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Abstract

Farnesoid X receptor (FXR) is a nuclear receptor and a key regulator of liver cholesterol and triglyceride homeostasis. Scavenger
receptor class B type I (SR-BI) is critical for reverse cholesterol transport (RCT) by transporting high-density lipoprotein (HDL)
into liver. FXR induces SR-BI, however, the underlying molecular mechanism of this induction is not known. The current study
confirmed induction of SR-BI mRNA by activated FXR in mouse livers, a human hepatoma cell line, and primary human
hepatocytes. Genome-wide FXR binding analysis in mouse livers identified 4 putative FXR response elements in the form of
inverse repeat separated by one nucleotide (IR1) at the first intron and 1 IR1 at the downstream of the mouse Sr-bi gene. ChIP-
qPCR analysis revealed FXR binding to only the intronic IR1s, but not the downstream one. Luciferase assays and site-directed
mutagenesis further showed that 3 out of 4 IR1s were able to activate gene transcription. A 16-week high-fat diet (HFD)
feeding in mice increased hepatic Sr-bi gene expression in a FXR-dependent manner. In addition, FXR bound to the 3 bona fide
IR1s in vivo, which was increased following HFD feeding. Serum total and HDL cholesterol levels were increased in FXR
knockout mice fed the HFD, compared to wild-type mice. In conclusion, the Sr-bi/SR-BI gene is confirmed as a FXR target gene
in both mice and humans, and at least in mice, induction of Sr-bi by FXR is via binding to intronic IR1s. This study suggests that
FXR may serve as a promising molecular target for increasing reverse cholesterol transport.
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Introduction

FXR (farnesoid X receptor, NR1H4) is a bile acid-activated

transcription factor and a member of the nuclear receptor

superfamily. Strongly expressed in the liver and intestine, FXR

has been shown to be the master transcriptional regulator not only

of the biosynthesis and enterohepatic circulation of bile acids, but

also of cholesterol and triglyceride homeostasis [1,2,3,4]. Disrup-

tion of the FXR gene in mice results in a variety of

pathophysiological conditions, including a proatherosclerotic lipid

profile with increased serum cholesterols and triglycerides [1],

cholestasis, non-alcoholic fatty liver diseases, cholesterol gallstone

disease, hepatocellular carcinoma, and intestinal inflammation

and tumors [5,6].

Scavenger receptor class B type I (SR-BI) is a cell surface

glycoprotein and was first cloned in 1994 as the receptor

mediating selective uptake of high-density lipoprotein (HDL)-

cholesterol into liver, adrenals, testes, and ovaries [7,8,9,10]. As a

HDL receptor, SR-BI is a key regulator in enhancing reverse

cholesterol transport (RCT) in the liver, and hepatic over-

expression of SR-BI can decrease plasma levels of HDL

cholesterol, which may have anti-atherosclerosis effects

[10,11,12]. One of the mechanisms by which FXR is involved

in regulating cholesterol and bile acid homeostasis is via

transcriptional regulation of target gene expression. FXR has

previously been shown to induce SR-BI expression [4,13,14].

However, the underlying molecular mechanism by which FXR

induces SR-BI expression is not fully defined. Therefore, the

purpose of the current study is to determine the molecular

mechanism by which FXR regulates SR-BI expression in human

and mouse models.

Results

Activation of FXR induced SR-BI expression in mouse
livers, primary human hepatocytes and human
hepatoma cell line, HepG2 cells

First, the induction of hepatic Sr-bi was determined in mice

treated with FXR natural and synthetic ligands, cholic acid (CA)

and GW4064, respectively, as well as by genetic over-expression of

FXR (FXR-Tg mice). The activation of FXR was first verified by

determining the mRNA expression of bona fide FXR targets

[15,16]. Strong induction of small heterodimer partner (Shp),

organic solute transporter b (Ostb), and bile salt export pump

(Bsep), as well as great suppression of cytochrome P450, family 7,

subfamily A, polypeptide 1 (Cyp7a1) and Na+/taurocholate

cotransporting polypeptide (Ntcp), were shown in livers of mice
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either treated with FXR agonist or with transgenic over-expression

of FXR (Figure 1, Figure S1). The induction of Sr-bi was then

determined and results showed activation of FXR induced Sr-bi

mRNA 3.0, 3.5, and 2.8 fold with CA, GW4064 and transgenic

expression of FXR, respectively (Figure 1A, B). Furthermore, the

induction appears to be FXR-mediated because FXR-knockout

(KO) mice did not have increased Sr-bi expression following CA or

GW4064 treatment.

To further test whether SR-BI is a FXR target gene in humans,

the induction of SR-BI in primary human hepatocytes and in

HepG2 cells was determined. In primary human hepatocytes,

SHP mRNA levels were induced by increasing concentrations of

chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and

lithocholic acid (LCA), but the SR-BI mRNA levels were induced

only by increasing concentrations of CDCA and DCA, but not

LCA (Figure 2A). In addition, FXR activation by GW4064 or

CDCA treatment increased mRNA levels of SR-BI in HepG2

cells, which are commonly used as a substitute for human

hepatocytes (Figure 2B).

FXR binds to multiple regions in the mouse Sr-bi gene
The mechanism of induction of SR-BI by FXR in humans has

been shown to be a result of direct binding of FXR to a direct

repeat separated by 8 nucleotides (DR8) response element in the

promoter of the SR-BI gene [14]. However, the mechanism of SR-

BI induction in mice is not known, and it is necessary to determine

species differences in order to use mouse models to study the

regulation of SR-BI in humans. According to the published ChIP-

seq (chromatin immunoprecipitation coupled with high-through-

put DNA sequencing) analysis [15,17], FXR does not bind to

promoter regions of the mouse Sr-bi gene. Instead, novel FXR

binding sites were indentified in three regions within the first

intron (A, B and C) and the downstream region (D) of the Sr-bi

gene (Figure 3A). Further analysis showed that all FXR binding

regions contained putative FXR response elements (FXRREs) in

the form of inverted repeats separated by one nucleotide (IR1)

(Figure 3B). Moreover, binding region C contained two IR1s

(Figure 3B). The sequence of these novel IR1s was shown to be

highly conserved in mice and rats, but not in humans (Figure 3B).

To validate FXR binding to the novel IR1s identified in the Sr-

bi gene, ChIP-qPCR (chromatin immunoprecipitation quantitative

real-time PCR) was performed on livers of mice treated with

vehicle or GW4064. In mice treated with vehicle, FXR bound to

regions B and C. In mice treated with GW4064, FXR binding

increased within all three of these regions in mouse livers

(Figure 4A). However, FXR did not bind to site D located

downstream of the Sr-bi gene in livers of either vehicle or GW4064

treated mice (Figure 4A).

Functional assessment of the novel FXR binding sites in
the Sr-bi gene by luciferase reporter gene assay and site-
directed mutagenesis assay

Luciferase reporter gene assays were used to determine whether

the three FXR binding sites (A, B and C) in the Sr-bi gene are

functional in enhancing transcriptional activity. Compared to the

vehicle control, all three binding sites in the first intron of the Sr-bi

gene (A, B and C) were effective in inducing luciferase activity 12,

9 and 13 fold, respectively (Figure 4B). The transcriptional

activations were greatly diminished, when the IR1 sequences were

mutated in binding sites A and B of the Sr-bi gene. The luciferase

gene expression was significantly decreased after mutation of the

first IR1 sequences alone or of both IR1 sequences in binding site

C. However, the transcriptional activation was not affected by

mutation of the second IR1 sequences alone in binding site C

(Figure 4B).

Serum cholesterol profiles and hepatic total cholesterol
levels were increased in FXR-KO mice

To further determine the physiological consequences of FXR

induction of Sr-bi on HDL transport into the liver, serum

cholesterol profiles and hepatic total cholesterol levels were

measured in FXR-KO and wild-type (WT) mice fed a control or

high-fat diet (HFD) for 16 weeks. Serum total cholesterol level

increased in FXR-KO mice when compared to WT mice

regardless of diet type (Figure 5A). Further analysis showed that

the increased serum cholesterol level in FXR-KO mice was due to

increase in HDL cholesterol but not in LDL/VLDL cholesterol

(Figure 5B). Even though the total hepatic cholesterol level

slightly increased in FXR-KO mice fed a control diet, the hepatic

cholesterol level did not significantly change between WT and

FXR-KO mice fed a HFD (Figure 5C).

Figure 1. Sr-bi transactivation is FXR dependent in mouse liver.
A, Induction of Sr-bi mRNA expression in the liver following treatment
with either 1% cholic acid (CA)-containing diet or GW4064 in WT and
FXR-KO mice as described in the Methods. Shp gene expression level
serves as a positive control to indicate FXR activation. An asterisk
indicates P,0.05 between vehicle and ligand treatment group. B, Fxr,
Shp and Sr-bi mRNA expression levels in liver of FXR-WT and FXR-Tg
mice. An asterisk means P,0.05 between FXR-WT and FXR-Tg group.
doi:10.1371/journal.pone.0035895.g001

Farnesoid X Receptor Transactivates SR-BI
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Activation of FXR by HFD treatment induced Sr-bi gene
expression in WT mouse liver by direct binding of FXR to
multiple sites in the Sr-bi gene

FXR activation in liver by HFD feeding was evaluated in WT

and FXR-KO mice. HFD, administered for 16 weeks, induced the

mRNA levels of Fxr by 1.5 fold, Shp by 1.8 fold and Sr-bi by 1.6

fold in the livers of WT mice, but not in FXR-KO mice

(Figure 6A). Furthermore, ChIP-qPCR assays showed that HFD

treatment, similar to GW4064, increased the binding of FXR to

the three binding sites (A, B and C) in the first intron of the Sr-bi

gene (Figure 6B). However, FXR did not bind to the downstream

region (site D) of the Sr-bi gene by HFD treatment (Figure 6B).

Discussion

The present study showed that SR-BI mRNA was induced in a

FXR-dependent manner in mouse livers, primary human

hepatocytes and HepG2 cells. Our results suggest that FXR

Figure 2. FXR activation induces SR-BI gene expression in primary human hepatocytes and HepG2 cells. A, Primary human heptaocytes
were treated with 0.1% DMSO as a negative control or increasing concentrations of CDCA, DAC and LCA (10, 30 and 100 mM) for 48 hrs. The mRNA
levels of FXR, SHP, and SR-BI were determined by Q-PCR. An asterisk means P,0.05 between cholic acid treatment and control group. B, HepG2 cells
were treated with 0.1% DMSO as a negative control, 500 nM GW4064 or 100 mM CDCA for 24 hrs, respectively. The mRNA levels of FXR, SHP, and SR-
BI were determined by Q-PCR. An asterisk indicates P,0.05 between FXR ligand treatment and no treatment control group.
doi:10.1371/journal.pone.0035895.g002
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regulates Sr-bi gene expression by binding to multiple IR1s in the

first intron of the Sr-bi gene. Moreover, the serum HDL level was

increased in FXR-KO mice when fed either a control or HFD.

Increased Sr-bi mRNA levels were shown to be FXR-dependent

under HFD feeding by direct binding of FXR to the first intron of

the Sr-bi gene, which indicates that FXR may enhance HDL

uptake into the liver via inducing Sr-bi gene transcription.

Activation of FXR has been demonstrated to regulate the

expression of many hepatic genes involved in lipid homeostasis,

including SR-BI [4]. Consistent with our findings (Figure 1, 2),

Sr-bi mRNA levels have been shown to increase in livers of

C57BL/6J mice but not in livers of FXR-KO mice upon LCA and

CA feeding [4,18,19]. However, a conflict result has been reported

that Sr-bi expression was reduced following administration of

CDCA or GW404764 (a FXR agonist) both in vivo and in vitro. The

authors further demonstrated that the decrease of Sr-bi was

mediated by the FXR/RXR-SHP-liver receptor homologue 1

(LRH-1) pathway [20]. These conflicting results may be due to the

different experimental models and/or ligands used.

The underlying molecular mechanisms of FXR in regulating

SR-BI and the role of SR-BI in FXR-mediated lipid homeostasis

are still not clear. Recently, a vast database of nuclear receptor

binding sites has been established with the development of

genome-wide discovery of transcription factor binding sites by

Figure 3. Novel FXR response elements, IR1s, in the first intron and downstream of the mouse Sr-bi gene. A, The novel four FXR binding
sites (A, B, C, and D) in the Sr-bi gene identified by ChIP-seq analysis. B, The novel IR1s (A, B, C-1st, C-2nd and D) identified at the first intron and
downstream of the Sr-bi gene are conserved within mouse and rat, but not human, Sr-bi/SR-BI gene. The novel IR1s are marked in the box.
doi:10.1371/journal.pone.0035895.g003
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ChIP-on-chip (chromatin immunoprecipitation coupled to micro-

array technology) and ChIP-seq techniques [21,22,23]. These data

have shown that transcription factors tend to bind to multiple sites

in the promoter and/or enhancer regions of target genes

[17,24,25,26]. Although our original ChIP-seq data did not show

FXR binding to the promoter region of Sr-bi (Figure 3A), we

found three FXR binding sites within the first intron of Sr-bi gene

(Figure 3A, B). Moreover, even though luciferase activity did not

correlate with the abundance of FXR binding, all three of these

novel response elements, which include IR1s, were demonstrated

functional (Figure 4). Site-directed mutagenesis results further

demonstrated that the IR1s in binding sites A and B, as well as the

first but not the second IR1 in binding site C are functional for

FXR regulation of Sr-bi gene expression. These results indicate

that activation of FXR could induce Sr-bi transcription by directly

binding to multiple IR1s located in Sr-bi gene. However, a recent

study showed that FXR up-regulated Sr-bi in mouse hepatocytes

through a FXR-pJNK-hepatocyte nuclear factor 4 a (HNF4 a)-

SR-BI pathway, which indicates FXR may regulate SR-BI in both

direct and indirect manners [13]. In addition to FXR, another

nuclear receptor, peroxisome proliferator-activated receptor a
(PPARa), can also increase Sr-bi expression in liver of rats [27].

Figure 4. FXR activates Sr-bi by binding to the IR1s within the first intron, but not the downstream region of the Sr-bi gene. A, ChIP-
qPCR assays showed binding of FXR to the intron (binding sites A, B, and C) but not the downstream region (binding sites D) of Sr-bi gene containing
the novel IR1s in mouse liver after treatment with GW4064. The relative intensity (fold) indicates fold increase over vehicle treatment. n = 5 mice per
group. A pound sign indicates P,0.05 between binding site A and other binding sites. An asterisk means P,0.05 and double asterisks mean P,0.01
between vehicle and GW4064 treatment. B, Luciferase assay revealed that, upon FXR activation, the IR1s at the first intron of Sr-bi gene are functional
in enhancing gene transcription. The DNA constructs containing the novel FXR binding sites (IR1s) found in the first intron of Sr-bi gene and the DNA
constructs containing mutant corresponding novel IR1s were cloned into a pGL4-23 firefly luciferase vector and transfected into HepG2 cells as
indicated in the Methods. The cells were then treated with vehicle (0.1% DMSO) or 1 mM GW4064 for 36 hrs followed by evaluation of luciferase
activity. The white bar is for cells treated with vehicle and the black bar is for cells treated with 1 mM GW4064. The relative luciferase activity (fold)
indicates fold increase over empty vector by vehicle treatment. The fold induction of luciferase activity by these constructs with GW4064 treatment
compared to DMSO is indicated next to the black bars. Double asterisks indicate P,0.01 between vehicle and GW4064 treatment.
doi:10.1371/journal.pone.0035895.g004
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PPARa has also been shown to be activated by FXR in HepG2

cells [28], which may represent another indirect mechanism of

FXR in induction of Sr-bi expression in human. However,

activation of PPARa in mouse livers by fibrates decreased hepatic

Sr-bi protein expression without changing Sr-bi mRNA levels. The

posttranscriptional regulatory effect of fibrates on murine hepatic

Sr-bi protein levels was further demonstrated PPARa dependent

using PPARa deficient mice [29]. These controversial results on

Sr-bi regulation by activation of PPARa may due to species-specific

differences.

Even though no IR1 was found in the human SR-BI gene

compared to the mouse gene (Figure 3B), our results still showed

that activating FXR increased SR-BI expression in primary

human hepatocytes and a human hepatoma cell line (Figure 2).

One recent study demonstrated that FXR directly activates SR-BI

gene transcription by binding to a DR8 motif in the promoter

region of the human SR-BI gene [14], which may help in

understanding the underlying molecular mechanisms of FXR in

regulating human SR-BI expression. Increasing studies also have

shown that a variety of nuclear receptors, including liver X

receptors (LXR), LRH-1, peroxisome proliferator-activated re-

ceptor c (PPARc), and HNF4a can stimulate hepatic SR-BI gene

expression in humans [30,31,32,33]. Thus, FXR may also

modulate SR-BI expression through regulating or interacting with

these nuclear receptors or signaling pathways. These data suggest

that activation of FXR could up-regulate hepatic SR-BI

transcription either directly or through coordinating the activity

of other nuclear receptors in both mouse and human livers.

Hepatic SR-BI has been shown to serve as a key mediator of

RCT by taking of HDL cholesterol to the liver [34]. A series of

studies using transgenic or recombinant adenovirus-mediated mice

showed that hepatic over-expression of SR-BI markedly reduces

atherosclerosis [10,11,35]. Furthermore, SR-BI KO mice have

higher HDL cholesterol in the circulation and enhanced

atherosclerosis development [36]. These results suggest that

hepatic SR-BI is critical in protecting against atherosclerosis

development. Our studies showed that, compared to WT mice,

FXR-KO mice had more serum total and HDL cholesterol

(Figure 5). Since SR-BI plays a key role in mediating selective

HDL cholesterol uptake in the liver, these results indicate that the

Figure 5. Cholesterol profile of wild type and FXR-KO mice fed the control or high fat-containing diet. Serum and liver lipids were
isolated from WT and FXR-KO mice treated with vehicle or high fat-containing diet (HFD) for 16 weeks. Serum total cholesterol (A), serum HDL and
LDL/VLDL cholesterol (B), as well as liver total cholesterol (C) were measured as described in the Methods. n = 5–7 mice per group. An asterisk means
P,0.05 between WT and FXR-KO vehicle group. A pound indicates P,0.05 between WT and FXR-KO HFD group.
doi:10.1371/journal.pone.0035895.g005
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high levels of serum total and HDL cholesterol in FXR-KO mice

may at least be partially due to reduction of Sr-bi expression. Our

results also found that HFD induced hepatic Sr-bi expression

(Figure 6A) and this induction was, at least partially, by increasing

FXR binding to multiple IR1s in the first intron of the Sr-bi gene

(Figure 6B). Thus, the accumulation of HDL cholesterol in the

circulation of FXR-KO mice was at least partially due to the loss

of FXR regulation of Sr-bi expression. These combined findings

further established that FXR is a physiological modulator of SR-BI

which may enhance HDL reverse cholesterol transport. Thus,

induction of SR-BI by activation of FXR may help prevent

atherosclerosis. These findings, together with the recent finding

that FXR agonists protect against atherosclerosis [37,38,39],

suggest that FXR is a potential therapeutic target for maintaining

cholesterol homeostasis as well as for treatment of hypercholes-

terolemia and coronary heart disease.

In summary, the current study identified Sr-bi/SR-BI as a FXR

target gene in both mouse and human livers. The molecular

mechanism of FXR regulation of Sr-bi gene expression is via direct

binding of FXR to multiple novel FXRREs in the first intron of

the Sr-bi gene. Increased total and HDL cholesterol in FXR KO

mice may, at least partly, due to reduced Sr-bi expression.

Materials and Methods

Animals and treatments
WT and FXR-KO male mice in C57BL/6J genetic background

were used in this study (8–10 weeks old, n = 4–6 per group). FXR-

KO mice have been backcrossed with C57BL/6J mice for over 10

Figure 6. FXR activation by HFD treatment increases Sr-bi expression by direct binding of FXR to multiple FXR binding sites in the
Sr-bi gene. A, Induction of Sr-bi mRNA expression in liver following treatment with vehicle or high fat-containing diet (HFD) in WT and FXR-KO mice,
as described in the Methods. Hepatic mRNA levels of Fxr, Shp, and Sr-bi were determined by Q-PCR. n = 5 mice per group. An asterisk means P,0.05
between treatment and vehicle control group. B, ChIP-qPCR assays show binding of FXR to the first intron but not the downstream region containing
the novel IR1s in the Sr-bi gene in mouse livers after treatment with HFD. The relative intensity (fold) indicates fold increase over vehicle treatment
level. n = 4 mice per group. An asterisk indicates P,0.05 between vehicle and HFD treatment group.
doi:10.1371/journal.pone.0035895.g006
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generations and were confirmed with .99.99% C57BL/6J

background. The VP-FXR transgenic mice were created by

over-expressing constitutively active FXR (VP-FXR) in the liver

and intestine using the tetracycline-inducible transgenic system.

The VP-FXR transgenic mice were DOX positive; therefore, the

DOX negative mice were used as controls. All mice were housed

in pathogen-free animal facilities under a standard 12-h light/dark

cycle with free access to food and autoclaved tap water. The

control and HFD were obtained from LabDiet (Olathe, KS) and

Jackson Laboratories (Bar Harbor, ME), respectively. The control

diet (5015) contained 17.8% protein, 64.8% carbohydrate, and

5.8% fat. The HFD (D12492) contained 26.2% protein, 26.3%

carbohydrate, and 34.9% saturated fat. The studies were carried

out in strict accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National

Institutes of Health. All protocols and procedures were approved

by the University of Kansas Medical Center Animal Care and Use

Committee. The protocol number approved for these studies was

2010–1947.

To determine Sr-bi mRNA levels in liver by quantitative PCR

(qPCR), mice were fed with 1% (w/w) CA-containing diet or

regular diet for 5 days. The CA diet was made in house by mixing

CA (Sigma, St. Louis, MO) with regular wet rodent chow diet,

which was then completely dried. To determine Sr-bi mRNA

induction and FXR binding to the intron and downstream of the

Sr-bi gene by ChIP-qPCR, mice were orally gavaged with 75 mg/

kg GW4064 or vehicle twice (first dosage at 6 pm and second

dosage at 8 am next day) with livers harvested 4 hrs after the

second treatment. GW4064, which was synthesized by the

Chemical Discovery laboratory at the University of Kansas

(Lawrence, KS), was dissolved in vehicle (PBS containing 1%

methylcellulose and 1% Triton-100). For HFD feeding study, mice

were fed either a regular rodent chow or the HFD for 16 weeks. At

the end of the feeding, mice were subjected to fasting overnight

before tissue collection. Mouse livers were quickly removed, snap-

frozen in liquid nitrogen and stored at 280uC until use.

Cell culture
A human hepatocellular carcinoma cell line, HepG2, was

purchased from the American Type Culture Collection (Manassas,

VA). Primary human hepatocytes were obtained from the

University of Pittsburgh through the Liver Tissue Cell Distribution

System (NIH Contract #N01-DK-7-0004/HHSN26720070-

0004C). The primary human hepatocytes were obtained by

written consents from the participants. The research on primary

human hepatocytes has been approved by the institutional review

board in the University of Kansas Medical Center and University

of Pittsburgh. HepG2 cells were cultured in high-glucose DMEM

supplemented with 1% penicillin/streptomycin, 1% L-glutamine,

and 10% fetal bovine serum (Omega Scientific, Tarzana, CA).

Primary human hepatocyte culture was performed following

published methods [40]. All cells were maintained in 5% CO2

humidified atmosphere at 37uC. For treatment with bile acids

(CDCA, DCA, or LCA) or GW4064 in primary human

hepatocytes, the chemicals were dissolved in DMSO and diluted

to 10 mM, 30 mM, and 100 mM in cell culture medium before

treating cells for 48 hrs for measurement of gene expression.

HepG2 cells were also treated with 100 mM CDCA or 500 nM

GW4064 for 24 hrs for measurement of gene expression.

RNA isolation and quantitative real-time PCR (Q-PCR)
Total RNA was isolated from cells and frozen livers using Trizol

reagent (Sigma, Saint Louis, MO) according to the manufacturer’s

instructions. The concentration of total RNA was determined by

spectrophotometry with the integrity confirmed by MOPS gel

electrophoresis. The mRNA expression levels of FXR/Fxr, SHP/

Shp, SR-BI/Sr-bi, Cyp7a1, Ntcp, Ostb and Bsep were quantified by

Q-PCR using SYBR green chemistry (Fermentas, Glen Burnie,

MD) and normalized to GAPDH/Gapdh mRNA levels. The

primer sequences used in Q-PCR are presented in Table S1.

ChIP-Seq
ChIP-seq was performed as previously reported [17]. Histo-

grams of FXR binding to the Sr-bi gene in liver were generated

using Affymetrix Integrated Genome Browser [41].

ChIP-qPCR
ChIP-qPCR was performed on livers of mice treated with

vehicles, GW4064 or HFD following previously described

methods [17]. Briefly, fresh-frozen livers were minced and fixed

in 1% formaldehyde for 15 min and then quenched with 0.125 M

glycine. The cells were lysed and centrifuged. The nuclei pellet was

re-suspended in nuclear lysis buffer with protease inhibitors.

Nuclear extracts were sonicated to yield 500–1000 bp DNA

fragments. Sonicated chromatin was aliquoted and chromatin

(30 mg tissue equivalents) was used for each immunoprecipitation

assay. Samples were pre-cleared with Protein agarose G-salmon

sperm DNA beads (Millipore, Temecula, CA) before incubation

with an IgG antibody or anti-FXR antibody (H-130x) from Santa

Cruz Biotechnology (Santa Cruz, CA). Samples were incubated

with prepared protein agarose G-salmon sperm DNA beads in

order to extract antibody-chromatin complexes. Complexes were

washed and eluted with immunoprecipitation elution buffer. DNA

fragments associated with the FXR antibody were released by

incubating samples in a 450 mM NaCl solution at 65uC for 5 hrs.

RNA and protein were degraded by treating chromatin with

RNase A and proteinase K. DNA fragments were purified by

standard DNA column purification. The purified DNA fragments

that were bound by FXR were analyzed by qPCR with primers

amplifying four FXR binding sites located in the first intron and

the downstream region of the Sr-bi gene. The sequences for the

primers for ChIP-qPCR assay are presented in Table S1.

Construction of plasmids for reporter gene luciferase
assay

All three fragments, named as A, B and C, are located in the

first intron of the Sr-bi gene. Fragments A and B, each of which

contains a FXRRE in form of an IR1, are located from +10454 to

+11066 and +21265 to +21845 relative to the transcription start

site (TSS), respectively. Fragment C, containing two IR1s, is

located from +27508 to +28086 relative to the TSS. All fragments

were amplified from mouse genomic DNA by PCR using pairs of

primers containing XhoI and BglII restriction enzyme sites,

respectively (primer sequences are listed in Table S1). The PCR

products, named pGL10454, pGL21265 or pGL27508, were

subcloned upstream of the luciferase gene into pGL4-23 firefly

luciferase vector from Promega (Madison, WI). The sequences of

these constructs were confirmed by DNA sequencing and the new

plasmids were named as PGL4-23-Sr-bi A, PGL4-23-Sr-bi B, and

PGL4-23-Sr-bi C luciferase vector, respectively.

Construction of plasmids for Site-directed mutagenesis
of FXRREs

QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene,

La Jolla, CA) was used to generate mutations of the IR1 sites in

PGL4-23-Sr-bi A, PGL4-23-Sr-bi B, and PGL4-23-Sr-bi C,

according to the manufacturer’s instruction. Primers for site-
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directed mutagenesis are given in Table S1. The desired mutations

were verified by DNA sequencing, and the mutated plasmids were

named as Mu-PGL4-23-Sr-bi A, Mu-PGL4-23-Sr-bi B, Mu-PGL4-

23-Sr-bi C-1st IR1, Mu-PGL4-23-Sr-bi C-2nd IR1 and Mu-PGL4-

23-Sr-bi C-(1st+2nd) IR1 luciferase vector, respectively.

Transient transfection and luciferase reporter gene assays
Briefly, HepG2 cells were seeded in a 96-well plate and grown

to 90% confluency prior to transient transfection with various

pGL4-23 reporter gene constructs as well as pCMV-ICIS human

FXR (Open Biosystems, Huntsville, AL), pSG5 human RXRa
(Stratagene, La Jolla, CA), and pCMV-renilla luciferase vector

(Promega, Madison, WI). Transient transfection was carried out

according to the manufacturer’s instructions using TurboFect in

vitro transfection reagent (Fermentas, Glen Burnie, MD). Five hrs

after transfection, cells were treated with 1 mM GW4064 or 0.1%

DMSO as negative control. Thirty-six hrs after treatment, firefly

luciferase and renilla luciferase activities were quantified using the

Dual-Glo Luciferase Kit (Promega, Madison, WI) in a Synergy-II

HT plate reader (Bio-Tek Instruments, Inc., Winooski, VT). The

firefly luciferase activity value was normalized as a ratio to that of

renilla luciferase and expressed as fold over the pGL4-23 empty

vector control. The data were presented as an average of six wells

and the experiments were repeated at least twice.

Determination of cholesterol levels in mouse serum and
livers

After WT and FXR-KO mice were fed either regular rodent

chow or HFD for 16 weeks, serum was obtained by centrifugation

of blood at 8,0006g using microtainer serum separator tubes (BD

Biosciences, San Jose, CA) for 15 min at 4uC and stored at 280uC
for analysis. Liver lipid content was also extracted as described

previously [42]. Briefly, 100 mg of frozen liver tissue was

homogenized in 1 ml of buffer containing 18 mM Tris, pH 7.5,

300 mM mannitol, 50 mM EGTA, and 0.1 mM phenylmethyl-

sulfonyl fluoride. Five hundred microliters of homogenate was

mixed with 4 ml of chloroform/methanol (2:1) and incubated

overnight at room temperature with occasional shaking. Subse-

quently, 1 ml of H2O was added and the solution was vortexed

and subjected to centrifugation for 5 minutes at 30006g. The

lower lipid phase was then collected and concentrated by vacuum.

The lipid pellets were dissolved in a mixture of 270 ml isopropanol

and 30 ml of Triton X-100. The kit for analyzing serum and liver

total cholesterol was obtained from Wako Bioproducts (Richmond,

VA). The kit for analyzing serum HDL, LDL/VLDL activity was

obtained from Abcam (Cambridge, MA). All measurements were

performed according to the manufacturer’s instructions.

Statistical analysis
All data were presented as mean 6 SD. All data were analyzed

by one-way analysis of variance followed by the Student-Newman-

Keuls test. P,0.05 was considered statistically significant.

Supporting Information

Figure S1 FXR activation in mouse livers by treatment
of FXR agonists or genetic over-expression of FXR. A,

Induction of FXR targets Cyp7a1, Ntcp, Ostb and Bsep mRNA levels

in the liver following treatment with either 1% cholic acid (CA)-

containing diet or GW4064 in WT and FXR-KO mice as

described in the Methods. An asterisk indicates P,0.05 and

double asterisks mean P,0.01 between vehicle and ligand

treatment group. B, Cyp7a1, Ntcp, Ostb and Bsep mRNA expression

levels in liver of FXR-WT and FXR-Tg mice. An asterisk means

P,0.05 and double asterisks indicate P,0.01 between FXR-WT

and FXR-Tg group.

(TIF)

Table S1 Primers used for Q-PCR, ChIP-qPCR, clone
and mutation.

(DOC)
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