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Russula griseocarnosa. The R. griseocarnosa genome consists of
64.81 Mb with a GC-pair content of 49.41%. The genome assembly
consists of 471 scaffolds and 16128 coding protein genes. The
coding protein genes was annotated in different databases (GO,
R . KEGG and CAZys), respectively. The whole genome sequence and
ussula griseocarnosa . . . . . .

Ectomycorrhizal fungus functional annotation provide important information for ectomy-
Whole genome corrhizal fungus, which can be used as a basis for cultivation and
Genome annotation breeding of R. griseocarnosa. The Whole Genome project of Russula
griseocarnosa has been deposited at DDBJ/ENA/GenBank under the
accession RMVF00000000. The version described is
RMVF01000000. To further interpretation of the data provided in
this article, please refer to the research article ‘Whole genome
sequencing and genome annotation of the wild edible mushroom,

Russula griseocarnosa’ [1].
© 2019 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).
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Specifications Table

Subject area Biology
More specific subject Microbiology, Genomics
area

Type of data Table, figures

How data was PacBio RS and Illumina Hiseq X-Ten sequencing
acquired

Data format Annotated and comparative analyzed

Experimental factors The fruiting body samples were obtained and quickly frozen in liquid nitrogen before stored in a
—80 °C freezer. Total DNA of fruiting body was extracted immediately.

Experimental DNA Sequencing was performed by using PacBio RS and Illumina Hiseq X-Ten, genome assembly,

features annotation and analysis were carried out.

Data source location The fruiting bodies of Russula griseocarnosa were collected from Linjing Town, Teng County, Guangxi
Province, China (2 Jun. 2017) (23.15 N, 110.66 E)

Data accessibility The whole genome sequence of Russula griseocarnosa has been deposited at DDBJ/ENA/GenBank under
the accession RMVF00000000. The version described is RMVF01000000. The BioSample, BioProject
and SRA accession number are SAMN09602224, PRINA479704 and SRP153002, respectively.

Related research F. Yu, J. Song, J.F. Liang, S.K. Wang, J.K. Lu, Whole genome sequencing and genome annotation of the
article wild edible mushroom, Russula griseocarnosa. Genomics. (2019) in press [1] https://doi:10.1016/j.
ygeno.2019.04.012.

Value of the data

o The first genome under the genus Russula to be reported.

e The data provide valuable information of the potential function and gene expression mechanisms about ectomycorrhizal
fungus Russula griseocarnosa.

e The CAZymes of Russula griseocarnosa confirms the adaptation to symbiosis, and reveals the strategy for host interaction.

1. Data

Russula griseocarnosa (Fig. 1) is a wild edible and medicinal ectomycorrhizal fungus that is native to
southern China. The resulting draft genome of R. griseocarnosa present the 64.81 Mb in size with a G+C
content of 49.41%. The genome sequence was assembly with 471 scaffolds and 16128 coding protein
genes [1]. The data illustrated in Fig. 2 show the Gene Ontology (GO) distribution of the protein coding
genes and Fig. 3 gives a complete overview of the KEGG pathway. According comparative analysis, The
GO annotations of Russula griseocarnosa genes were similar with Agaricus bisporus [2] in “Localization”,
“Biological regulation”, and “Regulation of biological process”, and fewer numbers than that of Laccaria
bicolor [1,3]. Compared with KEGG metabolic annotations, the most genes of Russula griseocarnosa
pathways was not significantly in Laccaria bicolor and Agaricus bisporus, but R. griseocarnosa had less
genes in "Tryptophan metabolism" and "Starch and sucrose metabolism" pathways [1].

The CAZymes coding genes of R. griseocarnosa encode enzymes involved in the degradation of plant
cell wall polysaccharides, non-plant polysaccharides (for example, animal and bacterial poly-
saccharides) and fungal cell wall (Fig. 4). The CAZymes coding genes of R. griseocarnosa was similar to
the symbiotic fungal species Scleroderma citrinum [4] in non-plant polysaccharides degradation and
fungal cell wall degradation, and higer number of plant cell wall polysaccharides degradation. The
plant cell wall polysaccharides degradation associated with cellulose degrading enzymes (GH6, GH7,
GH44 and GH45), hemicellulose-degrading enzymes (GH10, GH11 and GH115) and pectin-degrading
enzymes (GH43, GH51, GH78, GH93, PL1, PL3, and PL4) were absent in Russula griseocarnosa, Lacca-
ria bicolor, and Scleroderma citrinum genomes [1].

2. Experimental design, materials and methods
2.1. Fungal material
Fruiting bodies of R. griseocarnosa were collected from Linjing Town, Teng County, Guangxi Prov-

ince, China in 2017. The fruiting body samples was frozen in liquid nitrogen and stored at —80 °C
freezer until DNA extract.
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Fig. 1. Fruiting bodies of Russula griseocarnosa.
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Fig. 2. The Gene Ontology (GO) function annotation of Russula griseocarnosa.
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2.2. DNA extraction and sequencing

Genomic DNA was extracted using the Omega Fungal DNA Kit D3390-02. Quality of DNA was

determined using TBS-380 fluorometer (Turner BioSystems Inc., Sunnyvale, CA). The concentration of

at least 20 mg/L (0D260/280

1.8-2.0).
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Fig. 3. The KEGG function annotation of Russula griseocarnosa.
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R. griseocarnosa genome was sequenced using Illumina HiSeq X-ten sequencing and PacBio RS
sequencing at Shanghai Majorbio Bio-pharm Biotechnology Co., Ltd, China. Paired-end libraries with
300 bp inserts were constructed in Illumina HiSeq X-ten sequencing. 8-10k insert shotgun libraries
were generated in Pacific Biosciences RS sequencing.

2.3. Genome assembly and annotation

The genome sequence was assembled as follows: (1) PacBio long reads were corrected and
assembled by Canu (v1.7) [5]; (2) [llumina reads corrected and used for scaffolding by SOAPdenovo
(v2.04). Fill the gaps using GapCloser (v1.12) package; and (3) PacBio reads were modified based on
[llumina reads. The final assembly produced a circular genome sequence without gaps.

Protein coding sequences were predicted using the automated pipeline MAKER2 (v2.31.9) [6]. It
combining data for mRNAs, proteins, the ab initio predictions of SNAP [7] and GeneMark-ES (v2.3a) [8].

The predicted protein coding sequences was annotated in Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database using Blastp (v2.3.0). The Carbohydrate-active en-
zymes (CAZymes) were performed using blastp (cut off e-value<1e-5) at http://www.cazy.org/ [9].
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