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Abstract: Pediatric Non-Hodgkin Lymphomas (NHL) are a diverse group of malignancies and
as such treatment can vary based on the different biological characteristics of each malignancy.
Significant advancements are being made in the treatment and outcomes of this group of malignancies.
This is in large part due to novel targeted drug therapies that are being used in combination with
traditional chemotherapy. Here, we discuss several new lines of therapy that are being developed or
are in current use for pediatric patients with NHL.
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1. Introduction

Pediatric Non-Hodgkin lymphomas (p-NHL) are a diverse group of diseases in their morphologic
characteristics, clinical behavior, and biological features. Improvement in the outcomes of p-NHL
has been seen over the past few decades. The use of multidrug chemotherapy and radiation therapy,
intensification of treatment, improvement in supportive care, and better imaging and staging systems
have resulted in the cure of more than 75% of patients, representing one of the most significant success
stories in Pediatric Oncology. More recently, tremendous progress in the understanding of cancer cell
biology and its microenvironment have resulted in the development of biologic agents, also called
“target” therapies, that are more specific in targeting cancer cells either directly or via enhancement
of the immune system. Many clinical studies have focused on those biologic agents in combination
with traditional chemotherapy with the goal of improved outcome, or reduced acute or long term
complications associated with non-Hodgkin lymphoma (NHL) therapy. In this review, we will discuss
different biologic agents that are currently available for patients with NHL. Many of these drugs are
already under investigation in p-NHL; however, some of these are currently limited to adult trials but
given promising results, may be incorporated into future pediatric trials.

2. Monoclonal Antibodies

2.1. Anti-CD20 Monoclonal Antibodies: Rituximab

B-lymphocyte antigen CD20 is an activated glycosylated phosphoprotein expressed on the surface
of all B cells, and on greater than 90% of B-NHL cells. Rituximab is a chimeric murine/human
anti-CD20 monoclonal antibody. It has a human glycosylated IgG1 with a κ constant region and light
and heavy chain variable regions isolated from a murine anti-CD20 monoclonal antibody. This chimeric
antibody binds to CD20 positive cells and induces rapid depletion of CD20 normal B cells and
lymphoma cells [1]. It is believed that the anti-lymphoma effects of rituximab are due to three
main mechanisms of action, including complement-dependent cytotoxicity, antibody-dependent
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cellular cytotoxicity, and induction of apoptosis [1,2]. In 1998, Coiffier et al. [3] conducted a phase
II study including adult patients with refractory or relapsed (r/r) aggressive NHL using rituximab
only and showed significant clinical activity and low toxicity. Additive therapeutic benefit was
also demonstrated when rituximab was used in combination with conventional chemotherapy [4].
After that, several adult lymphoma trials have shown significant improvement in overall survival (OS)
and disease-free survival (DFS) with the addition of rituximab to various chemotherapy regimes in
aggressive lymphomas [5–9].

Pediatric NHLs also express CD20 in the majority of cases. CD20 is positively present in
100% of the pediatric Burkitt and Burkitt-like lymphomas, and 98% of cases with diffuse large
B-cell lymphomas (DLBCL) [10]. In children, rituximab was initially used in a variety of clinical
conditions, such as post-transplant lymphoproliferative disease (PTLD) [11,12]. Less data is available
regarding use of rituximab in p-NHL. In 2008, Attias et al. [13] reviewed the published literature
on rituximab therapy for Burkitt lymphoma/B-cell acute lymphoblastic leukemia and (r/r) large
B-cell lymphoma cases and found high response rates among patients treated with rituximab, in
contrast to very poor salvage rates in (r/r) p-NHL patients treated with conventional chemotherapy
alone [14–16]. Subsequently, Children’s Oncology Group (COG) found a 60% response rate with the
use of rituximab in combination with ifosfamide, carboplatin, and etoposide in patients with (r/r)
B-cell NHL [17]. A phase II COG study on rituximab added to FAB/LMB96 chemotherapy backbone
for newly diagnosed advanced stage B-cell NHL found a three-year event free survival (EFS) of 93%
(95% CI, 79%–98%) [18,19], improved from the previous FAB/LMB96 trial (five-year EFS 84%, 95% CI,
80%–86%) [20,21]. No significant increased toxicity was found with inclusion of rituximab among
those patients, including CNS-positive patients [19,22]. Currently, a collaborative phase III trial of the
European participating national groups and COG is open for patients with advanced stage B-NHL and
mature B-acute lymphoblastic leukemia to test whether addition of six doses of rituximab to standard
LMB chemotherapy regimen improves the EFS compared with LMB chemotherapy alone.

2.2. Anti-CD20 Monoclonal Antibodies for Radioimmunotherapy: 90Yttrium-Ibritumomab Tiuxetan

90Yttrium-Ibrutumomab tiuxetan is a monoclonal antibody for radioimmunotherapy. It is made
up of an immunoglobulin IgG1 mouse monoclonal antibody that is attached to a β radioactive isotope,
90yttrium (90Y). 90Yttrium is a high energy isotope that gets delivered intracellularly via the anti-CD20
antibody in CD20+ cells, leading to cell death [23]. A phase III multicenter trial of 143 adults with
(r/r) low-grade/follicular or transformed NHL (not previously exposed to rituximab) comparing
two treatment groups found a significantly better overall response rate of 80% compared to 56% for
rituximab, 34% CR/CRu with rituximab versus ibrutumumab tiuxetan [24]. Response to ibrutumomab
tiuxetan has also been shown in patients with follicular/low grade NHL refractory to rituximab [25].
Within the pediatric population, 90yttrium-ibritumomab tiuxetan has been tested in children and
adolescents with (r/r) CD20+ lymphomas in a phase I setting [26]. Ibritumomab administration was
preceded by rituximab and no patients experienced dose-limiting toxicity. Additional studies are
needed to determine efficacy of ibrutumomab tiuxetan in pediatric lymphomas.

3. Antibody-Drug Conjugates (ADC)

Anti-CD30 ADC: Brentuximab Vedotin

Activated T- and B-cells express CD30, a cell membrane protein of the tumor necrosis factor
(TNF) receptor family, which has a role in apoptosis regulation. CD30 has been found to be expressed
in a variety of malignancies, including embryonal carcinoma [27], Hodgkin lymphomas (HL), and
anaplastic large cell lymphomas (ALCL) [28]. Brentuximab vedotin (BV) is a CD30 antibody that is
conjugated to the anti-tubulin agent, monomethyl auristatin E (MMAE). Brentuximab vedotin binds
to the CD30 on the surface of the cell and releases MMAE into the cell and induces apoptosis [29].
Vinblastine is a vinca alkaloid that has been used traditionally in the treatment of both ALCL and
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HL. Monomethyl auristatin E binds to the same site on tubulin as vinblastine, and conjugation of
drug and antibody leads to significantly increased potency in comparison to free MMAE in both
in vitro and in vivo CD30 positive models [30]. The initial (phase I) study to use BV in a cohort of (r/r)
CD30-positive adult hematological cancer patients induced durable objective responses in the majority
of patients with minimal toxicity [31]. Subsequently, a phase II study including adult patients with (r/r)
HL after autologous stem-cell transplant (SCT) found impressive results with an objective response in
75% with sustainable CR in 34% of patients and manageable toxicity [32], leading to accelerated FDA
approval of BV in 2011. Addition of BV to multi-agent chemotherapy also was found to be safe, except
in regimens containing bleomycin that resulted in excessively high pulmonary toxicity [33].

The initial experience with BV is limited to case reports of pediatric patients with (r/r) HL or
ALCL [34]. Safety of BV was confirmed in a phase I/II study of pediatric patients with (r/r) lymphomas
and maximum tolerated dose was found to be 1.8 mg/kg every three weeks [35]. Response to BV
was also observed among pediatric patients with (r/r) HL in another phase I/II trial with OR rates of
64%, including 21% of CR. The results for patients with ALCL included in that trial are still not yet
available [36].

Currently, Children’s Oncology Group is conducting a randomized phase II trial of BV or crizotinib
(discussed herein) in combination with standard chemotherapy (best arm of ALCL99) for newly
diagnosed pediatric patients with ALCL.

4. Nucleoside Analog

Nelarabine

Nelarabine is a nucleoside analog and an effective pro-drug of ara-G [37]. It is demethoxylated
by adenosine in plasma to produce ara-G. It is taken up by the cell, converted to ara-GTP, and
then incorporated into growing DNA strands, which results in S-phase dependent apoptosis [38,39].
T-cells eliminate ara-GTP slowly making nelarabine selectively toxic to T-cells [39]. A phase I study
involving pediatric and adult patients with refractory hematologic malignancies found correlation
between cytotoxic activity and ara-GTP accumulation in leukemia blasts and major responses in
patients with T-cell malignancies, with 54% of patients with T-cell ALL achieving complete or
partial response after one or two cycles of nelarabine [40]. Subsequently, a phase II study of
nelarabine in children and young adults with refractory T-cell malignancies found a response rate
of more than 50% in first bone marrow relapse [41]. In 2005, based on CR induction, the Food
and Drug Administration granted accelerated approval for nelarabine for treatment of (r/r) T-cell
ALL/lymphoblastic lymphoma [42]. Common dose-limiting toxicity is neurologic in both children and
adults. Nelarabine has also been used safely in combination with cyclophosphamide and etoposide in
pediatric patients with (r/r) T cell leukemia or lymphoma [43], or in combination with more intensive
regimens [44,45]. Similar to conventional chemotherapy, regimens containing nelarabine are also less
efficient in inducing CR in patients with lymphoma in comparison to leukemia [43,46]. The efficacy of
nelarabine in addition to COG-augmented BFM chemotherapy regimen is currently being tested for
children and young adults with newly diagnosed T-cell ALL or T-cell lymphoblastic lymphoma.

5. Proteasome Inhibitors

Bortezomib

Bortezomib has been described in the treatment of multiple myeloma and is known to reversibly
block proteolytic activity in proteasomes. It blocks NF-κB activation by stabilizing the lkB and thus
allowing lkB to continue its inhibitory effect over NF-κB. NF-κB activation occurs frequently in
childhood ALL. In vitro studies have shown promising results with bortezomib with T-cell ALL cell
lines [47], likely due to significant activation of the NF-κB pathway in T-cell blasts as a consequence
of activated Notch1. Additionally, bortezomib seems to enhance sensitivity of tumor cells and
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help overcome chemotherapy resistance [48–50]. A phase I study of bortezomib (dose 1.3 mg/m2)
administered on Days 1, 4, 8, and 11 added to four-drug induction chemotherapy with vincristine,
dexamethasone, pegylated L-asparaginase, and doxorubicin in children with relapsed ALL showed
acceptable toxicity, and 67% of the patients (six out of nine) achieved CR [51]. A phase II expansion of
that trial included relapsed B-precursor ALL (BP-ALL) and T-cell ALL pediatric patients and found a
73% response rate, with better activity in BP-ALL patients [52]. Bortezomib is currently being tested
by COG in a phase III randomized trial using modified augmented BFM backbone in T-cell ALL and
T-cell lymphoblastic lymphoma.

6. Histone Deacetylase Inhibitors (HDACIs)

6.1. Vorinostat (Suberoylanilide Hydroxamic Acid (SAHA))

Histone deacetylase (HDAC) inhibitors are a class of drugs that have been shown to induce tumor
cell apoptosis and/or cell cycle arrest, and to induce differentiation in a variate of tumor-derived cell
lines and to block angiogenesis in vivo [53]. SAHA significantly inhibited the growth of a mantle cell
lymphoma in a mouse model with little or no toxicity [54] as well as in other tumor animal models [55].
Clinically, SAHA was tested in a variety of patients with refractory hematological and solid tumors
with good tolerance and significant anticancer activity [56,57], including Hodgkin and non-Hodgkin
lymphomas [58]. SAHA has shown particularly good responses in patients with cutaneous T-cell
lymphomas [59], and to increase sensitivity to chemotherapy, including cisplatin in HL cells [60] and
pediatric refractory ALL [61]. Recently, COG ran a phase I trial of SAHA and bortezomib in children
with refractory cancers, including lymphomas, but results are not available. More studies addressing
the mechanisms of antineoplastic effect of SAHA, as well as its clinical benefits in pediatric lymphomas
are needed.

6.2. Romidepsin (Depsipeptide)

Romidepsin is a structurally unique, bicyclic class I HDAC inhibitor that has been approved
for the treatment of (r/r) primary T-cell lymphoma (PTCL) and cutaneous T-cell lymphoma (CTCL)
since 2009 [62]. Although the mechanisms of action in T-cell malignancies are not well known,
the speculated mechanisms include activation of apoptosis and modulation of multiple survival
pathways [63]. Romidepsin has been shown to control growth and induce apoptosis in neuroblastoma
cell line and neuroblastoma xenograft models [64]. Both in vitro and in vivo cytotoxicity related to
increased surface expression of MIC A/B and IL-2 activated natural killer (NK) in various ALL and
NHL cell lines [65]. Interestingly, a xenograft mouse model of chemotherapy-resistant RS 4:11 leukemia
survived longer after exposure to romidepsin and IL-2-activated NK cells [66].

Clinical activity was demonstrated in a phase I trial that included three patients with CTCL (one
patient achieved PR) and one patient with PTCL (CR), with reasonable tolerability and demonstrated
increase in Sésary cell histone acetylation [67,68]. Clinical significance for patients with refractory
PTCL was confirmed in a phase II single agent trial using romidepsin in 131 adult patients [69].
The objective response was 25%, including 15% with CR/CRu. A COG phase I study of romidepsin
in 18 pediatric patients with refractory solid tumors (no patients with lymphoma included) found
no objective response. Dose-limiting toxicities (DLTs) included reversible electrocardiogram changes
without clinical significance and hypocalcemia [70].

6.3. Belinostat (PXD101)

Belinostat is a pan-HDACI available for the treatment of (r/r) PTCL since 2014 [71] after a phase
II trial of 120 adult patients with (r/r) PTCL showed an overall response rate (ORR) of 25.8%, with
10.8% of patients achieving CR, and 15% of PR, median duration of response of 13.6 months, and an
ongoing response greater than 36 months in one patient. Additionally, 63.3% of patients had some
degree of tumor reduction, allowing 12 patients to undergo SCT [72]. Puvadda et al. studied the use of
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belinostat in 22 adult patients with (r/r) DLBCL and found an ORR of 10.5% and good tolerability.
This trial included correlative studies and will serve as the base for a SWOG trial combining HDACI
with R-CHOP [73]. The safety of belinostat has not been evaluated in pediatric population.

7. Small Molecule Inhibitors

7.1. Crizotinib

Crizotinib is a tyrosine kinase inhibitor that targets the anaplastic lymphoma kinase (ALK)
receptor. The ALK gene fusion was originally identified in anaplastic large cell lymphoma and encodes
a cell surface tyrosine kinase that serves as a potential therapeutic target. It is constitutively activated
in the majority of pediatric anaplastic large cell lymphoma (ALCL) cases due to the t(2;5) (NPM1-ALK
fusion protein) translocation [65]. ALK mutations have also been found in other types of malignancy
including non-small lung cancer [74], inflammatory myofibroblastic tumors [75], neuroblastoma [76],
and leukemia [77]. Activated ALK can drive tumor cell survival and proliferation by multiple
downstream signaling pathways. Response to crizotinib in patients with relapsed ALCL was first
reported in 2011 [78]. Recently, Mosse et al. published the results of a phase I trial of pediatric
patients with (r/r) solid tumors or anaplastic large cell lymphoma and found good tolerance in
children at a dose of 280 mg/m2 twice a day. Of note, single-agent crizotinib use resulted in objective
antitumor activity in patients with activation ALK aberrations, including seven out of nine patients
with ALCL reaching CR. Grade 3–4 adverse reactions included neutropenia, abnormal liver enzymes,
and lymphopenia [79]. Development of drug resistance to crizotinib has been reported frequently due
to development of point mutations located in the ALK kinase domain, and second-line therapies to
overcome crizotinib resistance are currently being evaluated [80]. Currently, COG is enrolling patients
in a phase II trial of BV or crizotinib in combination with chemotherapy for newly diagnosed patients
with ALCL.

7.2. Ibrutinib

Ibrutinib is a potent irreversible Bruton’s tyrosine kinase (BTK) inhibitor. Activation of the
B-cell receptor (BCR) signaling pathway leads to initiation of B-cell malignancies. BTK is required
for BCR signaling and it is selectively and irreversibly inhibited by ibrutinib. Initial studies using
ibrutinib showed objective response in B-cell NHL animal models [81]. Burkitt lymphoma xenograft
mouse models treated with ibrutinib showed significantly decreased tumor progression and prolonged
survival [82].

Ibrutinib also has shown promising results in a primary mediastinal B cell lymphoma (PMBL) cell
line. When treated with ibrutinib the total BTK protein expression was decreased. Cell proliferation
was significantly decreased in the PMBL cell line when treated with ibrutinib alone, and in combination
with dexamethasone, rituximab and carfilzomib [83].

In a phase II adult study for relapsed/refractory follicular lymphoma, ibrutinib alone had an
overall response rate of 30% and therapy was reported as well tolerated [84]. In treatment naïve
adult patients, ibrutinib in combination with rituximab showed an overall response rate of 82% with a
complete response rate of 27%. With ibrutinib reported as well tolerated [85]. Additional studies are
needed to address the use of ibrutinib in p-NHL.

7.3. Idelalisib

Idelalisib is a selective phosphatidylinositol 3 kinase δ inhibitor. The phosphatidylinositol 3 kinase
δ (PI3δ) pathway is the most frequently activated pathogenic signaling in human cancer. PI3δ plays an
important role in B-cell proliferation and survival. The effects of idelalisib were initially demonstrated
in a variety of immature and mature B-cell malignancy cell lines with resulting decreased AKT
phosphorylation, increase in poly (ADP-ribose) polymerase and caspase cleavage and induction of
apoptosis [86]. In 2014, the FDA approved idelalisib for chronic lymphocytic leukemia, follicular
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B-cell lymphoma, or small lymphocytic lymphoma [87]. The use of idelalisib in pediatric patients
is very limited at this time. Recently, a phase II study assessing the efficacy and safety of idelalisib
in patients with r/r HL was completed and included patients who were 12 years of age and older.
Preliminary results showed an overall response rate of 20% (95% C.I. 6.8 to 40.7) (n = 25), overall
survival of 19.8 months (95% C.I. not reached), and PFS of 2.3 months (95% C.I. 1.8–3.7) (results per
www.clinicaltrials.gov—clinical trial identifier NCT01393106).

8. Checkpoint Inhibitors

Nivolumab

Tumor cells can evade the immune system by expressing Program Death (PD-1) ligands on the
cell surface [88]. Anti-PD-1 antibodies are the second-generation checkpoint inhibitors that have been
safely used in a variety of solid tumors with clinical response [88–90]. Nivolumab is a human IgG4
anti-PD1 antibody tested in patients with r/r HL. Classical HL cells typically have increased expression
of PD-L1 and PD-L2 leading to immune evasion and refractoriness [91]. The use of nivolumab in adult
patients with r/r HL resulted in 87% objective response, including 17% CR and 70% PR [91]. Currently,
COG is testing nivolumab in a phase I/II trial in pediatric patients with r/r solid tumors, NHL and HL.

9. Conclusions

The treatment of NHL has been significantly influenced by the recent development of biological
therapies. Considerable long-term complications are observed among pediatric survivors exposed at an
early age to chemotherapy and/or radiation therapy. New biological agents may become an essential
component of therapy to improve quality of life and reduce the burden of long-term complications
in survivors. Up to now, the use of most of these new agents has been limited to adult patients or is
being tested in the setting of refractory or relapsed disease only; continued effort to develop clinical
trials in pediatrics is needed with the hopes that these may be successfully incorporated into upfront
therapy for these patients. With targeted therapies such as those discussed here, it is possible that we
will witness significant changes in the standard therapy of pediatric patients with NHL in the next
several years.
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