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1  |  INTRODUC TION

Point-of-care testing (POCT) is currently a means for clinical laborato-
ries to provide test results. However, with the rapid development of 
new methods and technologies, clinicians are paying more attention to 

the advantages and disadvantages of POCT.1 Traditional quality con-
trol (QC) programs analyze only QC products of two concentrations at 
a time,2 which may not be sufficient for the rapid detection of analyti-
cal errors affecting patient outcomes.3,4 Moreover, artificial serum can 
produce matrix effects.5 Although some clinicians use patient samples 
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Abstract
Objective: To establish an applicable and highly sensitive patient-based real-time 
quality control (PBRTQC) program based on a data model constructed with patients’ 
results of a procalcitonin point-of-care testing (POCT) analyzer.
Methods: Patients’ results were retrospectively collected within one year. The Excel 
software was used to establish quality control (QC) programs of the moving average 
(MA) and the moving rate of positive results (MR). A Monte Carlo simulation was 
used to introduce positive and negative biases between 0.01 and 1 ng/ml at random 
points of the testing data set. Different parameters were used to detect the biases, 
and the detection efficiency was expressed using the median number of patient sam-
ples affected until error detection (MNPed). After comparing the MNPeds of differ-
ent programs, MA and MR programs with appropriate parameters were selected, and 
validation plots were generated using MNPeds and maximum number of the patient 
samples affected (MAX). β curves were generated using the power function of the pro-
grams, the performances were compared with that of the conventional QC program.
Results: Neither the conventional QC nor MA program was sensitive to small bias, 
While MR program can detect the minimum positive bias of 0.06 ng/ml and negative 
of 0.4 ng/ml at an average daily run size of 10 specimens, with FRs < 1.0%, βs < 1%.
Conclusion: The MR program, which is more sensitive to small biases than conven-
tional QC and MA programs, with low FR and β. As such, it can be used as a PBRTQC 
program with high performance.
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as internal QC products,6 the precision of the sample concentration 
and the extremely high requirements for laboratory storage render 
this approach infeasible in most primary laboratories. For this reason, 
a patient-based real-time quality control (PBRTQC) method has been 
proposed for the QC analysis of population data by calculating the 
mean, median, or standard deviation of real-time results.7,8 Among 
the PBRTQC methods, the moving average (MA) program is the most 
widely used. However, the MA program cannot rapidly detect all types 
of biases such as small biases.9

As one of the early clinical diagnostic indicators of infection, 
procalcitonin (PCT) is a highly specific and sensitive biomarker.10 
However, it associates with systematic errors due to factors such 
as instrument failure, poor operator habits, or changes in reagents 
and environment, all of which can affect clinical judgment. The sen-
sitivity of the QC program determines whether small system errors 
can be rapidly detected so that appropriate measures can be quickly 
implemented. Liu et al.11 demonstrated that the moving sum of the 
number of positive patient results for prostate-specific antigen, as 
the QC procedure, can rapidly detect a positive bias of 0.03 mg/L, 
which is impossible with conventional QC and MA programs. 
However, in previously published studies,12-14 the project clinical de-
cision point was taken as the parameter of the PBRTQC program. In 
this study, we identify optimal parameters to detect small errors for 
the programs through simulations based on the data model, strive to 
shorten the time required for the QC programs to detect systematic 
errors under the conditions that both type I and II errors are within 
acceptable limits, and ensure the clinical accuracy of the POCT pro-
grams by monitoring the quality of PCT detection.

2  |  MATERIAL S AND METHODS

2.1  |  General information

The results of 2434 PCT samples tested in a laboratory at the Fifth 
People's Hospital of Panyu District, Guangzhou from July 2019 to June 
2020 were retrospectively collected. The results of 20 proficiency 
samples and 146 internal QC (IQC) samples were excluded. The rule 
of 41S/13S/22S was followed by the laboratory, and no out-of-control 
points caused by PCT analyzers, methods, or reagents were observed in 
the IQC chart during this period. The PCT results were verified by SPSS 
22 software (IBM, Armonk, NY, USA), and the data showed a skewed 
distribution (p < 0.05). Data simulation analysis was performed by Excel 
2007 software (Microsoft, Redmond, WA, USA). After considering the 
small specimen size on weekends and holidays, the daily run size for 
weekdays was set to approximately 10 specimens/day.

2.2  |  Instruments and reagents

The TZ-301 analyzer (ReLIA, Shenzhen, China), the PCT detection 
kit (ReLIA) with a minimum detection limit of 0.02 ng/ml, and IQC 
analytes (Acusera series, RANDOX, city, UK) were used in this study.

2.3  |  Efficacy of traditional IQC to detect biases

The Westgard 41S/13S/22S multi-rule method was used weekly to ana-
lyze the IQC analytes of two concentrations. The mean values of the 
12-month QC results were 1.50 ng/ml and 19.88 ng/ml, respectively, 
and the analytical coefficients of variation (calculated as standard devia-
tion/mean, SD/mean, CV) were 4.40% and 3.98%, respectively. We as-
sumed that the IQC concentrations obeyed a normal distribution. Thus, 
to obtain the probability of a critical bias triggering a QC rule, we calcu-
lated the standard z value for the probability of a QC result greater than 
χ SD (χ = 1, 2, or 3) in presence of a critical bias as follows12:

which could be expressed as:

where Meanold and Meannew are the averages of the QC concentra-
tions before and after a bias was introduced, respectively. This could 
be expressed as follows: Meannew = Meanold + critical bias. For exam-
ple, the z value for the probability that the 12S rule was triggered in the 
presence of a 0.05 ng/ml bias via a QC analyte with low concentration 
of 1.50 ng/ml was:

After consulting the z-table, we obtained p = 0.885, and the QC result 
greater than 2SD was (1-p) ×100% = 11.5%, and the probability of two 
consecutive QC results greater than 2SD (i.e., 22S rule) was (1-p)2 × 100% 
= 1.32%. Similarly, when N = 1, the z value was 0.2346, p = 0.593, and 
(1-p) × 100% = 40.7%, so the probability of obtaining four consecutive 
QC results greater than 1SD (i.e., 41S rule) was (1-p)4 × 100% = 2.75%.

2.4  |  Determination of MA program parameters

The MA program was set up in three parts: (1) the exclusion of values 
above or below a certain threshold by applying a truncation limit 
(TL), (2) the MA calculation method, which included the MA algo-
rithm and block size (N), was defined as the number of patient results 
to be averaged in the algorithm; and (3) the control limit (CL). The 
TL was used to minimize the impact of the extreme results on the 
dataset, which could reduce the false rejection rate (FR).15 The MA 
program was expressed as follows:

where Z(α) is the calculated average value of the PCT result, and X(α) is the 
result of sample α. According to the time series data, the MA program con-
tinuously operated on a term-by-term basis and calculated the sequential 

z =
(Meanold + � ×Meanold × CV) − (Meanold + criticalbias)

Meannew × CV

(1)z =
� ×Meanold × CV − criticalbias

Meannew × CV

z =
2 × 1.50 × 0.044 − 0.05

(1.50 + 0.05) × 0.044
= 1.202

(2)Z(�) =
X(�) + X(�−1) + X(�−2) +⋯ + X(�−n+1)

N
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average, including a certain block size. Each time a new result was merged 
into the block, the oldest result was discarded, and the average value of 
the block was recalculated for comparison with the predefined CL. The 
CLs were set using the mean and SD of the MA as follows:

2.5  |  Determination of MR program parameters

The MR program also consisted of three parts, but instead of using 
the TL to smooth the dataset, the MR program used a cut-off value 
(COV) for the binary conversion of the data set. The returned state 
was “0” when the original value was ≤COV; otherwise, the returned 
state was “1.” The program was as follows:

where MR(α) is the operating moving rate within a block, and T(α) is the 
binary conversion value (1 or 0) of the PCT concentration of the sam-
ple α. New MR values were obtained for each new PCT test result in 
successive MR operations. The CLs were set using the mean and SD of 
the MR as follows:

The efficacy of the bias detection under MA and MR programs with 
different TLs/COVs and N was expressed as the median number of pa-
tient samples affected until error detection (MNPed).

2.6  |  Simulation and validation of bias detection in 
MA or MR

To investigate the performance of MA and MR programs under dif-
ferent parameters, the first 1000 data files served as the training 
set. The mean and SD of MR/MA were calculated from this, and the 
remaining 1434 data files served as the testing set. CLs were set ac-
cording to Equations  (3) and (5). The FRs of MA and MR programs 

were computed at the same time. The visual basic for applications 
(VBA) development tool within Excel software was used to program 
the Monte Carlo simulation to introduce continuous positive or nega-
tive biases between 0.01 and 1.0 ng/ml at 100 random positions of 
the testing data set, respectively. If the result was <0.02 ng/ml, then 
the calculated value was 0.02  ng/ml. The MNPeds and maximum 
number of patient samples affected until error detection (Max) with 
different parameter combinations were calculated. After comparing 
the MNPeds of MA and MR programs with different Ns, the MA and 
MR programs with optimal parameters were selected for validation, 
and the type II error β value was calculated for each round of valida-
tion. Bias detection and validation curves were then plotted accord-
ing to the description, with the x-axis representing the bias introduced 
and the y-axis representing the number of patient samples affected. 
MNPeds were plotted as bar graphs, and MAX values were plotted as 
error lines. Small values of MNPed, FR, and β were expected for the 
PBRTQC program, and ideally, errors were detected in the daily run 
size, that is, MAX error lines did not exceed the daily run size.

3  |  RESULTS

3.1  |  Efficacy of conventional QC procedures to 
detect biases

The probability of triggering different QC programs by introducing 
biases between 0.01 and 1.0 was calculated, and data are shown in 
Table 1. The results indicated that a bias of 0.24 ng/ml or more was 
required to trigger the 41S rule first, with 95.5% probability, while 
the probability of triggering the same rule with a 19.88 ng/ml QC 
product was even lower.

3.2  |  Determination of MA and MR 
program parameters

As the programs monitored the layout of the data sequence rather 
than the patient's clinical background,16 instead of using the clini-
cal decision points, in the MA program, we expanded the selection 

(3)Control limit = MeanMA ± 3 × SDMA

(4)MR(�) =
T(�) + T(�−1) +⋯ + T(�−n+1)

N
× 100%

(5)Control limit = MeanMR ± 3 × SDMR

Bias magnitude (ng/ml)

QC 
Rule 0.01 0.05 0.1 0.24 0.5 1.0

Level 1 QC
1.50 ng/ml

13S 0.23% 1.5% 8.2% 70.8% 100% 100%

22S 0.11% 1.3% 11% 84.8% 100% 100%

41S 0.16% 2.8% 22% 95.5% 100% 100%

Level 2 QC
19.88 ng/ml

13S 0.14% 0.17% 0.21% 0.39% 1.0% 4.9%

22S 0.055% 0.071% 0.097% 0.22% 0.83% 5.8%

41S 0.070% 0.094% 0.14% 0.34% 1.7% 13%

Note: The conventional QC program uses 1.50 ng/ml quality control product to trigger the 41S rule 
first, which requires a bias of more than 0.24 ng/ml, with 95.5% probability.
Abbreviation: QC, quality control.

TA B L E  1 Probability of detection of 
different biases by the conventional multi-
rule internal quality control program
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range of the TL to an interval, that is, the population mean ± i × SD, 
and measured the most sensitive parameters within the selected 
interval. In addition, due to the large overall patient SD (4.21 ng/
ml), a smaller i value was required to converge the discrete de-
gree. When i = 0.1, the data rejection rate was 85.57%, which was 
too high, rendering the monitoring program ineffective. When i = 
0.2–0.8, the data rejection rate was 6.0%–2.59%, which rejected 
approximately 5% of the extreme values and maximized the utili-
zation of the patient data. In the MR program, we first set the ran-
dom block size to N = 50 and introduced a target bias of 0.05 ng/
ml. Pre-analysis found that minimum MNPeds (22–46) appeared 
in an interval of COV = 0.03–0.07 ng/ml, and that the MNPeds 
increased with the increase of the COV; therefore, the COV was 
set to 0.02–0.08 ng/ml before simulated in detail. The above pro-
grams used N = 10–100 as the block size to simulate the perfor-
mance of the bias detection, and the CL and FR rates are shown 
in Table 2.

3.3  |  MA or MR bias detection simulation

The minimum of the MNPeds for MA and MR programs with dif-
ferent parameters are shown in Figure  1, parameters with a FR 
greater than 1% were eliminated. For the MA program, the mini-
mum MNPed was when i = 0.2 (Figure 1A). The minimum MNPeds 
for negative and positive biases detected by the MR program 
were identified when COV = 0.03 and COV = 0.07, respectively 
(Figure 1B). Therefore, i = 0.2, as well as COV = 0.03 and 0.07, 
were selected to generate bias detection curves for MA and MR 
programs, respectively.

The bias detection curves for the two programs with different 
N after the TL or COV was determined are shown in Figure 2. For 
both programs, a larger N identified more positive and negative 
biases that could be simultaneously covered by the detection ca-
pability, although the detection sensitivity was reduced. The MA 
program was more sensitive to positive biases, whereas the MR 
program differed in sensitivity to positive or negative biases de-
pending on the COV selected. As such, i = 0.2 and N = 20, as well 
as i = 0.2 and N = 30, were selected as the optimal parameters 
of the MA program, whereas COV = 0.03 and N = 10, as well as 
COV = 0.07 and N = 10, were selected as the optimal parameters 
of the MR program to generate the validation graphs for program 
detection.

3.4  |  Validation of MA and MR programs

The MA and MR validation plots drawn with the optimal parameters 
are shown in Figure 3, The MR program is more sensitive to small 
biases, with a positive bias of 0.06 ng/ml or above and a negative 
bias of 0.4 ng/ml or above detected at a rate of 100% in a day, but 
only positive or negative biases could be detected by the MR pro-
gram with the two different combinations of parameters, separately. M
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On the contrary, The MA program is not sensitive to small biases, 
MNPeds of which are significantly greater than MR. The curves 
of β value, which is the rate of false negative that occurred in QC 
programs when bias was introduced, for each program are shown 
in Figure 4. The curves showed that when the MR program detects 
a positive bias of ≧0.06 ng/ml, β = 0.33%, or negative bias ≧0.4 ng/
ml, β ≦ 0.50%, as such, while when the ma program detects positive 
bias ≧0.2 ng/ml, β < 1.0%, these type II errors indicating that the 
performance of MR Program detecting small biases was more stable 
than the MA program.

The QC plot shows how the MR program detected systematic 
errors. The difference between an FR signal and true bias during the 
detection of the PCT concentration by introducing biases at random 
positions is shown in Figure 5.

4  |  DISCUSSION

PCT has high clinical value as an early indicator in the diagnosis of 
systemic bacterial infections, especially sepsis, with a reference 
value of < 0.05 ng/ml in healthy individuals and 0.05 ng/ml in those 
with mild systemic inflammatory responses.17 However, based on 
our stimulation, conventional QC, with a 95% daily probability of 
triggering the 41S rule that required a bias of 0.24 ng/ml or more, 
was not clinically sensitive, which may alter clinical interpretation 
and lead to incorrect treatment. And a PBRTQC model was estab-
lished with the experimental data of patients within one year to 
run the MA and MR program, and the results suggested that MA 
program could not detect positive and negative bias of 0.01–1.0 
at an average daily run size of 10, this indicating that neither the 

F I G U R E  1 The minimum MNPed of 
different parameters and biases in MA and 
MR programs. (A) The minimum MNPed 
curves obtained by the MA program after 
simulating different COVs combined with 
different Ns to detect different errors 
and eliminating the parameters of FR 
≧1.0%. For example, the curve of i = 0.3 
is curve of the minimum MNPed obtained 
when running N = 50~90 with FR < 1.0%. 
Since the minimum MNPed value was 
concentrated on the curve with N = 0.2, 
N = 0.2 was selected. (B) is similar to the 
above, COV = 0.03 and COV = 0.07 were 
selected as parameters of MR program
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F I G U R E  2 Bias detection curves for 
MA and MR programs with different 
block sizes. (A) MA program with i = 0.2. 
(B) MR program with COV = 0.03. (C) 
MR program with COV = 0.07. Different 
curves represent MNPeds measured by 
QC programs with different block sizes (N)
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conventional QC nor MA program was suitable for detecting small 
systematic biases, which is consistent with the reported results.18 
The MR program with simulated optimal parameters could con-
sistently detect positive of 0.06 ng/ml and above, or negative of 
0.4 ng/ml and above biases, at an average daily run size of 10. A 
comparison of the two PBRTQC programs revealed that the MA 
program rejected as many outliers as possible to narrow the CL 
and to improve the detection sensitivity, but the increased rejec-
tion rate of the data reduced the frequency of calculating patient 
results, leading to possible delays in rejection and the possibility 
of not detecting particularly large biases.19,20 After converting 
the results into the binary state, the MR program had no TLs and 
excessive concentrations for judgment, but had higher data uti-
lization than the MA program, so it is very suitable for analyses 
with small volumes of data such as that in this study. Furthermore, 
the PCT results of the population showed a skewed distribution, 
leading to a reduction in the applicability of the MA method.21 
On the one hand, if the moving median method is used, then it 
is more difficult to interpret the results22; on the other hand, it 
is difficult to estimate the standard deviation of the median, and 

the mathematical relationship between it and the mean standard 
deviation complicates the program.23 Therefore, the MR method 
with relatively simple operations is more applicable to similar dis-
tribution models.

Contrary to the previous studies, this study was based on the 
data model itself, and the parameter interval with the highest sen-
sitivity to the target error (0.05 ng/ml) was first estimated by pre-
simulation. Detailed simulation was subsequently performed to 
determine the optimal parameter combination, which was free from 
the limitation of only selecting specific clinical decision points as 
the parameters. Although the number of simulations increased, this 
method provides the possibility of identifying more sensitive param-
eter combinations. In addition, a small block size (N ≤ 100) was used, 
and the smallest block size (N = 10) was found to have the lowest 
MNPed in most cases, but it leads to a possible high FR, simultane-
ously. Furthermore, it was found that the MR program could select 
double COVs as the parameters to detect positive or negative biases, 
which may have been related to the distribution frequency on both 
sides of the peak value of the data model. The MR parameters can 
be different for different data distributions, and the applicability of 

F I G U R E  3 Validation charts for optimal MA or MR program for the bias detection. (A) MA program with i = 0.2 and N = 20. (B) MA 
program with i = 0.2 and N = 30. (C) MR program with COV = 0.03 and N = 10. (D) MR program with COV = 0.07 and N = 10. The blue strips 
represent MNPeds, the error lines represent the maximum number of results required for bias detection, and the red lines represent the 
daily run size of specimens
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F I G U R E  4 β Curves of bias detection 
for optimal MA and MR programs. 
β represents the false negative rate 
detected by the program after introducing 
bias, also known as type II error. (A), (B) 
The MA programs with i = 0.2, N = 20, 
and i = 0.2, N = 30, when bias ≥ 0.2 ng/ml, 
β < 1%. (C) The MR program with COV = 
0.03, N = 10, when negative bias ≥ 0.4 ng/
ml, β < 1%. (D) The MR program with COV 
= 0.07, N = 10, when bias ≥ 0.06 ng/ml, β 
< 1%
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F I G U R E  5 Simulation diagram of the MR program to detect systematic errors. The green horizontal line represents the average MR of 
the positive results. The red horizontal line indicates the upper control limit. The dashed lines represent the original data sets. The blue line 
represents the data set after introducing bias to the simulation at a random point. For the MR program with COV = 0.07 and N = 10, the 
lower limit of the control was < 0%, so there was no lower control limit in the sample diagram
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the double COVs to other data models requires further experimen-
tal validation. However, similar to the multi-rule Westgard program 
with different performance, our approach is acceptable if it can meet 
the needs of a robust QC system. In summary, the MR program with 
appropriate parameters is highly sensitive to small systematic biases. 
With the FR rate and type II errors within acceptable limits, as well 
as simple calculation procedures for implementation at no additional 
cost, the MR program can automatically analyze data entered into 
the form. The QC program with multiple parameters can also be se-
lected to ensure the sensitivity to biases in different directions as 
a supplement to or even outperform the existing conventional QC 
program.24

This study could not exclude the possibility of not detecting 
system errors in the dataset, and the original data were obtained 
after instrument maintenance and calibration to ensure the reli-
ability of the results. Additionally, the biases in the experimental 
process may have been more complex and variable. However, we 
used VBA development tools to perform simulation operations for 
system biases of different directions and sizes, so as to ensure the 
credibility of the results. Moreover, by analyzing the sensitivity of 
the MR program and the rule of selecting the parameters, although 
the sensitivity of detecting biases in different directions is not 
equal,  the high sensitivity of the MR program was demonstrated 
for small biases, which compensates for the deficiency of the MA 
method. The daily data size of the POCT analyzer in this study was 
relatively small, and it is precisely for this reason that efficient QC 
programs are needed to shorten the time to detect errors, to give 
full play to the effectiveness of the PBRTQC method while allow-
ing for a range of errors, and to save laboratory costs. After all, 
there are likely to be experiments with a low volume of specimens 
in every laboratory.

According to the data of the Center for Medicine and Medicaid 
Services, 32% of POCT operators in the United States do not per-
form QC, and 20% of operators do not operate QC analytes in a 
standard manner.25 The GB/T 29790–2020 Point-of-Care Testing 
(POCT)-Requirements for Quality and Competence, which was pub-
lished in China, establishes the requirements for the quality as-
surance capability of POCT products, but there are no specific 
provisions for the practices of POCT operators. Therefore, there are 
many issues that need to be resolved, and technicians need to de-
velop more sensitive and intelligent QC programs to address issues 
such as requiring additional manual operation steps when processing 
data, failing to judge true or false rejection signals, and traceability 
when result is outside the control limits. As such, expected results 
would be obtained during the QC process and be continuously im-
proved, thereby allowing laboratory personnel to focus more on 
solving clinical problems.
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