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Abstract

Background: Adult hippocampal neurogenesis, the process of formation of new neurons, occurs throughout life in
the hippocampus. New neurons have been associated with learning and memory as well as mood control, and
impaired neurogenesis has been linked to depression, schizophrenia, autism and cognitive decline during aging.
Thus, understanding the biological properties of adult neurogenesis has important implications for human health.
Computational models of neurogenesis have attempted to derive biologically relevant knowledge, hard to achieve
using experimentation. However, the majority of the computational studies have predominantly focused on the late
stages of neurogenesis, when newborn neurons integrate into hippocampal circuitry. Little is known about the early
stages that regulate proliferation, differentiation, and survival of neural stem cells and their immediate progeny.

Results: Here, based on the branching process theory and biological evidence, we developed a computational
model that represents the early stage hippocampal neurogenic cascade and allows prediction of the overall efficiency
of neurogenesis in both normal and diseased conditions. Using this stochastic model with a simulation program, we
derived the equilibrium distribution of cell population and simulated the progression of the neurogenic cascade.
Using BrdU pulse-and-chase experiment to label proliferating cells and their progeny in vivo, we quantified labeled
newborn cells and fit the model on the experimental data. Our simulation results reveal unknown but meaningful
biological parameters, among which the most critical ones are apoptotic rates at different stages of the neurogenic
cascade: apoptotic rates reach maximum at the stage of neuroblasts; the probability of neuroprogenitor cell renewal
is low; the neuroblast stage has the highest temporal variance within the cell types of the neurogenic cascade, while
the apoptotic stage is short.

Conclusion: At a practical level, the stochastic model and simulation framework we developed will enable us to
predict overall efficiency of hippocampal neurogenesis in both normal and diseased conditions. It can also generate
predictions of the behavior of the neurogenic system under perturbations such as increase or decrease of apoptosis
due to disease or treatment.
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Background

Adult neurogenesis generates new neurons throughout
life in two distinct regions of the mammalian brain: the
subventricular zone, involved in olfactory processes, and
the sub-granular zone (SGZ) of the dentate gyrus [1-4],
where new neurons have been associated with learning
and memory as well as mood control [5-7]. The addi-
tion of new neurons is not merely static or restorative; it
constitutes an adaptive response to the animal’s environ-
ment and/or its internal state. For example, hippocampal
neurogenesis can be regulated both positively and neg-
atively by external stimuli, such as learning [8], exercise
[9], environment [10] and stress [11], as well as patho-
logical states such as epilepsy [12-16], drug addiction
[17-19], depression [20—22] and schizophrenia [23, 24].
Thus, adult neurogenesis represents another means, apart
from molecular, synaptic, or morphological changes of an
individual cell, to alter the functional circuitry depending
on the demand. However, despite a significant functional
relevance of this form of whole-cell plasticity, little is
known about the processes that regulate it.

During physiological conditions, adult neurogenesis
maintains a steady-state. At any given moment, neural
stem and progenitor cells (NPCs) may undergo one of
three possible fates — they proliferate, producing more
of identical daughter cells; they differentiate, giving rise
to immature neurons called neuroblasts; or they die
[25-28] (Fig. 1). It is believed that the basal rate of neu-
rogenesis is genetically determined [29], but the mech-
anisms that govern it under various physiological and
pathological stimuli are poorly understood. Most research
on the neurogenic regulatory mechanisms has centered
on the factors that regulate NPC proliferation and integra-
tion of newborn neurons into the dentate circuitry during
the late stages of neurogenic cascade [30, 31]. However,
early stages of neurogenesis are very complex, as mech-
anisms that determine cell proliferation, differentiation,
and death are active at the same time. Further, the influ-
ence of the newborn cell death on adult neurogenesis is
not known, even though it has been established that the
majority of newborn cells in the adult dentate SGZ die
during the first week of life, presumably undergoing apop-
tosis [32]. Newborn cell apoptosis may also be important
for spatial learning [33], a hippocampal-dependent task
suggested to require neurogenesis [34]. Thus, understand-
ing the early stages of neurogenesis is critical if we are to
manipulate this process to enhance the number of viable
newborn neurons as treatment modalities.

As experimental studies of such a complex system
require years of work, several groups have used com-
putational tools to aid discovery and guide biological
experimentation. Most of the existing models, however,
focus on the late stages of neurogenesis and aim to
understand the effects of new neuron incorporation into
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the dentate gyrus. These models have shown that new
granule cells participate in pattern separation, avoiding
interference between memories while older ones are not
greatly disturbed [35-37]. However, existing models have
not addressed all the processes that occur throughout the
neurogenic cascade, specifically all three possible fates of
cells that are part of the neurogenic cascade - prolifera-
tion, differentiation and cell death. Hence, here we pro-
pose a comprehensive computational model of all stages
of neurogenic cascade, including transition, proliferation,
differentiation and survival of newborn cells from the
NPC stage to the stage of a matured neuron. To model
early stages of neurogenesis, we use the theory of branch-
ing processes [38]. In a hierarchical system such as that
formed by proliferating and differentiating ANPs, the the-
ory allows to formulate explicit analytic solutions in the
terms of multiple but finite-order convolutions of dis-
tributions of transit times through different phases of
cell cycle. This latter feature makes modeling particularly
transparent, and allows avoiding purely numerical sim-
ulations. Branching process theory can be traced to the
social scientists in the 19th century studying the extinc-
tion of family lines. From that time on, a large number
of biological problems have been modeled by branching
processes, particularly in the analysis of evolutionary cell
population and population genetics. For example, dur-
ing the evolution of a population of some reproducing
particles, each particle lives for a lifetime, independently
of the others, and produces a random number of new
offspring. If each particle lives for a constant unit of
time and produces progeny upon death, then the pro-
cess is called a Galton-Watson branching process. If each
particle has an exponentially distributed lifetime inde-
pendent of the offspring distribution, then the process
is called a Markov continuous-time branching process.
If the lifetime of each particle is a random variable with
an arbitrary distribution, independent of lifetimes of the
offspring, then this process is named an age-dependent
(Bellman-Harris) branching process [38]. Here, using the
Multitype Bellman-Harris branching model, we provide
for the first time estimates of the early stages of the neuro-
genic cascade, focusing on the apoptosis and transit times
of cells, from birth to incorporation into the hippocampal
circuitry.

Methods

Experimental methods

Animals

Wild-type (C57BL/6) or transgenic Nestin-CFPnuc mice,
in which CFP is expressed in the nuclei of both neu-
ral stem cells (NSCs) and ANPs [21], were used. All
mouse studies were approved by the Baylor College of
Medicine Institutional Animal Care and Use Committee
and performed in accordance with institutional and
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Fig. 1 Hippocampal neurogenic niche produces new neurons through a cascade of different cell types. Neural stem cells (NSCs) provide a basal level
influx of new amplifying neuroprogenitors (ANPs) through asymmetric divisions. Newborn ANPs divide several times but only some of them survive
to differentiate into the early neuroblast (NB). As these cells continue to differentiate into immature neurons (IN), their numbers are reduced further. In
the end, only a few mature neurons, so called granule cells (GC), are produced. Throughout the neurogenic cascade, the different cell types undergo
apoptosis (Apop). The apoptotic cells live for a short period of time because they are rapidly phagocytosed and degraded by the resident microglia
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federal guidelines. Unless otherwise stated, animals were
1 month old.

Cell labeling with Bromodeoxyuridine (BrdU)

When studying neurogenesis, the most accepted method
to estimate the net effect of the neurogenic cascade is
to use BrdU, which labels cells in S phase of the cell
cycle, to trace proliferation and differentiation (Fig. 2).
BrdU is injected and during the circulating 15 min time,
it gets incorporated into a proliferating DNA. Over the
course of the neurogenesis, the BrdU can be traced in cells
that are the lineage of the initial proliferating cell. BrdU
labeling can be done as a single or cumulative injection
paradigm (Fig. 3). In single labeling experiments, animals
were injected with 250 mg/kg BrdU at ¢ = 0. In cumula-
tive labeling experiment, performed to obtain the highest
yield of the apoptotic cells, animals were injected with 150
mg/kg BrdU every 3 h in the first 24 h, totally 9 injections
including the one at £ = 0. Animals were then sacrificed
at different time points, when the total number of BrdU
cell as well as the percentage of cells in each stage of the
cascade was quantified.

Histology

Mice were transcardially perfused with phosphate buffer
saline (PBS) followed by 4% paraformaldehyde (PFA).
The brains were dissected out submerged into 4%
PFA for 4 h at room temperature (RT) and sectioned
using a vibratome. For immunofluorescence, free-floating
sections were immunolabeled according to conventional
procedures. The brains were dissected out, and then
transferred to a cryoprotectant solution (30% sucrose,
30% ethylene glycol in PBS) and stored at -20 °C. Once
brains were well cryoprotected, six series of 50 um lateral
sections were collected using a vibratome. A full series
of free-floating sections were immunostained following

conventional procedures [39]. Briefly, all washes and incu-
bations were done in PBS containing 3% bovine serum
albumin (BSA; Sigma-Aldrich) and 0.3% Triton X-100
(Sigma-Aldrich). An antigen retrieval step (2 N HCl, 15
min, 37 °C) for BrdU detection was performed, followed
by extensive washes with borate buffer (0.1 M). Sections
were pre-incubated in PBS containing 3% BSA, 5% nor-
mal goat serum (Vector Labs) and 0.3% Triton X-100 for
2 h at RT, followed by overnight incubation with primary
antibodies (see below) at 4 °C. After extensive washing,
sections were incubated with the appropriate secondary
antibody conjugated with Alexa 488 (Molecular Probes),
Rhodamine Red-X and Cyanine 5 (Jackson Immunore-
search) together with DAPI (5 pg/mL, Sigma-Aldrich) for
2 h at RT. They were then washed, and mounted on slides
with Fluorescent Mounting Medium (Dako). The follow-
ing primary antibodies were used: BrdU (1:400, Accurate)
to detect proliferating cells in S phase; DCX (Cell Sig-
naling, 1:200) to detect neuroblasts/immature neurons;
GFAP (1:1,000, Sigma-Aldrich) to detect primary neural
stem cells (NSCs) and distinguish them from the ANPs
(GFAP-); NeuN (1:1,000, Chemicon) to detect mature
neurons of the dentate gyrus, granule cells.

Confocal Microscopy

Sections were imaged with a Zeiss LSM or a Leica
SP5 confocal microscope. The number of apoptotic cells
and/or BrdU+ cells per z-stack was estimated via the opti-
cal dissector method [39]. Blind analysis was performed
with AxioVision 4.5 (Zeiss) or LAS AF Lite (Leica). Two-
three 20 wm z-stacks (consisting of 30 optical slices of
0.8 wm thickness) were obtained from every section. The
number of cells was evaluated as a function of the volume
of the SGZ, defined as the SGZ length in the image mul-
tiplied by an optical thickness of 20 um and a height of
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Fig. 2 BrdU labels dividing cells in S-phase. 5-Bromo-2"-deoxyuridine (BrdU) incorporates into the newly synthesized DNA during cell division and can
be detected with specific antibodies. BrdU is injected intraperitoneally and the animal is sacrificed at a given time. The brain is isolated and sectioned
sagittally for the best visualization of the dentate gyrus. The representative low-magnification image of the dentate gyrus has granule cells labeled

by DAPI (blue) and dividing cells labeled by BrdU (pink) (scale bar=20um). In the high magnification confocal micrographs, NSCs and their progeny,
ANPs, express Nestin-GFP (green). In addition, NSCs express GFAP (red), while ANPs do not. BrdU-labeled dividing cells are in pink. Scale bar = 50um

20 pm (which we defined in these experiments as a layer
of cells expanding 5 pm into the hilus and 15 pm into the
granular layer), then extrapolated to the volume spanned
by the SGZ in the hippocampus.

Computational methods

Cell transit times

Cell transit time is defined as the duration time of a
cell spent in the phase or stage before it transits into
the next phase or stage. Instead of the commonly used

exponential distributions, we use shifted gamma distri-
butions of the transit times [40] to model the cell transit
times through phases G1, S and G2M, as well as the
lifetime of cells. Advantage of these is the ability to inde-
pendently specify the minimum transit times, mean tran-
sit times, and variances of transit times. Among other,
this allows avoiding occurrence of cells that live for an
indefinitely short period of time with certain probabil-
ity. Such distribution has three parameters, (k,s,v), with
its probability density function given as f(x|k,s,v) =

BrdU

v Single injection paradigm
[,
WYy Vv v v v v \Z v \Z
T=o2 123 4 8 1 15 18 22 32 days
12h ,
SAC
BrdU Cumulative injection paradigm
IR 2R 2 2R 2R 2R 2R
[ 24h }
Wi v vy v v
T=0 1114 2 4 6 8 1 15 18 22 32 days

Fig. 3 Experimental flow-chart of single and cumulative BrdU labeling. Arrows pointing to the green box indicate time points of BrdU injection in
two experimental designs, while lower arrows pointing to numbers (hours (h) or days) stand for time points when animals were sacrificed (SAC). For
the purpose of modeling and computation, we used single injection paradigm, while data for the apoptotic experiments were derived from the

cumulative BrdU paradigm

T
SAC
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(x —)k-le=@=n/s/ (I' (k)sk), where k is the shape param-
eter, s is the scale parameter and v is the shift value (min-
imum duration), and I'(k) is Euler gamma function [40].
Cells in different cell cycle phases are assigned shifted
gamma distributions with different sets of parameters.

Classification of cell stages

The hypothesized neurogenic cascade consists of i) multi-
ple cell types as different states, and ii) probabilities of cells
progressing from one type to another as transition rates
between states. Our model includes the following cell
types: primary NSCs, ANPs, neuroblast/immature neu-
rons (NBs), granule cell neurons (GCs) and apoptotic cells
(Apop).

NSC (neural stem cell)

NSCs provide the ultimate influx of newborn ANPs,
which massively proliferate to drive the entire cell pop-
ulation to produce mature granule cells. The majority of
NSCs are quiescent while activated ones divide asymmet-
rically to enrich the pool of newborn ANPs. The baseline
NSC-ANP influx can be modeled as a homogeneous Pois-
son Process. Even though the influx rate may change as the
animal ages, we assume it to be fixed at 1-month-of-age,
as all our experimental data are acquired at this age. To
quantify the number of proliferating NSCs, we apply BrdU
pulse-and-chase experiment, where 150 mg/kg BrdU is
given intraperitoneally to the mouse. Its half life is about
15 min; thus all activated NSCs that are in the S phase
are labeled. We call these BrdU+ NSCs - labeled NSCs.
Encinas et al,, (2011) indicate that each newly activated
NSCs proliferates three times to produce three ANP
progeny asymetrically and eventually becomes an astrocyte.

ANP (amplifying neuroprogenitor)

Each newborn ANP proliferates several times (~2.45 on
average, estimated by Encinas et al, 2011). After the
cell divides for a minimum number of times (> 1), it
can either keep proliferating, differentiate into a neu-
roblast, or die. We model ANP progression by specify-
ing minimal/maximum number of divisions and renewal
probability (p), which denotes the probability of an ANP
continuing to proliferate after finishing its minimal num-
ber of divisions. If an ANP chooses to proliferate, it enters
typical cell cycle phases of Gi, S and GaM; otherwise,
it becomes a non-proliferating ANP which may choose
to differentiate to neuroblast (NB) by entering ANP-NB
transition state or commit programmed cell death (apop-
tosis or Apop) by entering the ANP-Apop transition state.
Note: We assume that cells that are in either ANP-NB or
ANP-Apop stage are still ANPs, but non-proliferating.

NB (neuroblast)
NBs are non-proliferating cells that are differentiated from
ANPs. The celll duration in NB stage is relatively long
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(2-10 days) and eventually, each NB may choose to differ-
entiate to immature neuron or enter apoptosis.

(immature neuron)

Similarly as NB, any immature neuron lives for a period of
duration time and at the end, differentiates into a mature
neuron (granule cell) or dies.

GC (granule cell)

GCs are fully differentiated and mature neurons of the
dentate gyrus that remain in dentate gyrus to form neu-
ronal connections with existing neurons of the dentate
and hippocampal circuitry. Once a GC is formed, it cannot
die or differentiate anymore.

ANP-NB

This is an intermediate state of transition time from a non-
proliferating ANP to a NB, where the duration is modeled
in the same way as duration of any other cell type, as a
shifted-gamma distribution.

ANP-Apop
Is an intermediate state of transition time for a non-
proliferating ANP to become an apoptotic cell.

Apop (apoptotic cell)

We assume that apoptosis may occur at the end of any cell
stage (G, S, GoM, NB, IN) along the neurogenic cascade,
except for the granule cells. After BrdU pulse, all cells
that are dividing and in S phase will be labeled. From the
observation of apoptotic-BrdU cell labeling curve, there
are no labeled apoptotic cells observed at either 2h or 12 h
(Sierra et al., 2010) (Table 1), indicating that proliferating
NSCs and their first progeny do not undergo apoptosis
or that the removal of the apoptotic cells at these times
is so fast that it escapes detection. The estimated dura-
tion of ANP_GyM phase is about 2 h [41]. A proportion
of newly labeled cells that are in their final allowed divi-
sion and also transiting from S to GoM would be captured
by BrdU. These observations can indicate the existence
of ANP-Apop stage, otherwise the apoptotic-BrdU cells
should be seen at 2 h or 12 h after BrdU injection. Also,
they imply that the apoptotic rate of cells in either S or
G2M phase is close to 0; otherwise, cells that are labeled in
late S phases can enter cell death immediately after BrdU
injection while approaching the end of S or GoM phases.

Model assumptions

e The process of proliferation and maturation is driven
by a steady influx of generation 1 ANPs (ANP1).

e Arriving ANP1 cells enter the G1 phase of the cell
cycle

e Subsequently, the ANP1 cells proceed through G1, S
and G2M phases before they split into two ANP2
cells.
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Table 1 Model parameters that can be and those that cannot be
estimated experimentally

Experimentally estimable Difficult to determine by experiments

Average duration times Intensity of NSC— ANP influx

Cell population size Apoptotic rate at each stage

ANP renewal probability

Possible number of ANP divisions
Shapes of distributions of durations

Minimum durations

e Each ANP2 cell proceeds through the G1, S and G2M
phases before it splits into two cells, each of which
may become a NB or a ANP3 cell.

e Each ANP3 cell proceeds through the G1, S and G2M
phases before it splits into two cells, each of which
becomes a NB.

® NBs exist for the time needed for them to become
neurons.

e At each cell cycle phase, cells may enter apoptosis.

e Apoptotic cells are quickly engulfed by MG and
eliminated.

e The transit times through the G1 phase is
exponentially distributed with expected value T4,
whereas transit times through phases S and G2M are
deterministic equal to T, and T respectively.

e The lifetime of the ANP is exponentially distributed
with expected value Ty, whereas the lifetime of the NB
is exponentially distributed with expected value T5.

We denote a and b as the minimum and maximum num-
ber of divisions of each newborn ANP, where a is the
required minimum number of divisions and b is the max-
imum allowed number of divisions. We further denote
p as the renewal probability of each ANP (probability of
proliferating after dividing a times) and denote X as the
random variable of number of progeny produced by each
new born ANP. Therefore, we obtain P(X = 24) =1 —p,
P(X =2 = pi(1—p),forl <i<b—a—1and P(X =
2%) = pP7%, and E(X) = 20— p) + X0 1P (1 — p)
20+t 4 2bpb=a For a4 < b, the expected number of ANP
divisions can be derived as logo E(X). If a = b, the expected
number of division is a.

Modeling of the neurogenic cascade using the Bellman-Harris
branching process

Our goal was to build a model of the early stage neuro-
genesis, from NSCs to newborn neurons, considering the
factors influencing the ANP fate selection and cell death
rates, such as transition to a cell cycle, number of divisions
before differentiation into NB and probability of cell death
at each step. We chose Multitype Bellman-Harris branch-
ing process to model the neurogenic cell population and
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resulting BrdU labeling curves. Bellman-Harris process is
frequently employed to model proliferation of systems of
biological cells [38], and in our model, it is necessary to
distinguish cells in different cell cycle phases.

The structure of the model, constructed based on our
experimental observations [32], is presented in Fig. 4. We
model the hierarchical structure with transition probabil-
ities of cells from a stage to the next possible stage. Thus,
cell death rates for different cell phases were modeled
by the corresponding transit probabilities into apoptosis,
where symbol d; denotes the cell death rate of the cell
type i.

If we denote the multivariate pgf of number of particles
of all types present in the process initiated by an ances-
tor of type i with Fi(s,t), we obtain the Bellman-Harris
integral equation for this scenario as

t
Fi(st) = / I F(s,t — D)) de Ti(r) + 5, 1 = Ti(0)]
0

Differentiating both sides of the equation with respect
to s; and setting s; = s, = ... = s; = 1, we may obtain the
following equation for the matrix M(¢) =[ M;;(¢)], where
M;;j(t) is the expected number of particles of type j at time
t, in the process initiated by the ancestor particle of type i
at time 0

t I
Mi(t) = ‘/0 Z myMyi(t — 1)d. Ti(t) + 8;5[ 1 — Ti(¢)]
k=1

where m;;(Z) is the expected number of progeny of type j
of a particle of type i, §;; = 1, if i = j, otherwise, §;; = 0.

The convolution of functions is defined by the following
Lebesgue-Stieltjes integral if A(¢) and B(t) are two right-
continuous functions with locally bounded variation on
[0,00)

t

A(t) *B(t) = f A(t — 1)d.B(1)
0

Using the convolution notation, the above equation can
be expressed as

1

M) = Z myMyi(t) * Ti(t) + 8;5[ 1 — Ti(¢)]
k=1

In the matrix notation, we obtain
M(@) = T@)x[ mM(t)] +[1 — T(t)]

where I is the identity matrix and G = diag(Gy, ..., G).
This is a renewal-type equation, which has a unique solu-
tion of locally bounded variation if G(0) = 0, expressed by
the infinite series

o0
M= Z(Tm)*k x([—T) (1)
k=0
and it yields the fundamental solution of the mathematical
modeling of the neurogenic cascade as a matrix function
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Fig. 4 Hierarchical structure of the neurogenic cascade modeled by the Multitype Bellman-Harris branching process with different cell types as
different compartments. Consider a collection of particles of / types, which proliferate according to the following rules: At time t = 0, an ancestor
particle of type iis born, which lives for a random time = with cumulative distribution function (cdf) 7; and upon death, it produces a random
number of progeny of all types, described by a vector (Xj, .., Xj) with multivariate probability generating function h;(sy, .., s;) At time t = t, each
first-generation progeny particle of type j lives for a random time with cumulative distribution function (cdf) 7; and upon death, produces a random
number of progeny of all types, described by vector of multivariate pgf h;(s1, ... 5), independently of other progeny particles. The cycle of life, death
and progeny production is repeated indefinitely by each generation of particles. 4= intensity of influx of new ANPs from NSCs, X, = cell doubling
rate, Dj= cell death rate of the cell j, p = renewal probability of ANPs, Tj= duration time of cell in stage i. G1, S, G2M = stages of cell cycle. NonPr ANP =
non-proliferating ANP. Astro = astrocyte

of time for the number of cells of each type. Here, M;;(t) ~ where A-N represents ANP-NB stage, A-A is for ANP-
is the expected number of cells of type j at time ¢, in the ~ Apop stage, d; = 1 — d;, x* = 2dg,m(1 — p)danp, y** =
process initiated by an ancestor cell of type i at time 0, ZQGZM(I — p)danp, z° = 22G2M3ANP and w** = 2(,_1G2M
T = diag(Th, ..., T1) denotes the diagonal matrix with the  danp (danp is the cell death rate of non-proliferating
distribution function of lifetime (or duration) 7; of each  ANPs).
cell i, m is the transition matrix and m;(¢) is the expected Furthermore, to model the NSC to ANP influx, we
number of progeny of cell of type j produced by a cell assume that any ‘arrival’ of a new ANP is independent
of type i, obtained via the multivariate pgf of numbers of  of all previous ‘arrivals’ and the number of new ANPs
progeny produced by the type i cell, and I is the identity  arrived during a period of time is only dependent on the
matrix. length of that period times the intensity of the influx,
Based on the experimental observation and model X. Thus, such process is a Poisson process with intensity
assumptions, we have the transition matrix m as (e.g.  parameter A, and the probability that the number of new
when minimum/maximum number of ANP divisions are =~ ANPs arrived during a time unit («) being equal to # is

1 and 3, respectively) expressed as
Gl S GGM G S GoM G S GoM A—NNB IN A—A Apop
Gi(1) 0 dg O 0 0 0 0 0 0 0 0 0 0 da
S1) 0 0 ds 0 0 0 0 0 0 0 0 0 0 ds
GoM(1) 0 0 0 2pdgayy 0 0 0 0 0 x* 0 0 y* deowu
Gi(2 0 0 0 0 dg O 0 0 0 0 0 0 0 da
S2 0 0 0 0 0 ds 0 0 0 0 0 0 0 ds
GoM@2) 0 0 0 0 0 0 2pdcay O O % 0 0 y* dcwm
Gi3 0 0 0 0 0 0 0 da O 0 0 0 0 da (2)
S3 0 0 0 0 0 0 0 0 d 0 0 0 0 ds
GoM@3) 0 0 0 0 0 0 0 0 0 z¢ 0 0 w* dewm
A-N 0 0 0 0 0 0 0 0 0 0 1 0 0 0
NB 0 0 O 0 0 0 0 0 0 0 0 dyg O dus
IN 0 0 0 0 0 0 0 0 0 0 0 0 0 dy
A—A 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Apop 0 0 0 0 0 0 0 0 0 0 0 0 0
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where N (¢) is the number of new ANPs arrived before
time ¢t and N (¢+ u) is the number of the new ANPs arrived
until time ¢ + u.

Modeling and simulation of cell labeling curves

The experimental data for our computational model-
ing have been obtained in three independent sets of
time-course labeling experiments of pulse BrdU injection,
with derived curves of total and partial cell counts at
different times of measurements: 1) Single BrdU pulse-
and-chase was used to quantify total BrdU+ cell pop-
ulations over a 32 day period and total number of
apoptotic cells were used from the published manuscript
[32]. Quantification was done at 12 different timepoints
(t = 2hr,12hr,1d,2d,3d, 4d, 8d,11d, 15d, 18d, 22d, 32d,
assuming ¢ = 0 at the moment of BrdU injection)
(Table 2). 2) Single BrdU pulse-and-chase was used to
quantify BrdU+ NSCs and ANPs using GFAP and GFP
immunostaining to differentiate between them. BrdU+
GFP+ NSCs were identified by their localization in the
SGZ, radial GFAP+ process, and fine eGFP+ terminal
arborizations in the molecular layer. BrdU+ GFP+ ANPs
were identified by their localization in the SGZ, round
morphology with no processes, and no GFAP staining.
Quantification was done at t = 2hr, 1d, 2d, 4d, and 8d
(Table 3). 3) Single BrdU pulse-and-chase was used to
quantify NB, IN, and GC using DCX and NeuN immunos-
taining and morphology. Newborn NBs were BrdU+
DCX+ NeuN- or NeuN+ round cells with small processes.
Newborn GC were BrdU+ DCX- Neu+ mature neurons
within the granule cell layer. Quantification was done at

Table 2 Total BrdU+ cell count and BrdU+ apoptotic cell count

Time (days) n Total BrdU+ cells BrdU+ apoptotic cells
0.08 (2hr) 3 2690 (320) 0(0)

0.5 (12h) 2 4157 (784) 0(0)

1 4 5392 (557) 40(18)
2 5 5803 (138) 121 (33)
3 3 4781 (344) 48 (25)
4 5 4186 (201) 23(14)
8 6 3518 (307) 10(11)
M 3 2427 (202) 0(0)

15 4 1342 (185) 33(13)
18 3 1233 (302) 0(0)

22 4 752 (53) 0(0)

32 3 950 (234) 13(16)

nis the sample size. Cell numbers are represented as the mean and standard error
of the mean (sem) (Sierra et al,, 2010)
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t = 1d,2d,4d, 8d, 15d (Table 3). In all experiments, mice
were 1 month old at the time of BrdU injection (N = 2-5
mice per timepoint).

Given the estimated number of cells during the S-phase
in each stage at the beginning of BrdU injection, we
may calculate the number of labeled cells of each type
at any moment by Eq. (1). However, solving it in ana-
lytical form is cumbersome. An approach alternativee
to computationally producing the BrdU labeling curves
is the event-based simulation. Assuming that we have
computed the numbers of cells in different stages at the
moment of BrdU injection (¢ = 0), we trace the fate
of labeled cells at unit time points by recording their
behaviors. Briefly, a series of random numbers are gen-
erated for the random times for which labeled cells stay
in particular stages and the probability of the cells tran-
siting to the next stage, until the cells enter apoptosis or
become a matured neuron. Beginning to trace the entire
process from ¢ = 0, we reproduce the labeling curves
in silico by accumulating the fates of all labeled cells up
to particular moments (e.g. times of measurements in
experiments).

A simulation program carrying out tasks outlined above
has been written in the Python programming language.
This program computes distribution of initial cell popu-
lation and generates BrdU labeling curves. Figure 5 illus-
trates the event-based simulation scheme of the dynamics
of a neuroprogenitor cell.

Parameter search and goodness-of-fit

To discover parameter combinations that can best fit the
experimental data, we adapted a genetic algorithm as
the searching heuristic since the parameter space is too
complex to be searched by enumeration of all possible
combinations. A genetic algorithm is a searching heuristic
that mimics the process of natural evolution. It is used to
generate optimized solutions to search problems in com-
plex non-linear systems. Each parameter range is encoded
by a bit vector of length 4, yielding 24 possible values. An
initial pseudo “population” was created by setting X ran-
domly chosen parameter combinations as X “individuals”
The value of each modeling parameter in any “individ-
ual” has been converted to the binary format to become
a 0-1 sequence. During the search, any parameter set is
evaluated by computing variance weighted least square

2
error y (E;f) to test how well the simulated results

fit the experimental labeling curves. E and o are mean
and variance of experimental data at a given time point,
whereas S is the corresponded simulation result. ) sums
over all available time points of measurements. The list
of model parameters is shown in Table 1. Some of them
can be experimentally estimable, whereas most are not
observable.
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Table 3 Estimated proportion of BrdU+ cells of each type
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Experiment 1

Experiment 2

Time (days)

n NSC ANP n NB GC
0.08 (2hr) 4 11.16 (2.14) 85.07 (3.62) - - -
0.5 (12h) - - - - - -
1 4 5.68 (0.57) 60.14 (2.59) 3 51.94 (7.25) 0.2 (0.24)
2 5 3.29(0.79) 4231 (4.81) 2 7642 (3.24) 0.32 (0.46)
3 - - - -
4 5 2.53(0.69) 20.37 (0.85) 3 95.06 (1.12) 1.52(0.51)
8 5 0(0) 4.87(1.38) 3 96.24 (0.76) 248(0.31)
1M - - - - - -
15 - - - 2 86.61 (1.26) 4.72 (0.05)
18 - - - - - -
22 - - - - - -
32 - 3 14.86 (3.62) 7734 (6.81)

nis the sample size, " means no available data. Two groups of animals (all 1 month old) were used for experiments. Cell numbers are represented as the mean and standard

error of the mean (sem) in proportion (x 100) of cells of each type

Results

Cell proportions

At time points ¢t = 1, 2, 4 and 8 days, the sum of observed
proportions of all cell types (NSCs, ANPs, NBs, GCs and
apoptotic cells) is greater than 1 (Tables 2 and 3). This
discrepancy is due to the non-specific labeling or iden-
tification of cells during transitions from ANPs to NBs.
Cells that are in the intermediate stage can be labeled by
both ANP and NB markers. Thus, we assume that the esti-
mated proportions on NSCs and GCs are realistic, while
those of ANPs and NBs at intermediate time points are
inflated due to non-specific labeling. Those quantifica-
tions need to be adjusted. At early (2hr) or late time points
(15 and 32 days), we retained the original data since at

those time points the labeled cells are NSCs and GCs. At
all other timepoints, the labeled cells are either ANPs or
NBs, exclusively.

For any time point ¢ (¢ = 1, 2, 4 or 8 days), we adjusted
the sum of proportions of all types of BrdU+ cells (NSCs,
ANPs, NBs, GCs and apoptotic cells) to be equal to 1
(impact of BrdU+ astrocytes is negligible since the pro-
portion of BrdU+ astrocytes is very small when ¢ < 8
days [41]). The proportion of the excessive amount of cells
(denoted by d;) between ANPs and NBs is equal to the
sum of the observed proportions minus 1. We denote o, to
be the ratio defined so that «;d; is the proportion of dou-
ble labeled cells that belong to ANPs, whereas (1 — o)d;
belong to NBs.

birth

division —_ >

l G1/S transition \, /
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Fig. 5 Simulation scheme of the dynamic of a neuroprogenitor cell. The event-based simulation traces the fate of a newborn, BrdU-labeled cell
(green icon). Assuming that we have computed the numbers of cells in different stages of the neurogenic cascade at the moment of BrdU injection
(t=0), we trace the fate of BrdU labeled cells at unit time points by recording their behaviors. Briefly, a series of random numbers are generated for
the random times for which labeled cells stay in particular stages and for the probability of the cells transiting to the next stage, until the cells die
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Let X = (X1,X2)T and X' = (X7, X})T as two random
vectors to represent the proportions of ANPs and NBs
before and after transformation, respectively. Therefore,
we obtain

Xi=X1— (1 —a) X1+ Xa —dy)
=0 X1+ —DXo+ (1 —ayd;
Xy =Xy — o (Xq + Xo — dp)
= —a X1 + (1 — o) Xo + oy
and

X' =AX+B

where A = ( o e 1>,B: ((1 _at)d)
—0 1-— ot ot
Thus, we can compute the mean and variance of X as
E[X'] = (@E[X1] +(a: — DE[X2]
+ (1 — ady, —uE[X1] +(1 — a) E[ Xo] +oaedy)

S(X] = ( V[X/{] / COV[X’},XQ]

COVI[ X1, X5] VIX5]
where ¥[X’] and £[X] are covariance matrices of X’
and X with X[X]= (V[X;1], V[X3]) by assuming that
COV[X1,X2] = 0. Using the equations above, we calcu-
lated the adjusted estimates of means and sems of ANP
and NB cell proportions (Table 4). Note that for any inter-
val time point ¢ (¢ = 1d, 2d,4d, 8d), o; is assumed to be
1/2 since there is no prior knowledge about it.

):ATZ[X]A

Transforming cell proportions to cell counts

For the optimization algorithm, the total number of
BrdU+ cells and the estimated number of BrdU+ cells of
each specific type are required to evaluate the goodness-
of-fit. Non-zero data points expressed as proportions
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(random variables; Table 3) were transformed back to cell
counts with re-calculated means and variances.

For any time point ¢, we assumed that the count of total
number of BrdU+ cells in an animal is a normally dis-
tributed random variable Y ~ N (,bLy, 0}2,), Thus, for a size

of ny samples, we obtain that ;/y = Y and 0)2, = S% (data

from Table 1 were used to estimate iy and 0'12/).
For any specific cell type i (e.g. ANPs), if we denote X as
the number of BrdU+ type i cells at time ¢, we have

X|Y, P ~ binomial(Y, P)
where we assume that the observed proportion of type i
cell, P, is Gaussian distributed, s.t. P ~ N (,pr, 01%). For a
size of np samples, (ip = P and olg = SIZ, (pfp and 01% are
estimated from data shown in Table 4).

Assuming that Y and P are independent random vari-
ables, we obtain that

E[X]=E[E[X]|Y,P]]=E[YP]=E[Y]E[P]

and
VIX] = VIEIX|Y,P]]+E[V[X|Y,P]]
= V[YP]+E[YP(1 — P)]
= V[ YP)+E[ Y] E[ P] —E[ Y] E[ P?]
= V[YP|+E[Y]E[P] —E[ Y] (V[ P] +E[P]?)
Since

V[YP] = E[Y]? V[P]+E[P)> V[ Y] +V[Y] V[P]
we obtain
V[X] = V[P](E[Y]*+V[Y]—E[Y])
+ E[P)>(V[Y]—E[Y])+ E[ Y] E[ P]

Table 4 Re-proportioned data of estimated proportions of BrdU+ cell of each type

Time (days) Experiment 1 Experiment 2

n NSC ANP n NB GC
0.08 (2hr) 4 1116 (2.14) 85.07 (3.62)
0.5 (12h)
T 4 5.68 (0.57) 50.79 (3.23) 3 42.59 (3.95) 02(0.24)
2 5 3.29(0.79) 30.29 (2.54) 2 64.41 (5.08) 032 (0.46)
3
4 5 2.53(0.69) 10.35 (0.58) 3 85.05 (0.82) 1.52(0.51)
8 5 0(0) 1.74(0.74) 3 93.11(1.05) 248 (0.31)
"
15 2 86.61 (1.26) 4.72 (0.05)
18
22
32 - - 3 14.86 (3.62) 7734 (6.81)

nis the sample size, "-" means no available data. Numbers in bold are adjusted values of proportions (x 100). Cell numbers are represented as the mean and standard error of

the mean (sem) of the proportion (x 100) of each type of cells
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Therefore, we estimate the mean and variance of the num-
ber of BrdU+ labeled cells of any type i (E[ X] and V[X])
by equations below:

E[X]=Y xP
VIX] = 5;(?2+52Y—?)+ﬁ2(5'§—7) +YxP

A summary of data in estimated cell numbers is shown
in Table 5.

Initial distribution of cell population

Before deriving the model to simulate BrdU labeling
curves, we focused on the quantification of the cell popu-
lations at the moment of the BrdU injection and aimed to
obtain the distribution of cell populations at £ = 0.

In matrix M (Eq. (1)), the fundamental solution of the
model M;; as a function of time, allows finding the num-
ber of cells at time ¢ in compartment j, given that the
population was seeded by a single cell in compartment i.
However, under physiological conditions, the system is fed
by a steady influx of freshly activated ANPs. Under such
assumption, the number of of cells of each cell type at time
t is given by

o t
M) = 1) [ TEeym*™ */ [ - T()]dr (3)
0

k=0

Since the system is fed only by newborn ANPs at their
first division in Gj-phase, only the top row of matrix
M (t), denoted by A~/I(1)(t), is required. In labeling experi-
ments, we treat 1 month old mice with BrdU injections.
We assume that the snapshot of the neurogenic cell popu-
lation in the animal’s brain is under a “steady state” at the
moment of injection. Thus, if we tend with ¢ to infinity in
the Eq. (3), we can obtain a stationary distribution of cell

Table 5 Summary of estimated cell counts in each type

Page 97 of 102

numbers in the snapshot, which yields numbers of cells of
different types, given by

7 = MY (c0)

x ; Gy
= (tlim A [T(t)m]*k*/ [d — T(r)]dr)
—00 0

k=0
= (A —mE[ 1)

where 7 is the vector of numbers of cells in all model-
ing compartments (see Matrix Eq. (2) for the description
of modeling compartments), diagonal matrix E[ T] has
entries equal to expected duration times in all modeling
compartments,(-) ! denotes the inverse of a matrix, ()"
denotes the top row of the matrix and A, T,m, I, and *
are as previously defined. Although in the long run the
intensity parameter A declines as the animal gets older, we
assume that in a short period of time, within which the
snapshot of the BrdU injection occurs, the influx rate of
NSCs to newborn ANPs is constant.

BrdU labels all cells that are in S-phase, thus we know
how many cells are labeled at the moment of injection,
which is equal to 75, where subscript s stands for the
compartment or a set of compartments which represents
the cells in the S-phase. Under the assumption that in
vivo descendants of labeled cells remain labeled (BrdU
dilution is negligible), the BrdU pulse labeling curve of
the number of labeled cells at a given time is equal to
wsM(t). This expression is technically true only under the
assumption that labeled cells concentrated at the begin-
ning of the S-phase, which does not make much difference
for times longer than the joint duration of S and GyM.
In a real situation, the time remaining for each cell in
S-phase at any moment is a random variable. Addition-
ally, the k-fold convolution of matrix (7m) in the matrix

Time (days) total Apop NSC ANP NB GC
0.08 (2hn) 2690 (320) 0(0) 300 (81) 2288 (298)

05 (12h) 4157 (784) 0(0)

1 5392 (557) 40(18) 306 (46) 2738 (334) 2296 (297) 11011
2 5803 (138) 121 (33) 191 (47) 1758 (154) 3738(173) 19(14)
3 4781 (344) 48 (25)

4 4186 (201) 23(14) 106 (30) 433 (34) 3560 (173) 64 (16)
8 3518 (307) 10(11) 00 61(25) 3276 (287) 87(11)
11 2427 (202) 0(0)

15 1342 (185) 33(13) 1162 (160) 63 (10)
18 1233 (302) 0(0)

22 752 (53) 0(0)

32 950 (234) 13(16) 141 (51) 735 (194)

“-"no available data. Cell numbers are represented as the mean and standard error of the mean (sem) for estimated numbers of different types of cells
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M(t) (Eq. (1)) becomes analytically too complicated as
k increases. Therefore, as explained before, instead of
obtaining the time-course labeling curve analytically, we
decided to generate it by simulation in a more convenient
and straightforward manner.

Simulation of BrdU labeling curves and parameter search
To obtain the set of model parameters that yields best fit
to the experimental observation of BrdU pulse-and-chase
labeling curves, we applied the genetic algorithm as the
search heuristic in the simulation program. Table 6 lists
model parameters and their assigned ranges of possible
values. For example, the maximum number of ANP divi-
sions ranges from 2 to 8, renewal probability of ANPs
ranges from O to 1, expected duration of ANP S-phase
ranges from 5 to 12 hr, shape parameter of distribution
of ANP S-phase duration ranges from 5 to 40, minimum
duration of ANP S-phase ranges from 1 to 4 and apoptotic
rate for ANP S-phase can range from 0 to 0.99.

Simulation results of BrdU labeling curves that best fit
our data are illustrated in Fig. 6. Parameter values that
yield such fits were obtained by the genetic algorithm,
which is implemented for the purpose of searching the
parameter space and optimizing the goodness-of-fit func-
tion. BrdU pulse labeling experiments have provided us
with 40 non-trivial (non-zero) independently measured
experimental data points. Nineteen model parameters are
varied during the parameter search. Figure 7 demon-
strates that the residuals were equally distributed along x
axis and showed no systematic trend, which suggests that
the model fit is good.

Among all model parameters, apoptotic rates are the
most critical ones since they have not been estimated
in prior early-stage hippocampal neurogenesis studies.
Based on our model and simulation results at each cell
state during early stages of hippocampal neurogenesis in
1-month-old mice, we estimate that the apoptosis rates
are low in proliferating ANPs whereas once ANPs become
non-proliferating, about one third of them undergo apop-
tosis (Fig. 8). During the NB stage, apoptosis reaches
maximum. A vast majority of the NBs die (97% undergo
apoptosis) and only a few of them (estimated about 3%)
will differentiate into the GCs. NSCs do not undergo
apoptosis [32] and once a NSC is activated, it undergoes a
number of asymmetric divisions after which it eventually
becomes an astrocyte.

Prediction of dynamics of neurogenesis under reduced
apoptosis

Taking values of model parameters from data fitting
results, we carried out additional simulations to predict
the overall changes in the BrdU labeling curves by inhibit-
ing apoptosis (reducing apoptotic rates). While apoptotic
rates at all cell stages were consistently reduced by a

Page 98 of 102

Table 6 List of model parameters and ranges of possible values

Parameter Range of possible values
Minimum number of ANP 1,2,3

divisions, minanp

Maximum number of ANP 2,..8

divisions, maxanp

Renewal probability of {0,0.1,..,0.99, 1}

ANP, panp

Distribution coefficients of
ANP  G;-phase duration,
TGy —Anp

Distribution  coefficients {5,..,12}hr; {5,..,40}; {1, .., 4}hr
of ANP S-phase duration,

Ts—anp

Distribution coefficients of {1,..,4}hr; {5, .., 20}; {0, ..,0.75}hr
ANP GyM-phase duration,

TG,m—Anp

Distribution coefficients of {4,..,64}hr,{2,..,16}; {0, .., 3}hr
ANP-NB stage duration’,

Tanp—ng

Distribution  coefficients {4,..,64}hr,{2,..,16}; {0, .., 3}hr
of  ANP-Apop stage

durationz, TANP—ApOp

6,..20hr;{2,..,16};{2,... 5}hr

Distribution coefficients of
NB duration, Tyg

{120,..,430}hr; {2, .., 16}; {10, .., 80}hr

Distribution coefficients of {04,..,3}hr; {2,..,16}; {0, ..,0.3}hr

Apoptotic cell duration,

TApop

Cell death rate of ANP G- {0,0.1,..,0.98,0.99}
phase, dg,

Cell death rate of ANP S- {0,0.1,..,0.98,0.99}
phase, ds

Cell death rate of ANPG, M- {0,0.1,..,0.98,0.99}
phase, dg,m

Cell death rate of non- {0,0.1,..,0.98,0.99}

proliferating ANP, danp

Cell death rate of NB, dug {0,0.1,..,0.98,0.99}

Minimum number of NSC {1,2,3}
divisions, minonpe

Maximum number of NSC {2,..6}
divisions, maxonp

Renewal probability of {0,0.1,..,099, 1}
NSC, powe

Distribution coefficients of
NSC  Gp-phase duration,

{8,...36}hr; {2, ., 16}; {2, ... 5}hr

T, —onp

Distribution  coefficients {5,.,12}hr; {5,..,40}; {1, .., 4} hr
of NSC S-phase duration,

Ts—ane

Distribution coefficients of {1,..4}hr;, {5, ..,20}; {0, ..,0.75}hr
NSC GyM-phase duration,

Te,m—one

'If a non-proliferative ANP is determined to differentiate to a NB, it enters ANP-NB
stage,

2otherwise it enters ANP-Apop stage before undergoing apoptosis. Since the cell
duration (transit time) is modeled by a shifted gamma distribution the duration
distribution parameter for any cell type J, T;, consists of 3 coefficients that are
expected duration, shape parameter of the gamma distribution and the minimum
duration (shift value). A range of values for each of these three coefficients has been
provided
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Fig. 6 Fitting model to experimental BrdU labeling curves - data vs simulation results. Simulation results (red solid lines) that best fit the data (black
dashed lines) of all available measurements from running the genetic algorithm are presented for all investigated cell types. Total BrdU+ = total
number of BrdU+ cells, Apop-BrdU+ = number of BrdU labeled apoptotic cells, QNP-BrdU+=number of BrdU labeled NSCs, ANP-BrdU+ = number of
BrdU labeled ANPs, NB-BrdU+ and GC-BrdU+ = numbers of BrdU labeled neuroblasts and granule cells, respectively. On each plot, the shaded area
depicts the region that is upper and lower bounded by the average cell counts + 2 SEM

hypothetical amount (25%, 50%, 75% or 100%) all other
model parameters remain unchanged. From predicted
BrdU labeling curves depicted in Fig. 9, we observed that
at the end of 32 days, the total number of BrdU+ cells
and the number of BrdU labeled granule cells increased
3.4-and 11.5 fold, respectively, when apoptotic rates were
reduced by 25% only. These numbers continue to increase
sharply if apoptosis can be reduced even further. Under
the extreme scenario, when apoptosis can be completely
inhibited, the simulation results indicate that 14.3 times
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Fig. 7 Residuals plot shows the distribution of differences
(experimental data — simulated results) on all non-zero measurements.
The residuals were equally distributed along x axis and showed no

systematic trend, suggesting that the model fit is good

more of total BrdU+ cells and 61.0 times more of BrdU+
GCs are expected as the net outcome of neurogene-
sis, compared with the case when physiologic apoptotic
rates are employed. Our study thus indicates that reduc-
ing apoptosis in any amount substantially increases adult
hippocampal neurogenesis.

Discussion

In this study, we developed a computational model that
as accurately as possible reflects the neurogenic cascade
and specifically, apoptosis. Our goal was to estimate apop-
totic rates at each stage of the neurogenic cascade, the
distribution of cell type duration — including apopto-
sis, and the renewal probability of ANPs. We reasoned
that these parameters were most important to design tar-
geted experimentation to improve survival of newborn
cells and net outcome of hippocampal neurogenesis. Since
there is unavoidably a large amount of model parameters
providing challenges and obstacles to unbiased estima-
tion, we employed immunohistochemistry and statistical
computation approaches to combine experimental and
computational data. Furthermore, we computationally
estimated experimentally unobservable parameters, such
as the probability of ANP to proliferate and the rates of
cells at different stages undergoing apoptosis. Our model
indicates that apoptosis is low in the ANP stage and
high in the NB stage. Regardless of origin, apoptotic cells
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Apoptotic rate at each cell stage
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Fig. 8 Estimated apoptosis rate at each cell stage that yields best fit to
data. The bar graphs show estimated apoptotic rates at each cell stage
through the early stages of the hippocampal neurogenic cascade in a
1-month old mouse. The apoptosis is highest among neuroblasts
(NBs), followed by non-proliferating ANPs (np-ANP). This is in
agreement with experimental data, indicating that model fit is good

have a short life, estimated to be around 1.4hrs. ANPs
are predicted to divide 1-4 times; however, their renewal
probability is low, at 0.1. Finally, the NB stage has the
largest variance of the transit time. None of the estimates
could be derived experimentally, and thus, our computa-
tional model represents a foundation upon which we can
design novel biological experiments to increase neuroge-
nesis based on targeted action on ANPs and newborn cell
survival. Encinas et al. (2011) carried out labeling exper-
iments (both single and cumulative labeling) to study
adult hippocampal neurogenesis. They modeled neuro-
genic cascade similarly as we do, although they used 2
month old mice whereas we used 1 month old ones. While
Encinas et al. (2011) determined division and duration
related parameters, they did not infer any information
on apoptosis. Their results were calculated from infer-
ring the decay rate of each type of cell over a long period
of time (800 days). In comparison, the parameter val-
ues that yield best fit in our study were comparable with
respect to expected cell durations (Table 7). In addition,
our model and simulation approach are able to provide
estimates on apoptotic rates, minimum durations, shapes
of duration distributions, and number of NSC and ANP
divisions. More recent works [42, 43] investigates the

regulatory mechanisms of neurogenesis, based on knock-
out experiments, which modify the dynamic behaviour of
this process. Evaluating these knockout is a non-trivial
task owing to the complicated nature of the hippocam-
pal neurogenic niche. Unlike the model proposed herein,
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Fig. 9 Prediction of dynamics of neurogenesis under reduced apoptosis. Effect of reducing apoptosis on simulated labeling curves of different types
of cells over the time course of 32 days. Black line = normal apoptotic rates; red = apoptotic rates reduced to 75% of the normal rates; green =
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Table 7 Parameter estimates that yield best fit and comparison
with estimates in literature

Parameter Value Estimate of
Encinas et al.
Minimum number of ANP divisions 1 -
Maximum number of ANP divisions 4 -
Renewal probability of ANP 0.1 -
Expected number of ANP divisions 1.17 2
Expected ANP G;-phase duration 12hr -
Minimum ANP G;-phase duration 3hr -
Expected ANP S-phase duration 12hr 12hr
Minimum ANP S-phase duration 4hr -
Expected ANP GyM-phase duration 1hr 2hr
Minimum ANP G, M-phase duration 0.5hr -
Expected ANP-NB' duration 12hr 30hr
Minimum ANP-NB duration 3hr -
Expected ANP-Apop? duration 48hr -
Minimum ANP-Apop duration 2hr -
Expected NB duration 260hr 60hr & 306hr?
Shape parameter of NB duration distribution 2 -
Minimum NB duration 20hr -
Expected apoptotic cell duration 1.4hr -
Cell death rate of ANP G;-phase 0.14 -
Cell death rate of ANP S-phase 0 -
Cell death rate of ANP GoM-phase 0.02 -
Cell death rate of nonproliferating ANP 033 -
Cell death rate of NB 0.97 -
Minimum number of NSC divisions 2 -
Maximum number of NSC divisions 5 -
Renewal probability of NSC 0.57 -
Expected number of NSC divisions 357 3
Expected NSC Gj-phase duration 28hr -
Expected NSC S-phase duration 11hr 8hr
Expected NSC G, M-phase duration 3hr 2hr
Expected NSC duration 42hr 28hr, 28hr
and 52hr*

TANP-NB is the transition stage between ANP and NB

2 ANP-Apop is the transition stage between ANP and apoptotic cells
3NB durations for t < 100hr and t > 100hr, respectively

“Expected durations of the first, second and third divisions

they model neurogenesis as a multicompartmental system
of ordinary differential equations based on experimental
data. To analyse the results of knockout experiments, they
investigated how changes of cell properties, based on cells
labelled by the cell division marker BrdU. Among other,
they found that changing cell proliferation rates or the
fraction of self-renewal, may result in multiple time phases
in the response of the system, such as an initial increase
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in cell counts followed by a decrease. Because of different
experimental setup and modeling framwork used, these
results are not directly comparable to ours. One of the
obstacles is the difficulty in observing and recording the
fates of the individual cells in vivo.

Conclusion

In sum, our computational model of the adult neurogen-
esis provides new information on the early stages of this
phenomenon. It is our hope that the estimates of the
properties of ANPs, NBs, and apoptotic cells will guide
biological investigations and development of better exper-
imental tools to utilize this unique process for the benefit
of human health.
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