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ABSTRACT

Detection of low-frequency DNA variants (below 1%)
is becoming increasingly important in biomedical re-
search and clinical practice, but is challenging to do
with standard sequencing approaches due to high er-
ror rates. The use of double-stranded unique molec-
ular identifiers (dsUMIs) allows correction of errors
by comparing reads arising from the same original
DNA duplex. However, the implementation of such
approaches is still challenging. Here, we present a
novel method, one-pot dsUMI sequencing (OPUSeq),
which allows incorporation of dsUMIs in the same re-
action as the library PCR. This obviates the need for
adapter pre-synthesis or additional enzymatic steps.
OPUSeq can be incorporated into standard DNA li-
brary preparation approaches and coupled with hy-
bridization target capture. We demonstrate success-
ful error correction and detection of variants down
to allele frequency of 0.01%. Using OPUSeq, we also
show that the use of enzymatic fragmentation can
lead to the appearance of spurious double-stranded
variants, interfering with detection of variant frac-
tions below 0.1%.

INTRODUCTION

Biomedical research and personalized medicine increas-
ingly rely on our ability to quickly and precisely determine
DNA sequences and their associated mutations or polymor-
phisms. Standard next-generation sequencing allows us to
accurately determine variants above 1% variant allele frac-
tion (VAF) (1). However, the ability to confidently detect
variants present at far lower fractions is important for mul-
tiple areas of research, such as studies of pathogen intrahost
variation (2,3), mitochondrial heteroplasmy (4–6) or mech-
anisms of mutagenesis (7,8). Detection of low-frequency
variants is also important in the clinical setting, aiding in

cancer patient stratification and treatment selection. Intra-
tumoral heterogeneity is widely recognized as an impor-
tant factor influencing patient outcomes (9,10), one of the
reasons being that heterogeneous tumors can harbor drug-
resistant cells. Such cells may be present at a very low frac-
tion in a tumor and thus elude detection. After successful
cancer treatment, the detection of minimal residual disease
(MRD) is of high clinical relevance, as identification of the
scarce remaining cancer cells in blood can be vital for pre-
dicting relapse (11,12).

Many methods have been developed to improve our abil-
ity to accurately detect low-frequency variants (1). In or-
der to do so, errors arising during sequencing and library
preparation, as well as DNA damage due to sample han-
dling, need to be eliminated from the data. If the sequenc-
ing is performed at high depth, one can compare several
reads arising from the same original DNA fragment and
retain only variants found in the majority of the reads.
Adding unique molecular identifiers (UMIs)––short ran-
dom sequences––to the ends of DNA introduces barcodes
that help to trace each read back to the original fragment
(13,14). Single-stranded UMIs are easy to incorporate into
a library, but can only group reads arising from the same
strand and thus do not allow elimination of errors arising
from early cycles of PCR or from DNA damage (affect-
ing all reads from one of the strands). In 2012, the duplex
sequencing (Duplex-seq) approach (15) introduced double-
stranded UMIs (dsUMIs), which enabled pairing of the two
strands of the same original fragment, thus theoretically re-
ducing the error rate to <10–9 (1). However, Duplex-seq in-
volves complicated and failure-prone synthesis of adapters
carrying the dsUMIs (16). Several alternative approaches
have been published in recent years (17–22). Some have re-
placed random UMIs with simpler, predefined barcodes,
which are easier to incorporate into library adapters but
might limit the ability to accurately identify extremely low
variant fractions (19,20,22). SaferSeqS (21) improved on
the process of dsUMI addition, removing the need to pre-
synthesize adapters. However, the library preparation strat-
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egy is not straightforward and contains multiple additional
steps and enzymes compared to standard protocols.

Thus, there remains a need for simpler approaches to ac-
curately detect very low variant fractions while correcting
for strand-specific sequencing errors originating from the
library preparation or sample handling steps. Here, we in-
troduce a novel way to incorporate dsUMIs into DNA se-
quencing libraries using simple, commercially synthesized
adapters and a two-stage PCR with a standard polymerase.
This method, which we call one-pot dsUMI sequencing
(OPUSeq), creates dsUMI-labeled libraries from a range
of genomic DNA (gDNA) inputs and is compatible with
standard PCR-based library preparation and target enrich-
ment approaches. We demonstrate the ability of OPUSeq
to efficiently remove errors and detect low-frequency vari-
ants down to 0.01% VAF. We also report a new type of
fragmentase-induced artifacts, which could only be uncov-
ered using a duplex error correction strategy. These artifacts
appear at VAF of up to 0.14% and may thus interfere with
low-frequency variant calling.

MATERIALS AND METHODS

Human gDNA

Purified gDNA from the HapMap project genotypes
was obtained from the Coriell Institute (NA12751 and
NA12814). For samples captured on the 56-kb cancer gene
panel, we used 5 ng NA12814 DNA. For the VAF series
experiments, we used either 1 �g (with the fragmentase ap-
proach) or 200 ng (with the sonication approach) mixed-
genotype DNA. We mixed DNA at 1%, 0.1%, 0.05%, 0.01%
and 0% VAF of ‘test’ genotype (NA12751) in ‘background’
genotype (NA12814). Since the single-nucleotide polymor-
phisms (SNPs) of interest were heterozygous in NA12751,
fractions by mass were two times higher than those by allele.
We prepared mixes in duplicate and diluted in IDTE buffer
(10 mM Tris–HCl, pH 8, 0.1 mM EDTA). We split each
replicate to prepare the library according to either OPUSeq
protocol or standard KAPA protocol (KAPA HyperPlus
or HyperPrep Kits, Roche). To obtain neonatal fibroblast
DNA, we extracted DNA from cultured Hs27 cells (ATCC
CRL-1634) of passage 2 using the Quick-DNA MiniPrep
Plus Kit (Zymo Research) according to manufacturer’s in-
structions. We performed all measurements of DNA con-
centration using the Qubit dsDNA HS Assay Kit (Thermo
Fisher).

Sonication

For the KAPA HyperPrep Kit, gDNA was sonicated to
150–200 bp fragments using a Covaris ME220 instrument.
For the experiment comparing fragmentation methods and
DNA sources, DNA was sonicated in microTUBE AFA
Fiber Pre-Slit Snap-Cap 6 × 16 mm tubes at 10 ng/�l in TE
buffer (10 mM Tris–HCl, 1 mM EDTA) for 225 s at peak
power of 75 W, 25% duty factor and 1000 cycles per burst.
For the VAF series experiment, DNA was sonicated prior
to mixing the two genotypes, at 50 ng/�l in TE buffer in
8 microTUBE AFA Beads Strip V2 for 140 s at peak power
of 50, 30% duty factor and 50 cycles per burst. After sonica-

tion, we purified DNA with 1.8× volume ratio of AMPure
XP beads (Beckman Coulter) and eluted into IDTE.

Library preparation using the standard KAPA protocols

We used KAPA HyperPlus and HyperPrep Kits accord-
ing to manufacturer’s instructions with minimal variations.
During the HyperPlus protocol, we performed fragmenta-
tion for 20 min at 37◦C and then inactivated fragmentase at
70◦C for 15 min. We ligated QIAGEN QIAseq FX 24-plex
dual-indexed adapters to DNA for 1 h at 20◦C. For 1 �g in-
put, we added 10 �l of 15 �M adapter instead of the usual 5
�l to maximize ligation efficiency. We performed 2 cycles of
PCR for 1 �g input and 10 cycles for 5 ng input. The final
concentration of Library Amplification Primer Mix was 1
�M for 5 ng DNA input and 2 �M for 1 �g DNA input.

For the HyperPrep protocol, we used 200 ng of Covaris-
sonicated DNA in IDTE (see earlier) as input. We ligated
either QIAGEN QIAseq FX 24-plex dual-indexed adapters
or KAPA dual-indexed adapters (Roche) to DNA for 1 h
at 20◦C. Finally, we performed PCR for four or five cycles
with 1 �M Library Amplification Primer Mix.

For the test of different fragmentation and end-repair
(ER) protocols, we used two different ER enzyme mixes.
These two mixes were both included with the KAPA Hy-
perPlus Kit. One of them (ER mix 1, tube with purple cap)
is the mix that the HyperPlus Kit contained originally and
is the same as in the HyperPrep Kit. The other mix (ER
mix 2, orange cap) is a newer addition, claimed to be opti-
mized for the fragmentase-based HyperPlus protocol. For
the VAF dilution experiment using HyperPlus, we used ER
mix 1.

OPUSeq

See Figure 1 for an overview of the OPUSeq workflow.
The oligonucleotides (oligo) required for OPUSeq are listed
in Supplementary Table S1 and can be obtained from
any commercial manufacturer (we used Sigma-Aldrich and
Integrated DNA Technologies). In addition to custom
adapters, custom PCR primer 1, sequencing read 1 primer
and a blocking oligo are required. In order to ensure no
dA occurrences in the adapter before the desired elonga-
tion endpoint, we omitted dA bases in the UMI and in-
troduced two base substitutions to the standard Illumina
sequences. On the other hand, PCR primer 2 has the stan-
dard Illumina sequence. To prepare OPUSeq adapters, we
annealed Adapter Fw [1–4] and Adapter Rv [1–4] oligos
(each at 48 �M) pairwise (Fw 1 + Rv 1, etc.) in annealing
buffer (40 mM Tris–HCl, pH 8, 50 mM NaCl) by heating up
to 95◦C for 5 min and then cooling down slowly to 10◦C. We
then mixed the four annealed adapters together in equimo-
lar amounts. Annealed adapters were kept at −20◦C and
thawed on ice.

OPUSeq libraries were prepared using the KAPA Hyper-
Plus or HyperPrep Kit, with the following changes to the
standard protocol. We used OPUSeq annealed adapter mix
for ligation (10 �l of 48 �M mix for 1 �g DNA, 5 �l of 15
�M mix for other input amounts) at 20◦C for 1 h. After the
standard post-ligation bead cleanup, we performed a sec-
ond cleanup with a 1.8× ratio of AMPure XP beads. This
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additional cleanup was important for obtaining good li-
brary conversion with OPUSeq. We speculate this might be
due to a decreased carryover of contaminants from prior re-
actions. We performed PCR using KAPA HiFi, which pos-
sesses strand-displacing activity and is not heat-activated
(non-hot-start), both of which are requirements for a poly-
merase compatible with OPUSeq PCR.

When using 5 or 200 ng DNA input, we mixed 20 �l pu-
rified DNA with 10 �l KAPA HiFi Fidelity Buffer (5×)
(Roche), 2.5 �l blocking oligo (20 �M), 0.75 �l three-
dNTP mix (dATP, dGTP and dCTP at 20 mM each), 2.5 �l
PE1 MM MPX [index#] primer (PCR primer 1, 20 �M),
1 �l KAPA HiFi enzyme (Roche) and 10 �l nuclease-free
water. We ran this mix through the pre-incubation consist-
ing of 72◦C for 10 s, 98◦C for 30 s and 50◦C for 1 min,
and then returned it to room temperature. We added 0.75
�l dTTP (20 mM) and 2.5 �l PE2 MPX [index#] primer
(PCR primer 2, 20 �M) to the reaction. With 1 �g DNA
input, we used 2-fold higher stock concentrations of the
blocking oligo and primers. Further, we incubated the re-
action at 72◦C for 30 s, and ran though N cycles of 98◦C for
15 s, 60◦C for 30 s and 72◦C for 30 s. N was 11 cycles for
5 ng DNA input, 4–5 cycles for 200 ng DNA input and 4
cycles for 1 �g DNA input. After cycling, the last step was
an extension at 72◦C for 1 min. Finally, we purified PCR
products with 1× AMPure XP beads.

Hybridization target capture

To optimize our protocol and test capture efficiency, we per-
formed hybridization target capture using a probe panel
spanning 56 kb, which covered a set of clinically relevant
genes implicated in cancer. For the VAF series experiments,
we designed a probe set covering a small part of the HRAS
gene (427 bases in length). The set consists of nine 5′ bi-
otinylated 85–86-nt oligo probes. Five of the oligos cover
the target region end-to-end with no gaps, while the other
four oligos overlap two of the primary five in a staggered
design (see figures and Supplementary Table S1). We mixed
and diluted the oligo probes in water to achieve a total con-
centration of 0.75 �M (0.083 �M of each oligo).

We performed hybridization target capture using the
xGen Lockdown Reagents from Integrated DNA Tech-
nologies according to the manufacturer’s protocol with
minimal variations. We varied the amount of whole-genome
library used for capture depending on the original input
DNA amount. Where possible, we pooled libraries from
the same protocol in batches to decrease sample handling.
When performing double capture with the HRAS probe set,
we hybridized probes overnight (16 h) both times. After the
first round of capture and subsequent PCR, we pooled all
libraries from the same experiment and performed a second
round of capture following the same protocol.

Sequencing

We sequenced pooled captured libraries paired-end on
NextSeq 500 (Illumina) with 151 cycles per read. A cus-
tom read 1 sequencing primer (R1 seq MM in Supplemen-
tary Table S1) with one substitution is required to sequence
OPUSeq libraries. We spiked in this primer into the stan-
dard read 1 primer position on the NextSeq 500/550 v2.5

cartridge at 0.3 �M. This setup allows for simultaneous se-
quencing of OPUSeq and standard Illumina libraries in the
same flow cell. Spiking in custom primers is possible on all
Illumina instruments except iSeq100, where it is still possi-
ble to use a self-prepared mix containing both standard and
custom read 1 primers. This does not affect the quality or
output of sequencing.

Data analysis

For OPUSeq data analysis, we extracted the first six bases
of each read as the UMI and added them to the read name
using UMI-tools (v. 1.0.0). We then trimmed the reads to
remove forward and reverse adapter sequences using cu-
tadapt (v. 3.1). Trimmed reads were mapped to the human
genome (hg19) using BWA aln (v. 0.7.17). Further, we cor-
rected the UMIs in mapped reads using the default group-
ing algorithm of UMI-tools with edit distance set to 3. We
wrote a custom script in python (v. 3.7.2) (correct pair.py)
to replace the UMIs in read names with the UMI-tools-
corrected UMIs and to filter for convergently mapped read
pairs (FR or RF) and mapping quality (MAPQ ≥ 36).

Next, we ran the custom python script consensus read.py
to form consensus sequences. We based this script on Uni-
fiedConsensusMaker.py from the Duplex-seq project
(https://github.com/Kennedy-Lab-UW/Duplex-Seq-
Pipeline), but modified it for our purpose. In Duplex-seq,
FASTQ reads are first grouped based on UMIs, consensus
is formed and then consensus sequences are mapped.
Since we wanted to also use the information of genomic
boundaries, we formed consensus from mapped reads.
We grouped reads into tag families based on (i) genomic
boundary (start and end coordinates); (ii) final UMI,
composed of the two six-base UMIs from each end of
the fragment; and (iii) orientation and read number. Each
original DNA duplex molecule can thus give rise to four
tag families (Supplementary Figure S1A). For consensus
making, we kept only families with three or more reads.
Although including families with one or two reads can be
advantageous in some circumstances (23), we have found
that in our data this did not substantially increase duplex
recovery. Sometimes, reads belonging to the same family
can have different lengths. We therefore added ‘N’ to all
reads shorter than the longest read until they reached this
maximum length (Supplementary Figure S1B). To form the
single-stranded consensus sequences (SSCS), we counted
base calls from each read in a family at each position. If the
same base was called in over two-thirds of reads, this base
was written to the consensus. If no base call reached the
threshold, N was written. Further, to form duplex consen-
sus sequences (DCS), we compared SSCS from opposite
strands (see later and Supplementary Figure S1A). A base
was kept in DCS only if it was found in both compared
SSCS (otherwise, the call was N). The final SSCS and
DCS were written out in FASTQ format. DCS recovery
was calculated as follows: number of DCS/(number of
SSCS/2).

Next, we mapped SSCS and DCS FASTQ files to hg19
genome using bowtie2 (v. 2.3.5.1) in local mode with no
penalty or ceiling on ambiguous characters (N) in reads.
In the VAF series dataset with sonication, we used BamU-

https://github.com/Kennedy-Lab-UW/Duplex-Seq-Pipeline
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til trimBam (v. 1.0.15) to trim seven bases from ends of
mapped reads. From all the mapped reads, we generated
pileup files using samtools mpileup (v. 1.14). When creat-
ing pileups of initial filtered mapped files, we set a thresh-
old of 30 on Phred quality score. Finally, we used the script
collapse pileup.py to count reference and variant bases in
mapped filtered, SSCS and DCS BAM files. We only consid-
ered substitutions (not insertions or deletions). Reads from
standard KAPA libraries were directly mapped to the hu-
man genome (hg19) using BWA aln and processed with the
correct pair.py script. Pileups and base count files were cre-
ated in the same way as for OPUSeq filtered mapped reads.

We processed the base count tables resulting from col-
lapse pileup.py in R (v. 4.0.0). We focused only on the target
region from chr11:534034 to chr11:534465. The germline
variant in genotype NA12814 (chr11:534332 G>A) was ex-
cluded from all analysis and plots. Variant incidence was
calculated after excluding the spiked-in NA12751 variants
as follows: number of variant bases/total number of bases,
at each analysis level (filtered, SSCS and DCS). P-values
were calculated by comparing each defined VAF sample to
the sample containing pure NA12814 genotype. We counted
reference and variant bases at each position where there was
a variant with a higher frequency in the ‘test’ sample than
the ‘background’ sample. We performed the chi-squared
test and then Benjamini and Hochberg adjustment on the
P-values. We set the significance threshold at false discovery
rate ≤0.05. To assess capture uniformity, we divided the 56-
kb panel target region (22 kb) into 50-bp bins and computed
raw coverage by counting the number of reads mapping in
each bin. The coverage was then normalized by dividing by
median coverage across target region, and log2 values were
plotted for each bin.

RESULTS

Development of OPUSeq

To complement current approaches for detection of low-
frequency variants, we developed a simplified method
that simultaneously queries both strands of each DNA
molecule. We aimed to integrate the addition of a dsUMI
to each end of a DNA duplex into the library preparation
itself, avoiding the need for separate complex synthesis of
dsUMI-carrying forked adapters (16). To achieve this, we
developed OPUSeq, which has two main features. In this
approach, a single-stranded UMI in the adapter is made
double-stranded during the first steps of the PCR. At the
same time, we maintain asymmetry of DNA ends necessary
for Illumina library preparation by splitting the PCR into
two stages.

The molecular details of the OPUSeq approach are
shown in Figure 1A. Each adapter consists of two oligos
that are easily synthesized by any commercial provider and
simply annealed before ligation. The longer oligo contains
a single-stranded six-base UMI and a binding region for Il-
lumina primers (blue), while the shorter oligo consists of a
sequence necessary for annealing. After ligation, two ran-
dom versions of the adapter (exemplified here as ‘UMI A’
and ‘UMI B’) will be attached to the ends of each double-
stranded DNA fragment. Ligated DNA is added to PCR
mix 1, lacking dTTP and primer 2. During the first elon-

gation step, the polymerase copies the UMI to the other
strand but stops at the first encountered dA due to the lack
of dTTP. This incomplete extension maintains asymmet-
ric ends compatible with library PCR without using forked
adapters. Next, DNA is denatured and primer 1 is annealed.
Since sequences at each end of a strand are reverse comple-
mentary at this point, hairpin formation is possible, which
would inhibit further amplification and diminish PCR ef-
ficiency. We have made two modifications to prevent this.
First, we diversified the adapter annealing region by using
a pool of four adapters with different annealing sequences
(yellow–green in Figure 1A). Second, we added a blocking
oligo with a Tm high enough to outcompete hairpin forma-
tion. After the first stage, the reaction is cooled to room
temperature and mix 2 (containing the two missing PCR
components) is added. As the reaction continues, primer 1
is fully extended and displaces the blocking oligo. This gen-
erates an asymmetric DNA molecule that is amplified by
the following standard PCR cycles. Thus, despite seeming
complexity, OPUSeq differs from a standard PCR protocol
only by the inclusion of a short (2–3 min) pre-incubation
and subsequent addition of the two missing PCR compo-
nents.

OPUSeq is designed as a module that can be easily in-
tegrated into existing PCR-based Illumina library prepara-
tion workflows. We have successfully used it together with
fragmentase- and sonication-based kits (KAPA HyperPlus
and HyperPrep) with minimal modifications (Figure 1B).
To demonstrate the ability of OPUSeq to generate high-
quality sequencing libraries, we have applied it to human
gDNA with input amount ranging from 5 ng to 1 �g.
Since target enrichment is usually necessary when looking
for low-frequency variants, we also tested OPUSeq perfor-
mance with hybridization target capture using a few differ-
ent panels up to 100 kb in size. Even using small DNA in-
puts, the capture efficiency was as good as that of the es-
tablished protocol, with good coverage uniformity across a
56-kb panel covering a set of clinically relevant genes impli-
cated in cancer (Figure 1C and 1D).

Design of validation strategy for low variant fraction detec-
tion

In clinical applications such as MRD detection, the objec-
tive is to identify variants unique to the tumor that may
be present at low fractions. To validate the applicability of
OPUSeq to such situations, we tested it using DNA sam-
ples where the true variant fraction was known. We mixed
defined amounts of DNA with known genotypes derived
from the International HapMap Project. We assigned one
genotype as ‘background’ (NA12814) and another as ‘test’
(NA12751) and assessed our ability to detect the SNPs of
the test genotype when mixed into the background geno-
type at a series of VAFs from 0.01% to 1% (Figure 2A).
In order to detect such low VAFs, at least 10 000× cover-
age is needed. One nanogram of human gDNA contains
around 170 copies of each allele; therefore, in theory, 60
ng or more gDNA is required for 10 000 copies. How-
ever, not all molecules present in the sample are success-
fully transformed into a sequencing library––some are lost
during library preparation. This can lead to poor efficiency
in consensus making (see later). Therefore, in practice, a
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Figure 1. OPUSeq workflow and performance in target capture. (A) Fragmented, end-repaired and dA-tailed DNA is ligated to OPUSeq adapters. Each
ligated adapter carries a different single-stranded UMI. The ligated DNA is mixed with PCR mix 1 and subjected to partial elongation, which copies
the UMI over to the opposite strand. The elongation stops at the first dA due to lack of dTTP in mix 1. Next, DNA is denatured and primer 1 and
blocking oligo are annealed. The reaction is brought to room temperature and primer 2 and dTTP are added (mix 2). Another elongation step ensures
full extension of primer 1. Finally, the desired number of standard PCR cycles are performed. (B) Schematic showing how OPUSeq is integrated into a
standard PCR-based library preparation approach (KAPA). (C) Coverage uniformity for an OPUSeq library made from 5 ng gDNA and captured on a
56-kb cancer-related gene panel with a 22-kb target region. Coverage was calculated in bins of 50 bp, normalized by cross-panel median, log2 transformed
and plotted per bin. Color indicates GC content of each bin. X-axis is labeled with the names of the targeted genes. (D) Coverage uniformity as in panel
(C), but for a library generated from 5 ng gDNA following the standard KAPA HyperPlus protocol.
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Figure 2. Experimental design and computational workflow for low VAF detection. (A) Validation experiment to demonstrate low VAF detection with
OPUSeq. Two genotypes were assigned as ‘background’ and ‘test’. They were mixed at 0–1% VAF of ‘test’ in ‘background’ in duplicate. Each gDNA mix
was split into two halves: one half was subjected to OPUSeq and the other to standard KAPA protocol. The resulting libraries were captured on probes
covering 427 bp of the HRAS gene on chromosome 11. (B) Overview of the computational workflow for OPUSeq data analysis. After library PCR, each
original strand of a DNA duplex gives rise to its own PCR product, and each of these results in two read families (reads 1 and 2). After aligning reads to
the human genome, tag families are formed by grouping reads with the same genomic coordinates, orientation and UMI. The reads within each tag family
are compared to form SSCS. Only bases that are present in over two-thirds of reads are kept, which excludes errors. Finally, SSCS from opposing strands
are compared to form DCS.

much larger DNA amount is necessary to ensure >10 000×
unique coverage. We decided to use 1 �g DNA––the high-
est possible input in the KAPA HyperPlus Kit. Further, to
sequence each strand many times (as is necessary for er-
ror correction) given such high input, a very high raw read
coverage is needed. To achieve that, we focused on a very
small target region––one exon of the HRAS gene, com-
monly mutated in cancer (24). In this region, our test geno-
type has two heterozygous SNPs that are absent in the back-
ground genotype (chr11:534197 C>T and chr11:534242
A>G). To enrich such a small region (427 bp), we used
two rounds of hybridization capture, as previously per-
formed for targeted Duplex-seq of ABL1 (25). We pre-
pared gDNA mixes at each VAF in duplicate and made li-
braries using OPUSeq with a fragmentase-based protocol
(KAPA HyperPlus). In parallel, we also prepared libraries
from the same samples following the standard KAPA
workflow.

For analysis of OPUSeq data, we established a compu-
tational workflow that utilizes both the dsUMIs and the

start and end coordinates (genomic boundaries) to form
DCS. We corrected UMIs using the grouping algorithm
of UMI-tools (26) to ensure that even reads with errors
in their UMI would be retained in the following analy-
sis. We then formed consensus reads using a custom al-
gorithm (see the ‘Materials and Methods’ section). Reads
were grouped into tag families based on the start and end
positions, UMI and read orientation. Each unique DNA
fragment gives rise to four tag families: reads 1 and 2 from
the each of the original (Watson and Crick) strands (Fig-
ure 2B). We compared the reads within each family to con-
struct a final SSCS read. The four resulting SSCS reads are
combined to make up the two reads of the DCS. Finally,
we re-mapped the SSCS and DCS reads to the genome.
To find single-nucleotide variants, we counted reference
and variant base calls at each covered genomic position
(we did not consider insertions or deletions). This compu-
tational workflow removes any errors and strand-specific
DNA damage in the sequencing data while preserving true
variants.
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OPUSeq duplex analysis reveals unexpected variants present
at low VAF

We mapped both OPUSeq and standard KAPA reads to
the human genome. The on-target rate was excellent, with
OPUSeq performing slightly better than KAPA (Supple-
mentary Figure S2A). We further processed OPUSeq reads
with our full computational workflow to assess removal
of errors and detection of the spiked-in variants. The final
data output consisted of base counts from OPUSeq and
KAPA mapped reads filtered by base and mapping qual-
ity (‘filtered’) as well as OPUSeq SSCS and DCS mapped
reads. The average on-target coverage obtained at single-
strand consensus level across OPUSeq samples was around
64 000. However, at duplex consensus level, it was only
7400, which limits the maximum sensitivity (Figure 3A).
If one of the strands of an original DNA duplex is ab-
sent from the data, the DCS cannot be constructed, lead-
ing to a drop in coverage. One reason for the absence of
some strands could be insufficient sequencing depth, but
plotting single-strand family sizes (Supplementary Figure
S2B) showed that sequencing deeper would be unlikely to
recover more families. However, it is known that during li-
brary preparation, some strands completely drop out, and
poor duplex recovery rates (percentage of SSCS converted
into a DCS) have been observed with other approaches
(19,23). Indeed, in our dataset, DCS recovery rate was
around 22%.

The advantage of consensus over filtered mapped reads
for calling low-frequency variants was obvious (Figure 3B).
In filtered reads obtained with either OPUSeq or KAPA,
all possible substitutions were detected at every position in
the target region at VAFs ranging from 0.0003% to 0.26%.
While these errors do not interfere with calling of 1% true
VAF, variants displaying VAF below 0.5% would be difficult
to call reliably. Many variant callers use P-values calculated
by comparing the counts of reference and variant bases be-
tween paired tumor and healthy tissue samples to help in
variant calling (27,28). We applied this kind of analysis to
our data to check to what extent it would help separate true
variants from the noise. However, due to the very high cov-
erage, both true and spurious variants received extremely
low P-values, making it impossible to confidently call even
the 1% true VAF without false positives (Supplementary
Figure S3). On the other hand, constructing single-strand
consensus (corresponding to the use of a single-stranded
UMI) removed the majority of these errors. Duplex consen-
sus analysis further reduced the number of non-spiked-in
detected variants to ∼40 per sample. Although these un-
expected variants were detected at very low VAF (up to
0.14%), they could still obscure true variants of 0.1% and
below. We were surprised by this result, since duplex con-
sensus analysis should remove any variants not present in
both strands of the original DNA fragment. However, a
certain number of somatic mutations are naturally present
in DNA, and the higher the unique coverage, the more of
these will be detected. Therefore, we evaluated the num-
ber and frequency of identified variants in respect to cover-
age. We calculated variant incidence by dividing the number
of variant bases by the total number of bases covered, ex-
cluding the positions with true variants. Variant incidence

at duplex consensus level was around 2.6 × 10–5 (Sup-
plementary Figure S4), which is two orders of magnitude
higher than the estimated human somatic mutation rate of
3 × 10–7 (29).

Use of fragmentase introduces spurious double-stranded vari-
ants in gDNA

Since the number of detected double-stranded variants was
much higher than the somatic mutation rate, we decided
to investigate their origin. To this end, we formulated two
main hypotheses: that the DNA material actually contains
a higher number of mutations or that mutations were in-
troduced during the library preparation process. We used
DNA derived from the HapMap project, which is extracted
from Epstein–Barr virus-immortalized B lymphocytes (30)
and propagated in culture for an unknown number of pas-
sages. Thus, one could speculate that these cells may have
a higher mutation rate than healthy human tissue. Indeed,
the substitution profiles of DCS variants (Supplementary
Figure S5A and B) were similar to those reported for so-
matic mutations in the human body (31), with a prevalence
of T>C and C>T transitions. Alternatively, during library
preparation, the enzymatic fragmentation and/or ER pro-
cess may introduce errors. We checked whether most vari-
ants were found near the ends of reads, as this could indicate
an ER issue, but this was not the case (Supplementary Fig-
ure S5C). Gregory et al. recently discovered that the frag-
mentase enzyme mix induces single-nucleotide variants in
up to 2% of reads (32). These spurious variants appear in
reads that have a soft-clipped portion and are likely found in
only one strand. However, we found no association between
soft-clipping and DCS variants in our data. Additionally,
errors present in one strand only will always be eliminated
after duplex consensus analysis. We hypothesized that other
errors might arise during the fragmentase treatment and the
following ER, which might only be discovered by duplex
consensus analysis.

We designed an experiment to test these two potential
sources of error. We isolated gDNA from human neonatal
fibroblasts (Hs27) and compared it to HapMap NA12814
DNA. Both DNA inputs were subjected to OPUSeq cou-
pled with either the enzymatic fragmentation-based pro-
tocol (KAPA HyperPlus) using two alternative ER mixes
(ER mix 1 or ER mix 2) or the sonication-based proto-
col (KAPA HyperPrep) (Figure 4A). As before, we per-
formed capture on our HRAS probes. We sequenced the
resulting libraries and constructed SSCS and DCS in the
same way as mentioned earlier. Next, we computed vari-
ant incidence for each sample (Figure 4B). While SSCS
variant incidence was similar across samples, DCS inci-
dence clearly showed that fragmentase was responsible for
a vast majority (90%) of double-strand errors found in a
HyperPlus-generated dataset. Further, samples treated with
the newer, fragmentase-optimized ER mix (ER mix 2) had
slightly higher variant incidence compared to ER mix 1. Fi-
nally, NA12814 DNA did seem to have a somewhat higher
mutational load than Hs27, but this difference was minor
compared to the effect of fragmentase versus sonication.
Thus, our results indicate that fragmentase treatment in-
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Figure 3. OPUSeq coupled with a fragmentase-based approach helps to remove most, but not all, spurious variants. (A) Log10-transformed average
coverage across target by filtered, SSCS and DCS aligned reads in the 10 sequenced OPUSeq samples obtained using the fragmentase-based protocol. The
dashed lines and numbers mark the cross-sample averages. (B) Variant frequencies (%) of all detected variants per position in the target region in KAPA
filtered, OPUSeq filtered, OPUSeq SSCS and DCS reads (fragmentase protocol). The spiked-in variants are labeled in red. The red dashed lines mark the
expected variant frequency of the spiked-in variants. The samples shown are from replicate 2.
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Figure 4. Spurious variants are much more abundant in samples treated with fragmentase. (A) Design of the experiment testing different fragmentation
and ER methods as well as DNA input source. Libraries were made from NA12814 and Hs27 DNA using either KAPA HyperPlus with ER mix 1 or 2
or KAPA HyperPrep with ER mix 1 (see the ‘Materials and Methods’ section). They were captured on the same probes as in Figure 2 and sequenced. (B)
The variant incidence (excluding the expected variants) for the six resulting samples at single-strand and duplex consensus levels.

duces a substantial number of difficult-to-remove double-
strand artifacts in DNA sequencing data, albeit at a very
low VAF.

Sonication-based OPUSeq enables the accurate identifica-
tion of low VAFs

Having identified that the use of fragmentase introduces
spurious variants at double-strand level, we evaluated
the performance of OPUSeq in variant calling using the
same experimental design (Figure 2A), but now with the
sonication-based protocol. In this second experiment we
also decided to decrease the starting amount of DNA, as
we suspected that the 1 �g input we used previously could
overload the library preparation or capture and lead to poor
library conversion. Indeed, when the input material was re-
duced to 200 ng, the library conversion efficiency was much
improved: unique (DCS) coverage was only 1.7-fold lower
despite a 5-fold smaller input (Supplementary Figure S6A).
This was also demonstrated by the increase in DCS recovery
from 22% to 43%.

As predicted, the number of variants detected at the
double-strand level was greatly reduced when using soni-
cation instead of fragmentase. However, we observed an in-
crease in variant incidence within 7 bp of the ends of reads
(Supplementary Figure S6B), which indicated the presence
of sonication or ER artifacts. Therefore, we trimmed 7 bp
from each end before calling final variants. We summarized

the observed frequency of spiked-in variants and the across-
sample averages of the number of unexpected variants and
variant incidence in Figure 5A. Visual representations of
the variant frequencies per position and the relationship
between observed and expected VAFs are provided in Fig-
ure 5B and C. Even after forming double-strand consen-
sus, all spiked-in VAFs were detected in at least one repli-
cate. The incidence of unexpected DCS variants was now
1 × 10–6, which is not far from somatic mutation rate and
could plausibly be the biological reality in this target region
and cell line. Thus, we concluded that OPUSeq in combi-
nation with a sonication-based protocol is capable of effec-
tively removing errors and correctly calling variants down
to the lowest tested VAF of 0.01%.

DISCUSSION

Accurate detection of genomic alterations is essential for
cancer patient management and precision medicine. Due
to factors such as intratumoral heterogeneity or treatment-
induced mutations, many clinically actionable variants are
present at low VAF (<1%) (1). However, sequencing errors
and DNA damage limit our ability to accurately quantify
low VAFs. Here, we presented a simplified approach en-
abling error correction by the generation of duplex consen-
sus (OPUSeq). OPUSeq is a simple and straightforward li-
brary preparation protocol using readily available commer-
cial adapters that can be easily integrated into existing PCR-
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Figure 5. OPUSeq coupled with a sonication-based protocol shows better performance in error removal. (A) Summary table with results obtained from
OPUSeq with sonication. Each colored-in cell shows the observed VAF (in %) of the specified spiked-in variant in each sample (for expected VAF of
0–1% and replicates 1 and 2). Blue: variants that were expected and detected. Yellow: variants that were erroneously detected in 0% VAF samples, where
they should not be present. For each method of analysis (filtered reads, SSCS and DCS), the table shows the average number across all 10 samples of all
unexpected (‘other’) detected variants. The last column shows the average unexpected variant incidence per method. (B) Plots as in Figure 3B, but for
OPUSeq with sonication (samples shown are from replicate 1). (C) Log10-transformed observed versus expected VAFs of the spiked-in variants.

based library preparation workflows. It introduces dsUMIs
in the same reaction tube as the PCR and is compatible with
standard target capture approaches. We demonstrate that
OPUSeq can remove any sequencing errors or single-strand
changes in the DNA, preserving the true double-stranded
variants at least down to 0.01% VAF using 200 ng human
gDNA. In addition, although we focused on detection of
single base substitutions, we noted that there is a six-base
heterozygous deletion in our HRAS target region in the
‘test’ genotype NA12751. We checked whether this deletion
was successfully detected in our OPUSeq duplex consensus
data. Indeed, it was observed in all 1% and 0.1% VAF sam-
ples (Supplementary Figure S7), albeit at a somewhat lower
frequency than the single base substitutions. As our compu-
tational pipeline was not optimized for indel detection, we

believe that this aspect can be improved in the future, allow-
ing OPUSeq to be applied to structural variation detection.

Since we developed OPUSeq with a potential future clini-
cal application in mind, we tried to minimize any additional
steps that could hinder this. Fragmentase-based kits are
commonly used in clinical sequencing workflows, since this
obviates the necessity of expensive sonicator instruments
and decreases required steps. Thus, we first validated our
method using an enzymatic fragmentation-based kit. Sur-
prisingly, after forming DCS, we discovered an unexpected
number of double-stranded variants in the data (2.6 in 105

bases were mutated) that prevented the accurate identifica-
tion of low VAFs. These variants cannot be easily detected
with standard approaches, but became apparent with our
duplex consensus analysis. Interestingly, those errors were



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 11

not observed when a sonication-based approach was used
instead of a fragmentase-based one. Recently, it has been
reported that the use of enzymatic fragmentation cocktails
can induce the formation of library molecules containing re-
gions of nearby DNA from opposite strands in up to 2% of
the molecules (32). In those cases, the introduced errors are
associated with inversions at the read boundaries and can
be removed computationally. In contrast, the errors that we
report here are present at lower frequencies, interfering with
calling of variants at fractions of 0.1%. Since they occur
along the whole read length and are present in both strands
of the original DNA molecule [unlike the errors observed in
(32)], they cannot be computationally removed.

It should be noted that we have only tested one fragmen-
tase formulation, and different enzyme mixes from other
manufacturers may differ in regard to the observed artifacts.
The composition of KAPA fragmentase is proprietary, and
a precise mechanism is hard to define. However, we specu-
late that it is likely to contain a nickase and a nuclease that
cleaves DNA at nicks, as is the case for other manufactur-
ers. We hypothesize that, after treatment, some DNA nicks
might remain across the entire length of the DNA fragment.
During ER, the 3′ ends at the nicks may get extended and re-
place the remaining original strand (as in nick translation).
If DNA damage is present in the other strand, a substitution
may be introduced, generating a double-stranded variant.

To avoid such fragmentase-induced variants, we showed
that sonication can be used instead. It has long been known
that sonication induces changes to DNA via several mech-
anisms (33,34). However, we observe the rate of spurious
double strand after sonication to be at least 10-fold lower
than after fragmentase treatment. In addition, a majority
of such errors are expected to aggregate toward the ends of
reads, which is what we observe in our dataset (Supplemen-
tary Figure S6B). If the ends are trimmed, most sonication
damage can be removed. However, the use of sonication for
clinical genomic applications is not problem-free. For ex-
ample, it can lead to significant DNA losses during library
preparation. This can make sonication unfeasible in those
cases where only a limited amount of patient material is
available. Thus, clinical laboratories should balance the re-
spective advantages and limitations of the selected method
depending on available material and intended application.

In summary, we have presented here a novel method
for simplified detection of low VAF at least down to
0.01%. Using this method, we have revealed that the use
of fragmentase-based strategies introduces double-stranded
artifacts in gDNA libraries interfering with the identifica-
tion of VAF around 0.1% and below. This result should be
taken into consideration when designing protocols for low-
frequency variant calling.
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