeon, Korea). The DSC runs were conducted from
10 to 400 °C.

3.8. Fourier Transform Infrared (FT-IR) Analysis of H-SLNs

In order to assess the interactions between ingredients of freeze-dried H-SLNs, FT-IR analysis
using a Thermo Nicolet 380 spectrophotometer (Thermo Scientific, Waltham, MA, USA) was performed
on freeze-dried H-SLNs with trehalose. To figure out the interactions of freeze-dried H-SLNs with
trehalose, blank F3, F3 (freeze-dried H-SLNs without trehalose), TF3 (with trehalose), blank F9,
F9 (freeze-dried H-SLNs without trehalose), and TF9 (with trehalose) were compared as well as the
components such as H. cordata extracts, SA, P188, P407 and trehalose. FT-IR was conducted and then,

the spectrum was recorded in the wavelength number of 4000 to 500 cm ™.

3.9. In Vitro Release Study

In vitro release study of quercitrin from H-SLNs was evaluated using a dialysis bag
(Spectra/Por Cellulose Ester Membrane MWCO: 25 kDa, Spectrum Labs, Rancho Dominguez, CA,
USA), which was filled with 2 mL of 1% tween 80 (pH 7.4). The dialysis bag was immersed in 5 mL of
1% tween 80, then it was stirred at 100 rpm in a shaking bath at room temperature. At predetermined
time intervals (1, 2, 4, 8, 12, 24 and 48 h), 2 mL of samples was withdrawn from the medium and
replaced with the same volume of fresh medium. The obtained samples were filtered with 0.45 um
syringe filter and the amount of quercitrin was determined by HPLC. Percent of cumulative release
at each time was normalized to the total amount of quercitrin in the tube. All samples were run in
triplicate and data points are shown as a mean = standard deviation.

3.10. In Vitro Cytotoxicity Study

The cytotoxicity of F6 and F12 was assessed using the Caco-2 cells by a MTT kit (Sigma-Aldrich).
The Caco-2 cells were seeded in 96-well plates at a cell density of 5 x 104 cells/mL (200 uL/well).
The cells were further incubated for 24 h or 48 h in fresh culture media containing blank F6, blank F12,
F6 and F12 with various concentrations. The culture medium was replaced by MTT solution (5 mg/mL,
100 puL/well), followed by incubation for a further 3 h. The MTT solution was removed and 200 pL of
dimethyl sulfoxide was added to the wells for dissolving formazan. The plates were then placed in an
incubator for 30 min. The absorbance values of each well were recorded at 570 nm using a microplate
reader (Sunrise; Tecan, Austria GmbH, Grodig, Austria).

3.11. Statistical Analysis

The student’s t-test was used to compare two different groups of samples. A p-value < 0.05 was
considered significant.

4. Conclusions

In this study, we prepared H-SLNs by a homogenization and ultrasonication method using
various concentrations of P188 or P407. We confirmed that surfactant concentration affects the particle
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size of H-SLNs. H-SLNs have a high EE, a spherical shape with a smooth surface, and a sustained
release profile. The cell viability of Caco-2 cells indicated the safety of H-SLNs as oral drug delivery
systems. Overall, SLNSs tailored by P407 may be a promising delivery platform for oral delivery of
H. cordata extracts.
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