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Brain metastases represent a major cause of mortality among patients with breast cancer,
and few effective targeted treatment options are currently available. Development of new
biomarkers and therapeutic targets for breast cancer brain metastases (BCBM) is
therefore urgently needed. In this study, we compared the gene expression profiles of
the brain metastatic cell line MDA-MB-231-BR (231-BR) and its parental MDA-MB-231,
and identified a total of 84 genes in the primary screening through a series of bioinformatic
analyses, including construction of protein-protein interaction (PPI) networks by STRING
database, identification of hub genes by applying of MCODE and Cytohubba algorithms,
identification of leading-edge subsets of Gene Set Enrichment Analysis (GSEA), and
identification of most up-regulated genes. Eight genes were identified as candidate genes
due to their elevated expression in brain metastatic 231-BR cells and prognostic values
in patients with BCBM. Then we knocked down the eight individual candidate genes in
231-BR cells and evaluated their impact on cell migration through a wound-healing assay,
and four of them (KRT19, FKBP10, GSK3B and SPANXB1) were finally identified as key
genes. Furthermore, the expression of individual key genes showed a correlation with the
infiltration of major immune cells in the brain tumor microenvironment (TME) as analyzed
by Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive
Analysis (GEPIA), suggesting possible roles of them in regulation of the tumor immune
response in TME. Therefore, the present work may provide new potential biomarkers for
BCBM. Additionally, using GSEA, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Enrichment Analysis, we determined the top enriched cellular
functions or pathways in 231-BR cells, which may help better understand the biology
governing the development and progression of BCBM.
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INTRODUCTION

Brain metastases are the most common malignant brain tumors
and are the next frontier for the management of metastatic
cancer patients (1, 2). Even small lesions can cause neurological
disability, and the median survival of patients with brain
metastases is less than 1 year (3–5). Breast cancer is the second
most frequent cause of brain metastases (3–5), and recently it has
surpassed lung cancer as the leading cause of global cancer
incidence (6). Despite major advances over past decades in
prolonging breast cancer survival, breast cancer brain
metastases (BCBM) remain incurable with current therapies,
and the incidence is steadily increasing (6, 7). The cumulative
incidence of identified brain metastases among patients with
breast cancer (all stages at diagnosis) was not high (about 5.1%);
however, it varies by subtype. Patients with HER2-positive (34%
to 55%) or triple-negative (22% to 46%) subtypes experience
significantly higher brain metastasis occurrence than patients
with other subtypes (8–10). Moreover, prognosis after brain
metastases is also subtype-dependent, and triple-negative
breast cancer (TNBC) patients showed the shortest survival
time after brain metastasis than other subtypes, which is only
4.9 months (9, 11).

Currently, treatment options for brain metastases include
surgery, whole-brain radiotherapy, stereotactic radiosurgery,
and systemic drug therapy, such as chemotherapy, targeted
therapies, and immunotherapy (12–15). While systemic
chemotherapy has limited efficacy, targeted therapies have
recently shown promise for BCBM management (16–21).
HER2-targeted therapies have been shown to increase the time
to development of brain metastases and improved survival
following brain metastases (16, 18–21), and patients with
estrogen receptor-positive BCBM can be treated with
endocrine agents, cyclin-dependent kinases 4/6 (CDK4/6)
inhibitors, and the mechanistic target of rapamycin kinase
(mTOR) inhibitors (17). Unfortunately, there is no effective
targeted therapy for TNBC brain metastases (5, 9, 22). It is
desirable to identify potential therapeutic targets or molecular
risk factors or early biomarkers for this lethal disease.

Several brain metastasis-related genes and signaling pathways
have been identified, such as COX2, PTGS2, HBEGF,
ST6GALNAC5, CXCR4, GABA, heparinase, etc. (23–26).
However, the molecular basis for BCBM remains largely
unknown. The human MDA-MB-231-BR “brain-seeking”
breast cancer cell line (hereafter referred to as 231-BR cells)
was initially established from the TNBC cell line MDA-MB-231
(27, 28). It metastasizes with 100% frequency to the brain and has
been used as an established preclinical model of brain metastatic
breast cancer (29–31). In this study, we compared the gene
expression profiles of the two cell lines with RNA-sequencing,
and carried out a series of bioinformatic analyses and wet-lab
experiments to identify the potential genes that may serve as
prognostic biomarkers or therapeutic targets for BCBM.

There are many approaches to identify key genes. To be as
comprehensive as possible, here we integrate different
bioinformatic approaches and obtained a total of 84 differentially
expressed genes (DEGs) from the primary screening. Among them,
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we selected 8 genes that have not been reported to be associated
with BCBM in previous studies, and validated their expression
levels using quantitative RT-PCR. Following this, we knocked
down the 8 genes in 231-BR cells to evaluate their effects on cell
migration, and finally 4 genes were identified as key genes for
further exploration in our study. The key genes identified here are
screened from TNBC cells and showed an impact on migration
of the brain metastatic cell line 231-BR. In addition, the
overexpression of the above genes was associated with worse
distant metastasis–free survival (DMFS) of TNBC patients on
data from Gene Expression Omnibus (GEO) database. All these
pieces of evidence point to our key genes as potential therapeutic
targets in TNBC brain metastases.

To establish a better understanding of the function of the
selected genes, we further evaluated their RNA expression on data
from The Cancer Genome Atlas (TCGA), evaluated their protein
expression on data from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) and HPA database, investigated the
relationship between their expression and immune cell
infiltration through Tumor Immune Estimation Resource
(TIMER) and Gene Expression Profiling Interactive Analysis
(GEPIA). It is hoped that these multiple investigative
approaches could help decipher the underlying mechanisms of
the specific functions of these genes in BCBM. Along with the
above, we determined the top differentially regulated pathways
using Gene Set Enrichment Analysis (GSEA), Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Enrichment Analysis to better understand the biology governing
the development and progression of BCBM (for a list of
abbreviations used in the main text, see Supplementary Table 1).
MATERIALS AND METHODS

Cell Culture
The 231-BR cell line was a generous gift from Dr. Patricia Steeg
(National Cancer Institute, Bethesda, MD, USA) (27). It was
maintained in Dulbecco’s Modified Eagle Medium (DMEM),
supplemented with 200 mg/mL G418 (Sigma-Aldrich), 10% Fetal
Bovine Serum (FBS), and 1% penicillin-streptomycin. MDA-
MB-231 was purchased from ATCC and maintained in DMEM
supplemented with 10% FBS and 1% penicillin-streptomycin.

Transwell Cell Migration and
Invasion Assay
Cell migration and invasion assay were performed using 24-well
transwell chambers and BioCoat Matrigel invasion chambers
(BD Biosciences), respectively. For this, 2×104 cells were
suspended in 0.1 ml medium without FBS and added to the
upper compartment of the Transwell chamber. Next, 0.6 ml
medium with 1% FBS was added to the lower compartment as a
chemoattractant. After incubation at 37°C and 5% CO2 for 12 h,
the cells on the upper surface of the membrane were carefully
removed using a cotton bud; and cells on the lower surface were
fixed with 70% ethanol for 10 minutes and stained with 0.2%
crystal violet. Six fields were randomly selected of each insert at a
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Potential Biomarkers for BCBM
magnification of 200× with a light microscope (Olympus, Japan).
Student’s t-test was used to test for significance. P values of < 0.05
were defined as significant.

RNA Extraction
Total RNA from 231-BR and MDA-MB-231 cells was extracted
using TRIzol reagent (Qiagen, CA, USA) according to the
manufacturer’s instructions. Each group was prepared with
three parallel replicates. RNA quantity and purity were
assessed by a NanoDrop spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA).

RNA Sequencing
RNA sequencing library preparation and sequencing were
conducted in BGI Tech (Shenzhen, China) via BGISEQ-500
sequencer. The sequencing data was filtered with SOAPnuke
(v1.5.2) (https://github.com/BGI-flexlab/SOAPnuke) (32) by
removing reads containing sequencing adapter, removing reads
whose low-quality base ratio (base quality less than or equal to 5)
is more than 20%, and removing reads whose unknown base (‘N’
base) ratio is more than 5%. After this, clean reads were obtained
and stored in FASTQ format. The clean reads were mapped to
the reference genome using HISAT2 (v2.0.4). Bowtie2 (v2.2.5)
was applied to align the clean reads to the gene set, a database
built by BGI Tech, with known and novel coding transcripts
included (33). The expression level of gene was measured in the
normalized read count (given by Fragments Per Kilobase of
transcript per Million mapped reads, FPKM). The gene
expression heatmap was drawn by pheatmap (v1.0.8).
Differential expression analysis was performed using the
DESeq2 (v1.4.5) (34). False discovery rate (FDR) adjusted P
values (Q value) of < 0.05 were defined as significant. The RNA
sequencing data have been uploaded to the GEO with accession
number: GSE183862.

GO and KEGG Enrichment Analysis
In order to gain a better insight to the change of phenotype, GO
(including biological processes (BP), molecular functions (MF),
and cellular components (CC)) and KEGG enrichment analysis
of DEGs were performed using DR.TOM system of BGI Tech as
previously described (35). The significant terms and pathways
were obtained with a criterion of Bonferroni adjusted P value
(Q value) < 0.05. Only the top twenty terms for each category
were shown.

PPI Network Construction and Module
Analysis
The PPI (Protein-Protein Interaction) Network of DEGs was
constructed using STRING database (version 11.0), and the
minimum required interaction score was 0.4 (36). Cytoscape
(version 3.7.2) was employed to visualize the molecular
interaction networks (37). The MCODE algorithm was used to
determine the most significant clusters of highly interacting
nodes within the PPI network. The criteria for cluster finding
were as follows: MCODE scores > 5, degree cutoff = 2, node score
cutoff = 0.2, k-score = 2, and max. depth=100 (38). The
Frontiers in Oncology | www.frontiersin.org 3
CytoHubba algorithm was used to determine the top 30 nodes
ranked by Degree in the PPI network (39).

GSEA
GSEA on RNA-seq expression data was performed using GSEA
official software package (https://www.gsea-msigdb.org/gsea/
index.jsp). Analyses were performed to identify gene sets that
were enriched in 231-BR cells relative to 231 cells. GSEA
statistical significance was assessed using GSEA software that
calculated FDR. Gene sets were considered significantly enriched
if their FDR adjusted P values were less than 0.25, as defined by
the publishers of the GSEA tool (40, 41).

Quantitative RT-PCR
After total RNA was extracted, quantitative RT-PCR was
performed using SuperReal PreMix Plus (SYBR Green)
(TIGANGEN, Beijing, China) in a final volume of 20 ml
containing 10 mM each of the forward and reverse primers as
described by the manufacture. Relative levels of transcript
expression were measured using CFX96 Real-time System,
C1000 Thermal Cycler (BioRad). The relative expression was
calculated using the 2−ddct method with GAPDH as
endogenous controls. The following primers were used: see
Supplementary Table 2. Student’s t-test was used to test for
significance. P values of < 0.05 were defined as significant.

RNA Interference Assay
To knock down each candidate gene in 231-BR cells, the lentiviral
vector (U6-MCS-Ubiquitin-Cherry-IRES-puromycin) containing
the short-hairpin RNA (shRNA) specifically targeting each gene
was constructed (GeneChem, China). For lentivirus infection, three
individual shRNA oligos targeting each gene were pooled together:
see Supplementary Table 3, and the HitransG (Genechem) was
used according to the manufacturer’s instructions. Student’s t-test
was used to test for significance. P values of < 0.05 were defined
as significant.

Wound Healing Assay
The monolayer culture growth rate was determined using a
Cellomics Arrayscan (Genechem). Briefly, after infected by
lentivirus, cells of the same density were seeded into flat-
bottom 96-well plates and grown under normal conditions.
Images of the same area were captured at 0, 16 and 24 hours
after the scratch using a Cellomics Arrayscan according to the
manufacturer’s instructions (GeneChem). The migration area
was measured on the images using ImageJ. The wound healing
rate was calculated as the area of original wound minus the area
of wound during healing divided by the area of original wound.
Student’s t-test was used to test for significance. P values of < 0.05
were defined as significant.

Metastasis-Free Survival Analysis
The metastasis-free survival in breast cancer patients was
analyzed on datasets obtained from GEO database through
PROGgene Version 2, a comprehensive survival analysis tool
(42). Patients were divided into two groups based on the cutoff of
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median or 25th percentile. Survival analysis was performed using
cox proportional hazards analysis. The two groups were
compared by a Kaplan-Meier survival plot, and the HR and
log rank P value were calculated. The P value was calculated by
log rank test. P values of < 0.05 were defined as significant.

UALCAN Analysis
RNA-Seq-derived gene expression levels from TCGA and
protein expression levels from CPTAC were acquired and
analyzed by UALCAN portal (http://ualcan.path.uab.edu). The
expression levels of the genes were analyzed based on sample
types and tumor stages (43). Student’s t-test was used to test for
significance. P values of < 0.05 were defined as significant.

Receiver Operating Characteristic
Analysis
ROC analyses were performed in TCGA data using the function
“roc” in the R package pROC.

TIMER Analysis
Correlations between the key genes (KRT19, FKBP10 and GSK3B)
expression level and infiltration of immune cells and tumor purity
based on TCGA database were calculated and plotted using
TIMER2.0 (44, 45). The “Immune-Gene” module were selected,
and the TIMER, EPIC, quanTIseq, xCell, MCP-counter,
CIBERSORT and CIBERSORT-ABS algorithms were applied for
immune infiltration estimations. The correlation coefficient was
determined by the Spearman method. P values for the Kaplan-
Meier analyses are based on log rank tests.
Frontiers in Oncology | www.frontiersin.org 4
GEPIA Analysis
The correlations between gene expression and different immune
cell biomarkers were analyzed though GEPIA (http://gepia.
cancer-pku.cn/), which is a newly developed interactive web
server for analyzing the RNA sequencing expression data of
tumors and normal samples from the TCGA and the GTEx
projects, using a standard processing pipeline (46). The
correlation coefficient was determined by the Spearman method.

Statistical Analysis
Statistical analyses are described in detail in the respective
Materials and Methods sections above and in the figure legends.
The statistical test is also indicated whenever a P value is reported
in the text. Unless specified otherwise, statistical comparisons were
performed using GraphPad Prism 7 software.
RESULTS

Screening and Identifying of DEGs Based
on RNA Sequencing
To study the characteristics of the brain metastatic variant 231-
BR cells, transwell cell migration and invasion assay were
performed. As a “brain-seeking” breast cancer cell line, 231-BR
cells exhibited an increased invasion and migration capacities as
compared with its parental MDA-MB-231 cells, especially the
former (Figure 1A). In the search for novel genes related to the
pathogenesis of breast cancer brain metastasis, DEGs between
231-BR and MDA-MB-231 cells were screened and identified by
A B C

FIGURE 1 | Invasion, migration and gene expression of MDA-MB-231 and 231-BR cells. (A) Representative images of invasion and migration assays are shown on
the left and quantified data on the right. Bar, 50mm. Student’s t-test was used for statistical analysis: *P < 0.05, **P < 0.01. (B) Volcano plot of DEGs. (C) The
heatmap represents the expression values (FPKM) of DEGs.
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RNA sequencing. Expression was measured using FPKM. The
mRNAs were identified as DEGs if they met the following
criteria: the FPKM values≥ 1, FDR adjusted P value (Q value)
< 0.05 and |Log2 (fold-change)| > 1. On the basis of this
definition, 545 upregulated genes and 315 downregulated genes
were identified and shown in volcano plot and heatmap
(Figures 1B, C).

KEGG and GO Enrichment Analysis
of DEGs
To gain a better insight of the potential mechanisms underlying
brain metastases of breast cancer cells, GO and KEGG
Frontiers in Oncology | www.frontiersin.org 5
enrichment analysis of DEGs was performed. The pathway
with a criterion of Bonferroni adjusted P value (Q value)
< 0.05 was identified as significant. The most significant KEGG
pathways are shown in Figure 2A. Among the twenty involved
pathways, eleven of them were related to Cancers (KEGG
Pathway Term Level 2), including Pathways in cancer,
Proteoglycans in cancer, Small cell lung cancer, Chronic
myeloid leukemia, Choline metabolism in cancer, Pancreatic
cancer, Colorectal cancer, Glioma, Non-small cell lung cancer,
Hepatocellular carcinoma, Breast cancer and Bladder cancer;
four were related to Signal transduction (KEGG Pathway Term
Level 2), including ErbB signaling pathway, Ras signaling
A

B

C

D

FIGURE 2 | KEGG pathway and GO term enrichment analyses of DEGs. (A) KEGG pathway analysis of DEGs. (B–D) Enriched GO-terms for BP, MF, and CC. The
top twenty terms for each category are shown. The significant pathways and terms were obtained with a criterion of Bonferroni adjusted P value (Q value) < 0.05.
January 2022 | Volume 11 | Article 784096
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pathway, Rap1 signaling pathway and PI3K-Akt signaling
pathway; two were related to Endocrine system, including
AGE-RAGE signaling pathway in diabetic complications and
Relaxin signaling pathway; Fluid shear stress and atherosclerosis
that was related to Cardiovascular diseases (KEGG Pathway
Term Level 2) and Fc gamma R-mediated phagocytosis that
was related to Organismal Systems (KEGG Pathway Term
Level 2).

GO functional annotation analysis including biological
process (BP), molecular function (MF), cellular component
(CC) was used to further investigate functional differences of
the DEGs. The top 20 most enriched terms of BP, MF and CC
were presented in Figures 2B–D. Cell migration, angiogenesis
and response to organic cyclic compound in BP category, protein
binding, receptor antagonist activity and oxidoreductase activity
in MF category, and plasma membrane, membrane and integral
component of plasma membrane in CC category were the top 3
most significant terms in the 3 categories of GO, respectively
(Figures 2B–D).

PPI Network Construction and Module
Analysis
Hub genes defined as highly interconnected genes in the network
have been considered functionally significant. To find the hub
genes and clarify the interactions between the DEGs, the PPI
network of the 860 DEGs was constructed using STRING
database (Figure 3A). Two plug-ins of Cytoscape were
employed to identify the hub genes: (1) The core network
modules of the PPI network were identified by plug-in
MCODE of Cytoscape, and the top one significant module
with 13 nodes and 68 edges were extracted (Score=11.333).
These 13 hub genes were identified and assigned to MCODE
Group (Figure 3B and Table 1). (2) The top 30 nodes ranked by
Degree in the PPI network were calculated by the plug-in
CytoHubba, and these 30 genes were selected and assigned to
CytoHubba Group (Figure 3C and Table 1).

Pathway Enrichment Assessed by GSEA
GSEA is a computational method to determine the statistical
significance of a priori defined set of genes and the existence of
concordant differences between two biological states (40, 41).
Upon performing the GSEA analysis, Axon guidance was the
only significant signaling pathway identified by the default
setting in the GSEA tool, with FDR P value = 0.114, Nominal
P value < 0.0001, Normalized Enrichment Score (NES) = 1.715,
ES = 0.523, Leading edge: tags=29%, list=13%, signal=32%,
FWER P value: 0.129 (Figure 4A). The elevated expression of
the 36 leading edge subsets in 231-BR groups was shown
(Figure 4B), and these genes were assigned to the GSEA
Group (Table 1).

Identification of Candidate Genes
From the primary screening, genes that may be related to brain
metastatic potential were determined through the following
approaches and assigned to four groups accordingly: (1)
MCODE Group: the 13 hub genes identified by MCODE
Frontiers in Oncology | www.frontiersin.org 6
(Figure 3B, Table 1 and Supplementary Table 4); (2)
Cytohubba Group: the 30 hub genes identified by Cytohubba
(Figure 3C, Table 1 and Supplementary Table 5); (3) GSEA
group: the 36 leading edge subsets of GSEA (Figure 4B, Table 1
and Supplementary Tables 6, 7); (4) TOP DEGs group: the 10
most up-regulated DEGs in 231-BR group determined by Log2
(fold-change) (Table 1 and Supplementary Table 8).
Accordingly, a total of 84 unique genes were identified (Table 1).

To analyze the prognostic value of the genes, the correlation
between gene expression and metastasis-free survival, which was
defined as time from diagnosis to distant metastasis as first
event, was assessed using datasets from GEO (Figure 5).
Patients were divided into two groups based on the cutoff of
median or 25th percentile. High expression of combined
expression of the 8 genes, KRT19, FKBP10, GSK3B,
SPANXB1, FN1, MYO1D, ANO8 and ESM1 in breast cancer
patients was associated with worse metastasis-free survival in
breast cancer patients (combined expression: log rank P =
0.0159, HR = 1; KRT19: log rank P = 0.0075, HR = 1.45;
FKBP10: log rank P = 0.0061, HR = 3.5; GSK3B: log rank P =
0.0130, HR = 2.15; SPANXB1: log rank P = 0.0306, HR = 1; FN1:
log rank P = 0.0003, HR = 1.62; MYO1D: log rank P = 0.0245,
HR = 2.36; ANO8: log rank P = 0.0415, HR = 1; ESM1: log rank
P = 0.0049, HR = 1.71) (Figure 5). Meanwhile, their roles in
BCBM have not been thoroughly investigated in previous
studies. Therefore, the above 8 genes were identified as our
candidate genes (Figure 5).

The PPI network of the candidate genes was built with
STRING and showed in Figure 6A. They were annotated using
KEGG pathway annotations and GO terms (Figure 6B and
Supplementary Figure 1). The expression levels of the
candidate genes were verified using quantitative RT-PCR
(Figure 6C). These genes all showed a higher expression in
231-BR cells as compared with MDA-MB-231 cells.

The Prognostic Values of the Candidate
Genes in BCBM and Effects of Them on
231-BR Cell Migration
To explore the prognostic values of the candidate genes in
BCBM, we analyzed the relationship of the gene expression
with brain-metastasis survival in breast cancer patients using
data from a public dataset GSE12276, which contain the brain
relapse information of a total of 204 patients. We assessed the
prognostic value using Cox proportional hazards analysis, with
risk group as covariate and brain metastasis-free survival as
endpoint. The candidate gene set showed a significantly
correlation with brain metastasis-free survival of breast cancer
patients [log rank P = 0.011, hazard ratio (HR) = 3.781,
CI = 1.257 − 11.368], indicating a prognostic value of the gene
set in predicting brain metastasis (Figure 7A).

Next, Each gene was analyzed individually for its effect on 231-
BR cell migration. The 8 candidate genes were individually
knocked down in 231-BR cells, and cell migration was evaluated
using the wound healing assay (Figures 7B, C). Knockdown
efficiency was verified by quantitative RT-PCR (Figure 7D). As
shown, among the above-mentioned 8 genes, knockdown of four
January 2022 | Volume 11 | Article 784096
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genes: KRT19, FKBP10, GSK3B, and SPANXB1 significantly
inhibited the migration of 231-BR cells. Arising from this, these
four genes were determined as the final key genes in our study.

Expression of the Key Genes in Breast
Cancer Patients
In the results section above, the candidate gene set showed a
significantly correlation with brain metastasis-free survival of
breast cancer patients, and each individual candidate genes
Frontiers in Oncology | www.frontiersin.org 7
appear to have an impact on metastasis-free survival of breast
cancer patients. In addition, each individual key genes showed an
effect on the migration of 231-BR cells (Figure 7). These data
indicated these genes may serve as potential biomarkers in
BCBM. To better understand the functions of the genes in
breast cancer, we next evaluated the expression of the key
genes in breast cancer patients using Samples from the public
databases, including TCGA, CPTAC, and HPA Databases
(Figures 8A–E).
A

B C

FIGURE 3 | PPI network construction and module analysis. (A) The PPI Network of DEGs was constructed using STRING database, and visualized with Cytoscape.
(B) The most significant cluster of highly interacting nodes within the PPI network as determined by MCODE algorithm. (C) The top 30 nodes ranked by degree in
the PPI network determined by CytoHubba algorithm.
January 2022 | Volume 11 | Article 784096
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The RNA and protein expression of the key genes in breast
cancer patients based on sample types and individual cancer
stages was evaluated using TCGA and CPTAC databases,
respectively (Figures 8A–D). Elevated expression of KRT19,
FKBP10 and GSK3B at both transcriptional and translational
levels in BRCA were observed as compared with normal breast
tissue, while the transcript per million (TPM) values of
SPANXB1 were extremely low (TPM < 1) and not shown.
Moreover, HPA database was applied to validate the
expression of the key genes at protein level. The similar result
was obtained, that is, KRT19, FKBP10 and GSK3B protein all
showed elevated expression in BRCA tissue compared with
normal breast tissue, whereas SPANXB1 was not detected
(Figure 8E). The expression levels of the four key genes were
also evaluated in human cancer cell lines, particularly in breast
cancer cell lines, and overexpression of KRT19, FKBP10 and
Frontiers in Oncology | www.frontiersin.org 8
GSK3B in TCGA breast cancer patients and breast cancer cell
lines were observed (Supplementary Figure 2). In addition,
relationships between KRT19, FKBP10 and GSK3B expression
and clinicopathological features from TCGA breast cancer
cohort (n = 1083) were also explored (Supplementary
Table 9). It should be noted that although the expression level
of SPANXB1 was very low in breast cancer patients as well as in
most of the human cancer cell lines (Supplementary Figure 2), it
showed a very high expression in the brain metastatic 231-BR
cells as compared with its parental MDA-MD-231. In light of its
pro-migratory effect on 231-BR cells as well as its prognostic
value in metastasis-free survival of breast cancer patients
(Figures 5E, 7), SPANXB1 was therefore also considered as a
key gene in the present study.

To assess the predictive performance of the key genes in
breast cancer, we performed ROC analysis and used the area
TABLE 1 | Candidate genes from the primary screen.

Group
names

Number
of genes

Gene symbols

MCODE
group

13 CSF1 FBN1 MMP1 IGFBP3 IGFBP4 ANO8 GAS6 LGALS1 WFS1 TMEM132A SDC2 EVA1A IGFBP7

CYTOHUBBA
group

30 CSF1 FBN1 GSK3B BDNF LYN NFKBIA HSPA5 CXCL1 PPARG SERPINE1 SNAI1 HIF1A PRKCA PRKACA RAC2 HMOX1 VEGFA DLG4
CXCL8 HIST2H3PS2 EGFR ICAM1 MYC FN1 CAV1 CDKN1A ITGB1 BMP2 SNAI2 ITGAV

GSEA group 36 GSK3B SEMA3A EPHA5 NTN4 NGEF SEMA6D CFL2 EPHA7 EFNB1 NFATC4 SEMA3E DCC CXCR4 EPHA4 FES SLIT2 ROBO2 EFNA3
EPHA6 SEMA4G EPHA3 ROBO3 PLXNC1 EPHB1 SEMA3B SRGAP3 SEMA3G GNAI1 ABLIM1 EPHA1 SEMA3F SEMA4D FYN DPYSL2
UNC5C SRGAP1

TOP DEGs
group

10 MMP1 SEMA3A KRT19 SOCS2 SPANXB1 FST KCNAB2 FKBP10 MYO1D ESM1
A B

FIGURE 4 | Differentially regulated pathways determined using GSEA. (A) GSEA identified the “Axon guidance” signaling pathway as significant (FDR adjusted P
value < 0.25). (B) Expression values (FPKM) of the 36 leading edge subsets of “Axon guidance” pathway are shown in a heatmap.
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under the ROC curve (AUC) as an assessment of the prediction
accuracy. A total of 1,083 breast tumor samples and 111 normal
breast samples were obtained from TCGA. As shown in
Figure 8F, KRT19 (AUC = 0.855, CI = 0.825 - 0.885) and
FKBP10 (AUC = 0.836, CI = 0.808 - 0.864) had a certain
accuracy in predicting cancer and normal, and the predictive
abilities of GSK3B (AUC = 0.654, CI = 0.613 - 0.696) and
SPANXB1 (AUC = 0.682, CI = 0.650 - 0.714) were less accurate.

Correlation Between Gene Expression and
Infiltration of Immune Cells in Breast
Cancer
The tumor microenvironment (TME) landscape in brain
metastases was analyzed recently, which revealed that breast
brain metastases showed the highest neutrophil infiltration of
myeloid cells compared with non-tumor, glioma, melanoma
brain metastases and lung cancer brain metastases (47).
Meanwhile, CD4+ and CD8+ T cells are the major immune
cells of lymphocytes in breast brain metastases (47).
Frontiers in Oncology | www.frontiersin.org 9
Herein, we used TIMER, EPIC, quanTIseq, xCell, MCP-
counter, CIBERSORT and CIBERSORT-ABS algorithms to
investigate the potential correlations between key gene
expression and immune infiltration levels of neutrophils, CD4+
and CD8+ T cells in 1,100 breast cancer samples from TCGA
through the TIMER 2.0 web server. The correlation coefficients
(Spearman’s Rho values) between the expression of the key genes
and the abundance of the immune cell type as well as its subtypes
were shown in heatmaps (Figures 9A–C). A positive correlation
of GSK3B expression with neutrophil infiltration was observed
based on most algorithms (Figure 9A). The correlations of the
above gene with tumor purity and infiltration level of neutrophil
in breast cancer estimated by TIMER algorithm were shown in
Figure 9D (Rho value = 0.19, P value = 1.70e-09).

Negative correlations of KRT19, FKBP10 and SPANXB1
expression with CD8+ T cell infiltration were observed
(Figure 9B). The correlations of KRT19, FKBP10 and
SPANXB1 expression with tumor purity and infiltration level
of CD8+ T cell in breast cancer estimated by EPIC algorithm
A B C

D E F

G H II

FIGURE 5 | The association between expression of the candidate genes and metastasis-free survival in breast cancer. (A) The association between the combined
expression of the 8 candidate genes and metastasis-free survival in breast cancer cohorts. (B–I) The association between expression of individual genes and
metastasis-free survival in breast cancer cohorts. Samples were obtained from the GEO database. The P value was calculated by log rank test.
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were shown in Figure 9E (Rho value = -0.158, P value = 5.16e-
07), 9F (Rho value = -0.319, P value = 5.42e-25) and 9G (Rho
value = -0.153, P value = 1.33e-06), respectively. Furthermore,
how the expression level (high versus low) of the immune cells
and the key genes are associated with patient survival on Kaplan–
Meier curves were explored (Figures 9H–K). Low GSK3B
expression with low neutrophil infiltration group has a better
survival as compared with low GSK3B expression with high
neutrophil infiltration group (Figure 9H). Low KRT19, FKBP10
and SPANXB1 expression with low CD8+ T cell infiltration
group has a poorer survival as compared with low KRT19,
FKBP10 and SPANXB1 expression with high CD8+ T cell
infiltration group, whereas high KRT19, FKBP10 and
Frontiers in Oncology | www.frontiersin.org 10
SPANXB1 expression with low CD8+ T cell infiltration group
has a poorer survival as compared with high KRT19, FKBP10
and SPANXB1 expression with high CD8+ T cell infiltration
group (Figures 9I–K).

Correlation Between Gene Expression and
Biomarkers of Different Immune Cell
Subsets in Breast Cancer
As microglia (MG), monocyte-derived macrophages (MDMs),
neutrophils, and CD8+ and CD4+ T cells have been confirmed to
be the major immune cell determinants of the brain TME
landscape (47), we investigated the association between the key
genes and the above immune cells based on immune biomarkers
A

B

C

FIGURE 6 | The 8 candidate genes selected from the screening. (A) The PPI network of the 8 candidate genes. (B) The KEGG pathway annotations and GP_BP
terms of the 8 candidate genes. (C) The mRNA levels of all candidates were validated by quantitative RT-PCR. Student’s t-test was used for statistical analysis:
**P < 0.01, ***P < 0.001 compared with 231 group.
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expression in breast cancer via GEPIA. The results indicated a
negative correlation between KRT19 expression and expression
of CD8+ T cells (biomarkers: CD8A and CD8B), CD4+ T cells
(biomarker: CD4), neutrophils (biomarkers: CD66b, CD11b and
CCR7), and MDMs (biomarkers: AHR, FCGR2B, CLEC10A,
CD1C, CD1B, CD207 and CD209); a negative correlation
between FKBP10 expression and expression of CD8+ T cells
(biomarkers: CD8A and CD8B); a positive correlation between
GSK3B expression and expression of neutrophils (biomarker:
CD11b); a negative correlation between SPANXB1 expression
and expression of CD8+ T cells (biomarkers: CD8A, CD8B),
neutrophils (biomarkers: CD11b and CCR7) and MDMs
(biomarkers: AHR, FCGR2B, CLEC10A, CD1C, CD1B, CD207
and CD209) (Table 2).

To better understand the possible functional states of the key
genes in breast cancer, we explored the expression characteristics of
the key genes at the single-cell level through CancerSEA, (http://
biocc.hrbmu.edu.cn/CancerSEA/), a database that aims to
comprehensively decode distinct functional states of cancer cells
at single-cell resolution (48). As shown in Supplementary Figure 3,
KRT19, FKBP10, GSK3B, and SPANXB1 have been investigated at
the single-cell level in 9, 10, 16 and 3 types of cancer, respectively
Frontiers in Oncology | www.frontiersin.org 11
(Supplementary Figures 3A–D). Correlations between the gene
and functional state in different single-cell datasets were filtered by
the correlation > 0.3 and P value < 0.05 (Spearman’s rank
correlation test with Benjamini & Hochberg FDR correction for
multiple comparisons). In breast cancer (GSE77308) (49), KRT19
and SPANXB1 were shown to be correlated with several functional
states. KRT19 was positively correlated withmetastasis, hypoxia and
stemness, and negatively correlated with DNA repair, inflammation,
cell cycle, proliferation (Supplementary Figure 3E). SPANXB1 was
positively correlated with inflammation and proliferation
(Supplementary Figure 3F).
DISCUSSION

Attempts to identity new therapeutic targets for BCBM are
emerging (23–26). In the present study, we focused on mining
RNA-seq data of brain metastatic breast cancer cell lines and
multiple clinical cohorts, by utilizing an integrated bioinformatic
analyses approach and leveraging a comprehensive collection of
databases, we identified potential biomarkers, validated their
functions in brain metastatic breast cancer cell migration, and
A B

C D

FIGURE 7 | The association of the candidate gene set with brain metastasis-free survival of breast cancer patients and effects of the genes on migration of 231-BR
cells. (A) The association between the candidate gene set and brain metastasis-free survival in breast cancer patients. Samples were obtained from the GEO
database. The P value was calculated by log rank test. (B) Knockdown of KRT19, FKBP10, GSK3B and SPANXB1 inhibited the migration of 231-BR cells as
determined by wound healing assay, and the representative images are shown. Bar, 200mm. (C) The quantified data of wound healing assay are shown. Student’s
t-test was used for statistical analysis: *P < 0.05, **P < 0.01, ***P < 0.001 compared with corresponding control (shCTRL) at the same time point. (D) Knockdown
efficiency of shRNAs was verified by quantitative RT-PCR. Student’s t-test was used for statistical analysis: ***P < 0.001 compared with shCTRL.
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E F

FIGURE 8 | Gene expression levels were explored by TCGA, CPTAC and HPA databases. (A) RNA expression levels of KRT19, FKBP10 and GSK3B were
explored by TCGA based on sample types. (B) RNA expression levels of KRT19, FKBP10 and GSK3B were explored by TCGA based on cancer stages. (C) Protein
expression levels of KRT19, FKBP10 and GSK3B were explored by CPTAC based on sample types. (D) Protein expression levels of KRT19, FKBP10 and GSK3B
were explored by CPTAC based on cancer stages. (E) Protein expression levels of KRT19, FKBP10 GSK3B and SPANXB1 as detected by immunohistochemistry
staining from the HPA database. (F) ROC curves of the key genes using data from TCGA. Expression values were compared using Student’s t-test: *P < 0.05, **P <
0.01, ***P < 0.001 compared with Normal.
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FIGURE 9 | The correlation between key gene expression and immune cell infiltration in breast cancer samples from TCGA through TIMER. (A) The correlations
between key gene expression and immune infiltration levels of neutrophils are shown in a heatmap. (B) The correlations between gene expression and immune
infiltration levels of CD8+ T cells. (C) The correlations between gene expression and immune infiltration levels of CD4+ T cells. (D) The correlations of GSK3B with
tumor purity (left) and infiltration level (right) of neutrophils in breast cancer estimated by TIMER. (E) The correlations of KRT19 expression with tumor purity and
infiltration level of CD8+ T cells in breast cancer estimated by EPIC algorithm. (F) The correlations of FKBP10 expression with tumor purity and infiltration level of
CD8+ T cells in breast cancer estimated by EPIC algorithm. (G) The correlations of SPANXB1 expression with tumor purity and infiltration level of CD8+ T cells in
breast cancer estimated by EPIC algorithm. (H) The associations of the neutrophil and GSK3B expression levels (high versus low) with patient survival on Kaplan–
Meier curves. (I) The associations of the CD8+ T cells and KRT19 expression levels (high versus low) with patient survival on Kaplan–Meier curves. (J) The
associations of the CD8+ T cells and FKBP10 expression levels (high versus low) with patient survival on Kaplan–Meier curves. (K) The associations of the CD8+ T
cells and SPANXB1 expression levels (high versus low) with patient survival on Kaplan–Meier curves. The correlation coefficient was determined by the Spearman
method in (A–G). P values for the Kaplan-Meier analyses are based on log rank tests in (H–K).
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showed their clinical relevance to breast cancer metastasis. Our
study not only provided unprecedented insights into BCBM, but
also showcased the bioinformatics analytical pipeline that could
be applied to other cancers.

Enrichments of Proteoglycans in cancer signaling pathway
and Collagen-containing ECM can be observed in our KEGG
and GO-CC analyses (Figures 2A–D). Therefore, as two main
components of the extracellular matrix, which played critical
roles in malignant cell behavior and cancer metastasis (50),
proteoglycans and collagens may play roles in regulating 231-
BR cellular functions. For the latter, collagen fibers can lay tracks
for cells to migrate (51, 52), and the remodeled stiff collagens
might be exploited as invasion “highways” by cancer cells (51–
53). Among the identified key genes in our study, FKBP10 is a
molecular chaperone able to pro-collagen maturation in
fibroblasts and contributes to high-collagenous ECM (54, 55).
For Proteoglycans in cancer pathway, it enables a mesenchymal
phenotype with increased cellular motility. Proteoglycans in the
ECM can make the extracellular space more compliant for
migration, and cell-surface proteoglycans receive signals
triggered by interactions with ECM components and modulate
cellular behavior such as migration (56–58). There was not much
evidence highlighting the relationships between Proteoglycans in
cancer pathway and the 4 key genes. However, as one of the 8
candidate genes (Figures 5, 6), which showed a significantly
correlation with brain metastasis-free survival as a gene set
(Figure 7A), FN1 contributes to the “proteoglycans in cancer”
pathway (KEGG Pathway Map: 05205). Although FN1 was not
identified as key genes in our study because it did not affect 231-
BR cell migration in wound healing assay, its possible role in
BCBM through Proteoglycans in cancer signaling pathway
should not be ignored. This requires investigation in
future studies.

GSEA is a computational method to determine whether a
predefined set of genes shows statistical difference between two
sets of processes or phenotypes (40, 41). Based on our RNA seq
Frontiers in Oncology | www.frontiersin.org 14
data, Axon guidance was the only signaling pathway identified
through GSEA (Figure 4), indicating a role of it in phenotype
determination of 231-BR cells. Axon guidance is a specialized
form of cell migratory phenomenon (59) and has been
implicated in tumor cell migration (60). Meanwhile, as one of
the identified key genes, GSK3B is a member of the above
pathway (KEGG Pathway Map: 04360). The emergence of this
pathway indicates the regulation of Axon guidance by GSK3B
may thereby affect the promigratory phenotype of 231-BR cells.
This needs to be demonstrated in future studies.

The brain has been considered previously to be an immune
privileged site. Indeed, it had remained uncertain for a long time
whether immune cells exist and function in the brain TME (61).
Recently, it has been reported that various types of immune cells
can be recruited into the brain TME when the blood-brain
barrier is compromised by metastatic cancer cells (61). The co-
evolution of metastatic cancer cells with the brain
microenvironment is critical for metastatic cells’ escaping
dormancy and colonizing the brain. The TME landscape in
brain metastases was analyzed and MG, MDMs, neutrophils,
and CD8+ and CD4+ T cells have been confirmed to be the
major immune cell determinants of the brain TME landscape
(47, 62). To better predict the functions of the above genes in
breast cancer, we explored the correlations between gene
expression level and infiltration of immune cells. Meanwhile,
correlation between gene expression and biomarkers of different
immune cell subsets in breast cancer were explored. As one of the
identified key genes, GSK3B positively correlated with neutrophil
infiltration (Figure 9A). Neutrophils play important and
contradictory roles in cancer development. In the TME, they
may inhibit tumor progression by generating anti-tumor factors
(63). However, more frequently, they are reported as tumor
accomplices to promote cancer metastasis (64–67) and seems to
be an indicator of poor outcome (68, 69). A common
mechanism of how tumors can induce neutrophilia seems to
be the production by tumors of cytokines that influence
TABLE 2 | Correlation between gene expression and biomarkers of different immune cell subsets in breast cancer.

Description Gene Markers KRT19 FKBP10 GSK3B SPANXB1

Cor P value Cor P value Cor P value Cor P value

CD8+ T cell CD8A -0.20 2.30e-11 -0.19 1.40e-10 -0.05 1.40e-01 -0.13 1.70e-05
CD8B -0.22 1.80e-13 -0.20 3.10e-11 -0.09 5.30e-03 -0.15 8.10e-07

CD4+ T cell CD4 -0.21 2.60e-12 -0.07 2.00e-02 0.09 2.60e-03 -0.09 2.30e-03
Neutrophil CD66b(CEACAM8) -0.08 1.20e-02 -0.05 1.20e-01 0.01 8.20e-01 0.04 1.70e-01

CD11b(ITGAM) -0.11 1.80e-04 0.02 4.40e-01 0.15 1.40e-06 -0.06 3.60e-02
CCR7 -0.14 2.40e-06 -0.17 1.80e-08 -0.06 6.60e-02 -0.13 1.40e-05

MG P2RY12 -0.10 6.50e-04 -0.05 1.40e-01 0.06 4.60e-02 -0.12 6.60e-05
TMEM119 -0.05 9.70e-02 0.10 1.40e-03 -0.03 4.00e-01 -0.06 4.10e-02
TAL1 -0.03 3.30e-01 0.08 5.50e-03 -0.05 1.30e-01 -0.08 1.20e-02
SALL1 0.03 3.10e-01 0.19 5.20e-10 0.27 4.90e-19 0.17 1.10e-08

MDMs AHR -0.09 1.90e-03 0.03 3.00e-01 0.44 1.10e-53 -0.07 2.80e-02
FCGR2B -0.16 1.50e-07 -0.01 7.50e-01 0.11 4.20e-04 -0.07 2.10e-02
CLEC10A -0.16 1.40e-07 -0.14 6.20e-06 -0.12 1.10e-04 -0.18 2.7e−09
CD1C -0.15 3.80e-07 -0.09 2.30e-03 -0.11 1.70e-04 -0.15 4.1e−07
CD1B -0.19 1.90e-10 -0.17 2.50e-08 -0.06 4.90e-02 -0.10 1.50e-03
CD207 -0.14 1.70e-06 -0.02 5.50e-01 0.003 9.30e-01 -0.09 3.20e-03
CD209 -0.20 6.50e-11 -0.03 3.40e-01 0.16 1.10e-07 -0.14 7.5e−06
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granulopoiesis (70). In breast cancer, neutrophils have been
shown to drive metastatic establishment within the lung TME
(65), meanwhile, they represented a major immune
compartment and showed a high infiltration in the brain TME
(47). Therefore, the positive correlation of GSK3B and
neutrophil infiltration may suggest a metastasis-promoting
effect or a prognostic role or of this gene in BCBM (Figure 9).

Three of the identified key genes (FKBP10, KRT19, and
SPANXB1) negatively correlated with the infiltration of CD8+
T cells, which is the lymphocytes primarily responsible for
immune-mediated tumor cell death (Figure 9B). One possible
cause of the immunosuppression caused by FKBP10 is that
collagen can act as a regulator for tumor associated immune
infiltration (71–73). High-fibrillar collagens could act as barrier
to immune infiltration, and stop the production of chemokines,
that lead to suppression of the anti-tumor immune response in
the TME (71–74). Higher collagen deposition resulted in tumor
immune suppression characterized by decreased total CD8+ T
cells and increased exhausted CD8+ T cell subpopulations due to
the leukocyte-specific collagen receptor LAIR1, which suppresses
lymphocytic activity and is expressed on CD8+ T cells following
integrin beta 2 binding to collagen (71–77). Few studies have
explored the effects of the other two (KRT19, and SPANXB1) in
immunoregulation. However, interrupting expression of KRT19
in mouse tumors prevented the formation of the CXCL12–
KRT19 coating, allowed the accumulation of T cells (78),
suggesting a possible role of KRT19 in immunoregulation.
Considering low CD8+ T cell infiltration often associated with
poor outcome and CD8+ T cell is one of the major immune cell
determinants of the brain TME (47, 71, 74), the negative
correlation between the identified genes (KRT19, FKBP10 and
SPANXB1) and CD8+ T cell infiltration suggests the
immunosuppressive and metastasis-promoting effects in BCBM.

To the best of our knowledge, the effects of our key genes on
BCBM have not been reported so far. Some previous studies have
shown effects of these genes on cell migration or metastasis to
other sites in some malignant tumors. KRT19 encodes a protein
belonging to the keratin family, which are integrated in the
cellular framework and interact with a range of cellular proteins
(14, 15). It has been shown to exhibit tumor-promoting effects in
breast, hepatocellular carcinoma, oral squamous cell carcinomas
and lung cancers (79–81). However, studies in breast cancer cells
have shown that modulation of KRT19 expression led to
contrasting effects on cell behaviors. It can either suppress cell
proliferation, migration and invasion (14, 15, 82), or promote
oncogenesis, tumor growth and metastasis (83, 84). MARIA et al.
reported that KRT19 was only detected in circulating tumor cells
of breast cancer patients, but not in healthy donors. The KRT19-
positive detections correlated with the diagnosis and high
proliferation rate of breast cancer (85), and the combined
positive detection of PTHRP-plus-KRT19 correlated with the
presence of distant metastasis, especially with bone metastasis
(85). These results also asked whether KRT19 could be a marker
in breast cancer bone metastasis, which need further
investigation. In addition, KRT19 is involved in Estrogen
signaling pathway (KEGG Pathway Map: 04915), which has
Frontiers in Oncology | www.frontiersin.org 15
been shown to stimulate cell migration and contribute to brain
metastases of breast cancer (86–89). MDA-MB-231 cells also
express estrogen receptors, including wild-type ERa, ERa
variants (ERa D5 and D7) and ERb variants (ERb1 and ERb2)
(90–93). Moreover, although not in the top 20, Estrogen
signaling pathway was enriched in our KEGG analysis (Term
Candidate Gene Num = 20, Q value = 0.02). These findings may
help explain why KRT19 was identified as key genes in this study.

FKBP10 is a gene encoding FKBP65, which belongs to the
FKBP-type peptidyl-prolyl cis/trans isomerase family. This
protein localizes to the endoplasmic reticulum and acts as a
molecular chaperone (RefSeq database). FKBP family members
are involved in multiple cellular processes, including receptor
signaling, protein folding, transcription, chaperone activity and
immunosuppression (94). A growing body of evidence has
suggested that FKBPs play important roles in cancer (95, 96).
FKBP10 has been studied in some cancers and its role is
currently controversial (97–101), while few studies have
investigated FKBP10 in breast cancer. FKBP10 has been
reported to be an intracellular regulatory factor for ECM
reconstruction and directly interact with collagen I (54, 55).
Combined with our GO-CC results that showed an enrichment
of Collagen-containing extracellular matrix (Figures 2A, D), the
role of FKBP10 in 231-BR cellular behavior may partly
be explained.

The protein encoded by GSK3B is a serine-threonine kinase
belonging to the glycogen synthase kinase subfamily. It is one of
the few signaling mediators that play central roles in a diverse
range of signaling pathways, and it has been shown to be
involved in energy metabolism, inflammation, apoptotic
pathways, ER-stress, and mitochondrial dysfunction (102).
Multiple roles have been suggested for GSK3B in different
cancers, and even after years of study they remain complex
and controversial (103). Due to its ability to phosphorylate and
thereby target some pro-oncogenic molecules for ubiquitin-
dependent proteosomal degradation, GSK3B has been thought
of potential tumor suppressor in some cancers (104–106).
However, recent reports have suggested that GSK3B is a
positive regulator of cancer progression (107–111). In breast
cancer, GSK3B knockdown has been shown to inhibit cell
proliferation, and GSK3B overexpression has been shown to
correlate with poor prognosis in TNBC patients (112–114).

SPANXB1 is a member of the SPANX family, which consists
of five members all located in a gene cluster at Xq27.1 (115).
SPANX family encompasses cancer-testis antigens that are
epigenetically silenced in normal tissue except testes, while
expressed in several human tumors (116, 117). SPANXB1 has
been reported to be expressed in melanoma and carcinomas of
breast, lung, ovary, colon, and bladder (118–120). In TNBC,
SPANXB1 has been shown to promote lung and liver metastasis
and be traceable in the circulating extracellular vesicles (120).
These data support our findings, and suggest a utility of
SPANXB1 as a prognostic biomarker in breast cancer
metastasis (120).

Combining the previous studies with insights from our work,
we believe that the candidate gene set and individual key genes
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identified here may be implicated in brain metastasis of breast
cancer. The present study may provided new potential
biomarkers for BCBM. However, this study has several
limitations. Firstly, the screening conducted by us was
performed in two TNBC cell lines and the effect of the
identified genes on cell migration was only validated in the
brain metastatic cell line 231-BR. Although some evidence points
to the key genes as potential biomarkers of BCBM, further
biological experimental validation and clinical verification
along with extensive mechanistic studies are necessary for
more accurate and reliable conclusions. Indeed, this is an on-
going study in our laboratory with the aim to better clarify and
ultimately decipher the underlying mechanism of various key
genes. Secondly, although the candidate gene set showed a
significantly correlation with brain metastasis-free survival of
breast cancer patients from a public dataset, the prognostic value
of each individual candidate genes requires further investigation
in clinical studies. Since we have not gotten enough brain
metastases samples of breast cancer patients from public
databases, we have already set up a reliable clinical source in
collaboration with some local hospitals and proposed a future
study to further investigate the effects of our selected genes from
a clinical perspective.
CONCLUSION

In the present study, we identified candidate genes that may play
roles in BCBM through a series of bioinformatic analyses and
wet-lab experiments. The identified genes showed an elevated
expression in brain metastatic 231-BR and a prognostic value in
patients with BCBM. Among them, KRT19, FKBP10, GSK3B
and SPANXB1 were identified as key genes based on their roles
in migration of 231-BR. Furthermore, the key genes showed a
correlation with the infiltration of major immune cells in the
brain TME, suggesting possible roles of them in regulation of
immune response in brain TME. Therefore, the present work
may provide new potential biomarkers for BCBM.
FUTURE DIRECTIONS

Several future directions can be envisioned. The involvement of
the identified genes in BCBM demonstrated utility for the
identification of biomarkers or potential drug targets for
BCBM treatment. Screening brain penetrable compounds
targeting these genes may be a promising way for BCBM drug
discovery. For example, GSK3B has been studied as a target for
Frontiers in Oncology | www.frontiersin.org 16
drug discovery in the treatment of nervous system disorders
(121, 122), and a brain penetrable and orally active GSK3
inhibitor has been reported as a clinical candidate for
Alzheimer’s disease and progressed into Phase 1 clinical trials
(122). These findings in conjunction with our findings, suggest
new indications for such compounds in BCBM.
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