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ABSTRACT

Extensive photosynthetic gene loss and rapid evolutionary rate occur in the plastomes of parasitic
plants. The holoparasitic plant Cistanche tubulosa of Orobanchaceae is an important medicinal resour-
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ces that are distributed in arid areas. In this study, the complete plastome of C. tubulosa has been

sequenced, assembled and analyzed. The total plastome of C. tubulosa was 75,375 bp in length, consist-
ing of a pair of inverted repeats (IRs, 6,593 bp), a large single-copy region (LSC, 32,470bp) and a small
single-copy region (SSC, 29,719bp). It contained 24 intact protein coding genes, nine pseudogenes,
and 44 missing genes. In addition, all the protein-coding genes, which were related to photosynthesis
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and energy production, were pseudogenised or lost. Four rRNA genes and 24 tRNA genes were intact
meanwhile five tRNA genes were missing. Phylogenetic tree indicated that C. tubulosa was closely
related to C. phelypaea. Our results may improve understanding of the plastome organization, classifica-

tion, and evolution of parasitic plants.

Orobanchaceae is a special family that comprises all level
growth behavior plants consisting of nonparasitic, hemipara-
sitic and holoparasitic plants (Xi et al. 2013). Cistanche tubu-
losa, a holoparasitic plant of the Orobanchaceae, absorbs
water and organic and inorganic nutrition from the roots of
its hosts. Cistanche tubulosa is traditionally used as nourishing
herbs. A lot of compounds have been isolated from C. tubu-
losa, including phenylethanoid glycosides, carbohydrates,
lignans, iridoids, echinacoside, verbascoside, chlorogenic acid,
acteoside, and luteoloside (Yong and Peng-Fei 2009; Fu et al.
2018; Gao et al. 2019). These isolated compounds
have exhibited abundant pharmacologic effects, such as
neuroprotective, immunomodulatory, anti-senescence, anti-
inflammatory, anti-osteoporosis, hepatoprotection, anti-oxida-
tive, anti-bacterial, anti-tumour and glucose-tolerance-improv-
ing effects (Morikawa et al. 2019). Compared with the more
than 3000 plastomes of autotrophic organisms that can be
obtained from the National Center for Biotechnology
Information database, data from the plastomes of parasitic
plants are limited. To depict the characteristic of gene losses
and provide new insights into the overall evolutionary pro-
cess, we analyzed the plastome of C. tubulosa.

Fresh scale leaves of C. tubulosa were collected from the
Hotan Prefecture (Xinjiang Uygur Autonomous Region), China
(78°12/36"E, 36°19'12"N). The voucher specimens were
deposited in the herbarium of Institute of Medicinal Plant
Development, Chinese Academy of Medical Sciences, Peking
Union Medical College (IMD), with accession numbers of
XJ20170502. Approximately 500ng DNA was used to con-
struct a library with an insert size of 400bp and sequenced
according to the manufacturer’s instructions for HiSeq 4000
platform. The clean paired-end reads were filtered against all
the plastomes of plants recorded in the GenBank database
by using BLASTn with an e-value cutoff of 1e—5. The
extracted reads were assembled using SPAdes (v. 3.10.1)
(Bankevich et al. 2012). The boundary region was validated
using primer pairs spanning the boundary region followed
by PCR amplification of the regions and Sanger sequencing
of the PCR production. Genes were annotated by using
CpGAVAS2 web service (Shi et al. 2019) and edited
manually by using Apollo genome editor (Lewis et al. 2002).
The circle map of plastome was generated using
OrganellarGenomeDRAW (Lohse et al. 2013), and GC content
was analyzed using CGView Server (Grant and Stothard
2008). In comparison with the nonparasitic plant of

CONTACT LinFang Huang @ Ifhuang@implad.ac.cn @ Key Research Laboratory of Traditional Chinese Medicine Resources Protection from Ministry of
Education, Engineering Research Center of Chinese Medicine Resource, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant
Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China

*These authors contributed equally to this work.

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.


http://crossmark.crossref.org/dialog/?doi=10.1080/23802359.2020.1787273&domain=pdf&date_stamp=2020-07-07
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com

2680 W. XU ET AL.

88

64

Lindenbergia philippensis (NC022859.1)
Cistanche sinensis (MK386641)
C/stanche phelypaea (NC025642.1)

N ® Cistanche tubulosa (MN614130)

= Cistanche salsa (MK386640)
Cistanche deserticola (NC021111.1)
Boulardia latisquama (NC025641.1)
Orobanche rapum-genistae (NC031444.1)
Orobanche crenata (NC024845.1)
Orobanche pancicii (NC031443.1)
Orobanche austrohispanica (NC031441.1)
Orobanche gracilis (NC023464.1)
Orobanche densiflora (NC031442.1)
Phelypaea coccinea (NC043877.1)
Phelipanche purpurea (NC023132.1)
Phelipanche ramosa (NC023465.1)

Aphyllon californicum (NC025651.1)
s Aphy//on fasciculatum (NC039679.1)
= Conopholis americana (NC023131.1)

Epifagus virginiana (NC001568.1)
Brandisia swinglei (NC042954.1)

= Pedicularis ishidoyana (NC029700.1)
Pedicularis hallaisanensis (NC037433.1)
Castilleja paramensis (NC031805.1)

Lathraea squamaria (NC027838.1)
Schwalbea americana (NC023115.1)
Rehmannia henryi (NC034309.1)
Rehmannia solanifolia (NC034310.1)
Rehmannia glutinosa (NC034308.1)
Rehmannia chingii (NC033534.1)

Rehmannia elata (NC034312.1)
Rehmannia piasezkii (NC034311.1)
Triaenophora shennongjiaensis (NC039781.1)

Pedicularis cheilanthifolia (NC036010.1)
,—Arab:dops:s thaliana (NC000932.1)

' Nicotiana tabacum (NC001879.2)

Figure 1. Phylogenetic tree based on 36 complete plastomes of Orobanchaceae.

Orobanchaceae Rehmannia glutinosa (NC_034308), genes that
were similar to known protein-coding genes but truncated or
contained one or more frameshift mutations, were classified
as pseudogenes (Cusimano and Wicke 2016; Xi et al. 2013).
The genome assembly and annotation results were deposited
in GenBank, with accession numbers of MN614130.

The plastome of C. tubulosa was 75,375 bp in length and
showed a typical quadripartite structure, including a pair of
IRs (6593 bp) separated by LSC (32,470bp) and SSC
(29,719 bp) region. The total GC content was 34.95% and the
SSC region had a higher GC content (38.00%) than the IR
(33.22%) and LSC (32.86%) region. The plastome of C. tubu-
losa retained 27 intact protein-coding genes, nine genes
became pseudogenes, and 44 genes were missing com-
pletely. All genes related to encoding photosynthetic proteins
were pseudogenised or lost, which supports the holoparasitic
lifestyle of C. tubulosa. All four rRNAs were universally local-
ized in the SSC region. A total of 24 tRNAs remained, and up
to five tRNAs were lost throughout the evolution.

To analyze the phylogenetic position of C. tubulosa within
the Orobanchaceae famliy, a molecular evolutionary tree was
constructed using 36 species. Twelve shared protein sequen-
ces were concatenated and aligned using the ClustalW pro-
gram (Thompson et al. 2002). The phylogenetic tree was
constructed using the Randomized Axelerated Maximum
Likelihood (RAXML) software (Stamatakis 2014) and the ML

method, with Arabidopsis thaliana and Nicotiana tabacum as
the outgroups. The phylogenetic tree showed that C. tubu-
losa and C. phelypaea were grouped together (Figure 1).
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